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The combination of diffusion MRI (dMRI) with microscopy provides unique opportunities to study microstructural
features of tissue, particularly when acquired in the same sample. Microscopy is frequently used to validate dMRI
microstructure models, addressing the indirect nature of dMRI signals. Typically, these modalities are analysed
separately, and microscopy is taken as a gold standard against which dMRI-derived parameters are validated.
Here we propose an alternative approach in which we combine dMRI and microscopy data obtained from the
same tissue sample to drive a single, joint model. This simultaneous analysis allows us to take advantage of the
breadth of information provided by complementary data acquired from different modalities. By applying this
framework to a spherical-deconvolution analysis, we are able to overcome a known degeneracy between fibre
dispersion and radial diffusion. Spherical-deconvolution based approaches typically estimate a global fibre
response function to determine the fibre orientation distribution in each voxel. However, the assumption of a
‘brain-wide’ fibre response function may be challenged if the diffusion characteristics of white matter vary across
the brain. Using a generative joint dMRI-histology model, we demonstrate that the fibre response function is
dependent on local anatomy, and that current spherical-deconvolution based models may be overestimating
dispersion and underestimating the number of distinct fibre populations per voxel.
1. Introduction

Diffusion MRI (dMRI) is routinely used to study white matter
microstructure and connectivity in vivo and non-invasively (Basser et al.,
2000; Sporns et al., 2005; Jbabdi et al., 2015). dMRI microstructure
models relate variations in the MR signal to microstructural features of
interest. Such inference requires biophysical modelling of both the tissue
architecture and diffusion process. Although many dMRI models have
been proposed, few have been rigorously validated (Jelescu and Budde,
2017; Dyrby et al., 2018), and the link between the observed diffusion
signal and the underlying white matter microstructure remains contro-
versial (Lerch et al., 2017; Novikov et al., 2019).

Microscopy is often considered a gold standard technique for the
validation of dMRI models. Crucially, microscopy tends to resolve a
specific structure of interest (e.g. histological staining of astrocytes or
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polarised light imaging of myelinated axons) and thus typically provides
specificity that is not guaranteed by MRI. In a typical validation study the
dMRI and microscopy data are analysed separately, then dMRI-derived
tissue parameters (e.g. fibre orientation, myelin density or axon diam-
eter) are compared to microscopy equivalents which are taken to be the
ground truth (Leuze et al., 2014; Bastiani et al., 2017; Mollink et al.,
2017; Schilling et al., 2017). This is possible due to the complementary
nature of the data: both modalities provide information about the same
tissue parameters of interest, but each observe them through a different
lens. However, by analysing the data separately (rather than simulta-
neously), such paradigms may not be exploiting the multimodal data to
its full potential.

Here we suggest an alternative, data-fusion framework in which we
combine dMRI and microscopy data from the same tissue sample into a
single joint model. A joint model may be advantageous in three respects.
ly 2019
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Firstly, by considering both datasets simultaneously, we have access to
additional, complementary information about the tissue microstructure
and may be able to accurately determine tissue parameters that are
currently unobtainable from the diffusion signal alone. A secondary
benefit of the data-fusion framework is that the joint model considers
both dMRI and microscopy to be informative of the ‘true’ underlying
microstructure, but also that both have sources of uncertainty (Fig. 1).
Crucially, these are unique, modality-dependent sources of noise.
Therefore, by using a data-fusion framework we can in theory obtain a
higher-precision estimate of the underlying microstructure of interest.
Finally, microscopy is typically 2D and may only be sensitive to a subset
of the tissue compartments (e.g. myelinated axons or astrocytes). For
example, histological staining of the tissue (a gold standard microscopy
technique) typically produces 2D images of thin tissue sections, where
only the stained microstructure is easily visualised. Thus, the information
provided by microscopy only partially informs on the tissue micro-
structure. The joint model can overcome this limitation by considering
the microscopy as a soft constraint on the model, as opposed to a hard
constraint or ground truth in post-hoc validation. This framework is
inspired by a similar data-fusion approach (Sotiropoulos et al., 2016)
which demonstrated improved brain connectivity analysis when com-
plementary 3T and 7T dMRI data was analysed jointly rather than
separately. It should be noted that a similar joint modelling approach
could be applied to co-analyse any two datasets which share a common
parameter of interest, to obtain a higher-precision estimate of that
parameter. The two datasets could be a) intra-modality, such as the two
dMRI datasets in the above example by Sotiropoulos et al. (2016), b)
from different MRI techniques (e.g dMRI-relaxometry) or c)
inter-modality, such as the combination of MRI with positron emission
tomography (PET), electro- or magneto-encephalography (E/MEG)
(Daunizeau et al., 2007; Uluda and Roebroeck, 2014) or microscopy data,
as in the approach presented here.

This report considers one example of how dMRI-microscopy data-
fusion allows us to extract tissue parameters which are difficult to obtain
from the dMRI data alone. Here we aim to separate out fibre orientation
dispersion from radial diffusion i.e. the apparent diffusion coefficient
perpendicular to the direction of the fibre. As is illustrated in Fig. 1
(bottom), a highly dispersed fibre population with low radial diffusivity
may produce the same dMRI signal as a single, coherently oriented fibre
population with high radial diffusion. This degeneracy is commonly
overcome by assuming one can identify a region with a single, coherently
oriented fibre population which is then used to define a global radial
diffusivity. Alternatively, promising developments by Lasi�c et al. (2014),
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Szczepankiewicz et al. (2015), and more recently by Cottaar et al. (2019)
demonstrate that, by combining linear and spherical diffusion tensor
encoding, it is possible to disentangle microscopic diffusion anisotropy
from orientation dispersion. Nonetheless, current analyses of conven-
tional dMRI data (based on single diffusion encoding and which do not
assume global diffusivities) are unable to distinguish these two distinct
fibre configurations.

Microscopy can be used to determine the fibre orientations at a much
finer spatial resolution (typically � micrometer or sub-micrometer per
pixel) and so can estimate the fibre dispersion in each dMRI voxel.
However, microscopy alone is typically uninformative of the diffusion
properties of the tissue. In a joint dMRI-microscopy model (as illustrated
in Fig. 1 bottom), once the amount of within-voxel fibre dispersion is
constrained, dMRI can accurately estimate the radial diffusion. In this
manner a joint model should be able to overcome the degeneracy and
separate out fibre dispersion from radial diffusion. This could provide
insights into how these two parameters vary across the brain in both
health and disease.

There are many ways to formulate a joint model. In this report we
focus on one approach based on constrained spherical deconvolution
(CSD, Tournier et al., 2007). As a popular data-driven analysis, CSD
estimates the underlying fibre orientations from a dMRI dataset. In
CSD, the diffusion signal is considered to be the convolution of the fibre
orientation distribution (FOD) with a fibre response function (FRF).
Here the FRF describes the diffusion signal from a single, coherently
oriented fibre population. In the model, the FRF is first estimated
empirically (Dhollander et al., 2016; Jeurissen et al., 2014; Tax et al.,
2014; Tournier et al., 2007) (typically from voxels with large fractional
anisotropy) and subsequently used as a global deconvolution kernel to
determine the underlying FOD. CSD is typically thus based around two
main assumptions: that it is possible to identify a region which contains
a single, non-dispersed fibre population, and that the FRF estimated
from this region holds globally. In other words, it is possible to estimate
a valid ‘brain-wide’ FRF. These assumptions may be challenged if we
consider there to be non-zero orientation dispersion in typical MRI
voxels, and the diffusion characteristics of white matter to be depen-
dent on microstructural properties such as axonal diameter, packing
and myelination that can vary across the brain (Walhovd et al., 2014;
Aboitiz et al., 1992). Thus, the estimation of a brain-wide fibre response
function could be unreliable and has been shown to produce spurious
results when poorly estimated (Parker et al., 2013; Tax et al., 2014). To
overcome this limitation, various attempts have been made to assume a
more local (rather than global) response function. Anderson et al.
Fig. 1. Top: Microscopy data can provide highly detailed in-
formation about specific microstructural features of the tissue
at sub-micrometre resolutions. In comparison, the diffusion
MRI signal is an indirect measure of the same microstructure of
interest. Due to the complementary information provided by
the two modalities, we propose a data-fusion framework which
simultaneously analyses dMRI and microscopy data from the
same tissue sample to drive a single, joint model. Bottom: (a) A
highly dispersed fibre population with low radial diffusivity
may produce the same diffusion MRI signal as a single,
coherently ordered fibre population with high radial diffu-
sivity. The blue line labelled ‘Diffusion MRI’ represents a
simplistic but graphical representation of this degeneracy. (b)
Microscopy can estimate and, in the joint analysis, constrain
the fibre dispersion in each MRI voxel to overcome the de-
generacy; the dMRI data can now provide accurate estimates
of radial diffusion. Critically, as the microscopy acts as a soft
constraint (rather than fixing the dispersion), both the dMRI
and the microscopy data simultaneously inform on the fibre
dispersion. Information about the radial diffusion comes from
dMRI data alone. The shading represents noise in the data and
uncertainty in the parameter estimates.
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(2005) derive a voxel-wise FRF from the estimated apparent diffusion
coefficient, whilst Jeurissen et al. (2014) and Dhollander et al. (2016)
estimate a tissue specific response function and perform multi-tissue
CSD. Nonetheless, alongside the recent and complimentary publica-
tion by Schilling et al. (2017), this report constitutes some of the first
work to actively demonstrate the extent of FRF variation across the
brain.

In this work we combine dMRI and histology data from the same
human tissue sample to investigate the diffusion properties of white
matter under conditions where multiple modalities are informative of the
‘true’ fibre configurations. To highlight the benefits of the data-fusion
framework, this report considers a joint model which is based on non-
parametric CSD. We show that by including histology data into the
joint model we are able to overcome the degeneracy of fibre dispersion
and radial diffusion. As such, we can simultaneously estimate the diffu-
sion profile of a single fibre bundle (the FRF) and the underlying fibre
orientation distribution (the FOD) on a voxel-by-voxel basis. In our re-
sults we investigate how the FRF changes across several white matter
regions, and consider the implications this may have on both the reli-
ability of CSD-based analyses and our understanding of the white matter
microstructure.

2. Methods

This section will first describe the principles of CSD, and how these
were developed into our joint modelling approach (c.f. Joint modelling).
As a generative model which spans multiple modalities, the joint model
error balances three terms (a dMRI-data fidelity term, a microscopy-data
fidelity term and a complexity penalty) with two regularisation factors.
Thus, Simulations describes how simulated data (with a known ground
truth) was used to determine appropriate values for the two regularisa-
tion factors. Finally, Postmortem data acquisition provides details of the co-
registered high-resolution dMRI (0.4mm isotropic) and myelin-stained
histological data used in this study.
Fig. 2. The generative joint model. Here the fibre response function (FRF) was
considered an axially-symmetric diffusion tensor characterised by diffusivities
(d) parallel and perpendicular to the fibre. The fibre orientation distribution
(FOD) was defined on a spherical harmonic (SH) basis set of order l ¼ 6. In the
joint model, the FRF and FOD were simultaneously fit to the diffusion data
(through convolution) and the FOD projected onto a 2D plane for comparison
with the microscopy-derived FOD.
2.1. Constrained spherical deconvolution

In constrained spherical deconvolution (CSD, Tournier et al., 2007)
the diffusion-weighted MR signal attenuation, S, measured along an
orientation parametrised in spherical coordinates by angles ðθ0; φ0Þ, is
considered to be the convolution of the FOD with the single-fibre
response function (FRF):

Sðθ0;φ0Þ ¼
ZZ

S2
FODðθ;φÞ FRFðθ0 � θ;φ0 � φÞ sinðθÞ dθ dφ (1)

where both the FOD and FRF are defined on the unit sphere. The FRF
describes the signal profile of a single coherently-oriented fibre bundle
and both the FRF and the FOD can be expressed in terms of spherical
harmonics (Tournier et al., 2007).

After estimating an appropriate FRF, the FODs are reconstructed on a
voxel-wise basis by deconvolving the FRF from the diffusion signal S. As
the deconvolution is sensitive to noise, the spherical deconvolution is
constrained to minimise physically impossible negative peaks in the
reconstructed FOD (Tournier et al., 2007, 2008). To constrain the opti-
misation a modified Tikhonov regularisation method (Hansen, 1994) is
typically employed to iteratively penalise negative amplitudes on the
FOD and update the FOD estimation.

This report will compare results from the standard CSD model (a
deconvolution) with those from the novel joint modelling approach (a
generative model). In the standard CSDmodel, processing was performed
using the MRtrix3 package (www.mrtrix.org, (Tournier et al., 2012)) and
the FRF was determined empirically using Tournier’s approach (Tournier
et al., 2013). Briefly, the Tournier algorithm iterates between response
function estimation and CSD to determine the 300 most likely ‘single--
fibre’ voxels from which the FRF is estimated.
3

2.2. Joint modelling

The principles of constrained spherical deconvolution were extended
to enable joint estimation of the FRF and FOD for datasets with both
dMRI and microscopy data. Although the joint modelling approach could
be applied to any type of microscopy data from which we can extract
fibre orientations, in this work we analyse histological images which
have been stained for myelin and co-registered to 0.4 mm isotropic dMRI
data (c.f. 2.4 Postmortem data acquisition). Through structure tensor
analysis of histological images (Bigun et al., 2004; Budde and Frank,
2012; Seehaus et al., 2015) (Appendix A), the primary fibre orientation
was estimated per pixel after which 1400� 1400 orientations were
combined into a frequency histogram to generate a 2D
microscopy-derived FOD (FOD2D;micro) for a ‘superpixel’ comparable to
the spatial resolution of dMRI. In the model, the microscopy-derived FOD
acted as a soft constraint on both the fibre orientation and amount of
dispersion in each MRI voxel. This allowed estimation of the diffusivities
both parallel (daxial) and perpendicular (dradial) to the fibre.

The generative model is described in Fig. 2. In the joint model, the
FRF and FOD were first estimated across a densely sampled sphere and
then combined to predict the dMRI signal, S, along each gradient direc-
tion, kðθ0;φ0Þ, using Eq. (1). Additionally, the FOD was projected onto
the 2D plane (FOD2D;joint) and re-normalised to fit the microscopy-derived
FOD2D;micro; for details see Appendix B. To retain simplicity and avoid
overfitting, in the joint model the FRF was characterised by an axially-
symmetric diffusion tensor, whilst the FOD was defined on a spherical
harmonic basis set of order 6. The model thus contained 30 free pa-
rameters: 2 diffusivities (which determined the FRF) and 28 spherical
harmonics coefficients (which determined the FOD).

The model parameters were fitted by minimising a cost function, E,
made of three terms,

E¼Ediff þ λmicro Emicro þ λcomplex Ecomplex; (2)

where Ediff describes the dMRI-data fidelity term, Emicro the microscopy-
data fidelity term, and Ecomplex a complexity penalty. The predicted
dMRI signal, S, was compared to the dMRI data, Y, along gradient di-
rection k 2 ½1;N�, using the mean squared error,

http://www.mrtrix.org
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Ediff ¼ 1 XN
ðYk � SkÞ2: (3)
N k¼1

The projected FOD (FOD2D;joint) was compared to the microscopy-
derived FOD2D;micro using the symmetric Kullback-Leibler divergence
DKL (Kullback and Leibler, 1951),

Emicro ¼DKL

�
FOD2D;micro

���� FOD2D;joint

�þ DKL

�
FOD2D;joint

���� FOD2D;micro

�
;

(4)

where the Kullback-Leibler divergence of two discrete probability dis-
tributions P and Q is defined as,

DKLðPjjQÞ¼ �
X
i

PðiÞlogQðiÞ
PðiÞ: (5)

In the model, i indicates the discrete values of θ, the in-plane angle
over which FOD2D;micro and FOD2D;joint are defined. As the Kullback-Leibler
divergence becomes numerically unstable when PðiÞ or QðiÞ are close to
zero, we set a lower bound such that PðiÞ;QðiÞ� 2� 10�16. The lowest
value in the real histology FODs was found to be 4� 10�8.

A third error term, the complexity penalty, minimised the presence of
spurious peaks in the 3D FOD. The penalty consisted of two parts. The
first penalised unphysical, negative peaks in the FOD. The second
penalised small positive peaks and excessive undulations in the FOD
shape, which are unlikely to be biologically meaningful. Firstly, posi-
tivity in the FOD was enforced in a manner similar to Tournier et al.
(2007). The spherical harmonics (which describe the 3D FOD) were
projected onto a densely sampled sphere, the magnitude of any negative
peaks summed (creating Eneg) and then set to 0. Thus, the negative peaks
did not contribute to either the predicted diffusion signal S nor
FOD2D;micro. To discourage the presence of small positive peaks or
excessive undulations in the FOD, the complexity penalty minimised the
L1-norm of the spherical harmonics coefficients x 2 ½1;28� where,

Ecomplex ¼Eneg þ
X
n¼1

���xn
���: (6)

The three error terms were combined into a single cost function (Eq.
(2)), with regularisation factors λmicro and λcomplex respectively, and mini-
mised using MATLAB’s non-linear solver fmincon (MathWorks, 2017).
Optimisation constraints ensured that the FOD, daxial and dradial were
positive and that daxial � dradial. The joint model was initialised as follows:
in each voxel, the spherical harmonics coefficients output from CSD
(Tournier et al., 2007,Tournier et al., 2012) provided an initial estima-
tion of the FOD and the FRF was initialised to daxial ¼ 0:25 μm2= ms;
dradial ¼ 0:05 μm2=ms. MATLABs simulated annealing algorithm simu-
lannealbnd (MathWorks, 2017) was used to generate three sets of starting
parameters from the above initial conditions. The model was optimised
for each set of starting parameters, and the solution with the lowest error
chosen. With this procedure, the joint model was able to simultaneously
optimise both the FRF and FOD on a voxel-by-voxel basis.

2.3. Simulations

This section will describe two sets of simulations which were used to
determine appropriate regularisation factors λmicro and λcomplex. dMRI and
histology data was simulated for a fairly simple single-fibre configura-
tion. The first set of simulations was used to determine an appropriate
value of λmicro and did not include a complexity penalty (λcomplex ¼ 0). We
evaluated whether, through the inclusion of histology data (increasing
λmicro), the joint model was able to separate fibre dispersion from radial
diffusion by assessing how faithfully the model could quantify the fibre
orientation dispersion. Here the FOD was fully described by 3 parame-
ters: the azimuth, θ, and inclination, φ, of the FOD peak, and the sym-
metric fibre dispersion around the peak, characterised by the orientation
dispersion index (ODI, Eq. (7)). In the second set, λmicro was fixed and a
4

cross-validation approach was taken to optimise λcomplex. Here spherical
harmonics were used to describe the FOD and we assessed how the re-
sidual error of the model changed with respect to λcomplex.

In both sets of simulations a dispersed FOD was approximated by a
Watson distribution with concentration parameter κ (Mardia, 2000;
Zhang et al., 2012). As proposed by Zhang et al. (2012), an orientation
dispersion index was defined as,

ODI ¼ 2
π
arctanð1=κÞ (7)

whereby theODI varies from 0 (no dispersion) to 1 (isotropic dispersion).
As above, the diffusion signal was calculated as the convolution of the
FOD with an axially symmetric FRF (Eq. (1)) after which zero-mean
Gaussian noise was added. In a similar manner to Sotiropoulos et al.
(2012), assuming S0 ¼ 100, the SNR was defined as SNR ¼ S0=σnoise.
Simulation parameters were fixed to values of ODI ¼ 0:25, daxial ¼
0:2 μm2=ms, dradial ¼ 0:1 μm2=ms, SNRdMRI ¼ 15.

Structure tensor analysis (Bigun et al., 2004; Budde and Frank, 2012;
Seehaus et al., 2015) of the histology data produced a single fibre orien-
tation per pixel, where each orientation can be seen to represent the
in-plane component of a (myelinated) fibre in the 3D FOD (as defined by
MRI, assuming perfect co-registration). To simulate histology data, we
emulated this process in reverse: fibre orientations were sampled from the
Watson distribution (which describes the 3D FOD) using rejection sam-
pling, projected onto a 2D histological plane and combined into a fre-
quency histogram. Rejection sampling is an acceptance-rejection method
which allows us to generate observations from the Watson distribution.
Briefly, orientations ðθ;φÞ were randomly sampled across the sphere. For
each orientation, the value of the normalised Watson distribution Pðθ;φÞ
was evaluated and a number was randomly sampled from the uniform
distribution Uð0;1Þ. The orientation ðθ;φÞ was accepted if the randomly
generated number was less than, or equal to, Pðθ;φÞ. In simulation, 1400�
1400 (accepted) samples were drawn from the Watson distribution to
match the number of fibre orientations in each ‘superpixel’ of the real data.
No additional noise was added to the histology data.

We first determined an appropriate value for the weighting of the
histology data λmicro, whilst setting λcomplex ¼ 0. As we were primarily
interested in how accurately the model could separate fibre dispersion
from radial diffusion, a wrapper function was used to simplify the joint
model such that the model contained only 3 free parameters: ODI, daxial
and dradial. To do this the fibre orientation was fixed to a specific direc-
tion, ðθ;φÞ, after which the Watson-like FOD could be fully characterised
by the ODI alone (rather than the 28 spherical harmonics of the normal
joint model). dMRI and histology data was simulated for a single-fibre
population oriented along ðθ;φÞ and a given ODI. The simplified joint
model was fit to the simulated data using a Markov chain Monte Carlo
(MCMC) method, Metropolis Hastings (1970), to find optimal values of
ODI, daxial and dradial. daxial and dradial were initialised using the same
parameters as for the real data (daxial ¼ 0:25 μm2=ms; dradial ¼
0:05 μm2=ms) whilst the dispersion was initialised to ODI ¼ 0:5. The
optimisation was constrained such that the ODI, daxial and dradial were
positive and daxial � dradial. It was preferable here to use MCMC for
optimisation (instead of fmincon above) for two reasons. Firstly, the
multiple MCMC samples identify combinations of parameters which
produce an equally good fit. This allowed us to investigate both the
precision and accuracy of the model. Secondly, as there were fewer
model parameters to fit (2 diffusivities and the ODI, rather than the 30
free parameters above), the optimisation was better suited to MCMC
methods. In these simulations of a single fibre population, the number of
model parameters was greatly reduced as we fit a single-fibre FOD of
symmetric dispersion, characterised by the ODI. Due to the tight re-
strictions on the form of the FOD, this simplified model was not used on
real data. In real data, we describe the FOD using spherical harmonics
coefficients rather than the ODI of a Watson distribution, allowing for
greater complexity in the FOD shape (e.g. multiple peaks with complex
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dispersion). The above procedure was first performed for a fibre popu-
lation oriented along the histological plane (φ ¼ 0) where the histolog-
ical data was most informative of the FOD shape, and then repeated for
various inclinations, φ. Finally, the simplified model was used to inves-
tigate the robustness of the joint model to mis-alignment of the
histology-dMRI data. Here the histology FOD was rotated with respect to
the dMRI data and the model evaluated for its accuracy and precision in
estimating the ODI and radial diffusivity.

For the second set of simulations, a cross-validation approach was
used to determine an appropriate weighting of the model complexity
penalty, λcomplex. The complexity penalty aims to minimise spurious peaks
in the FOD by penalising non-zero spherical harmonics which are un-
supported by the data. If λcomplex were too low it would be ineffective, but
if set too high, the spherical harmonic coefficients would be unable to
accurately describe the FOD. The latter would be identified in a cross-
validation study as it would result in a high error of the model with
respect to a validation dataset. For the cross-validation study, data was
simulated for a single-fibre population (as described above) and divided
into training and validation datasets of equal proportions. That is, each
set included half of the gradient directions, distributed fairly evenly
across the sphere. For various λcomplex, the model parameters daxial, dradial,
and the spherical harmonic coefficients were fit to the training data, after
which the out-of-sample residual error was calculated.

2.4. Postmortem data acquisition

This study analyses formerly obtained dMRI and histology data; for a
detailed description of the samples, data acquisition and post processing
see Mollink et al. (2017). Briefly, postmortem brain tissues, which had
been immersion fixed in formalin, were obtained from the Oxford Brain
Bank, Nuffield Department of Clinical Neurosciences, University of Ox-
ford, Oxford, UK. The postmortem tissues were from three male donors
with no known neurological conditions who died of non-brain related
disease. From each brain, a 5mm thick coronal section was extracted at
the level of the anterior commissure to include various anatomical re-
gions of interest: the corpus callosum, centrum semiovale, corticospinal
tract, and cingulum bundle.

dMRI data was acquired on a 9.4T preclinical MRI scanner equipped
with a 100mm bore gradient insert (Varian Inc, CA, USA) and with a
maximum gradient strength of 400mT/m. At a spatial resolution of
0.4 mm isotropic, a diffusion-weighting of b¼ 5000 s/mm2 was achieved
with a single-line spin-echo sequence (TE¼ 29ms, TR¼ 2.4s) over a total
of 120 gradient directions. An additional eight images were collected
with negligible diffusion weighting (b¼ 8 s/mm2). This equated to
approximately 8 h 45min scan time per tissue specimen.

After MRI scanning, the tissue was sectioned in half along the
anterior-posterior direction. One half was processed for classic immu-
nohistochemical staining of myelin and the other for polarised light
imaging. As previous work (Mollink et al., 2017) determined that the
myelin staining provided better predictions of dispersion (those more
consistent with dMRI data), this study focused solely on these histolog-
ical images. For immunohistochemical staining, the tissue was paraffin
embedded and sectioned at 6 μm along the coronal plane. To visualise the
Fig. 3. Previous evaluation of the dMRI-histology registration (reprinted with permi
alignment, with many of the tissue boudaries within one dMRI voxel of each other (
highlighted by the blue arrows.

5

myelin content, three sections of tissue were stained with antibodies
against proteolipid protein (MCA839G; Bio-Rad; 1:1000) and imaged at a
spatial resolution of 0.28 μm/pixel. Structure tensor analysis (Bigun
et al., 2004; Budde and Frank, 2012; Seehaus et al., 2015) of the histo-
logical images estimated the primary fibre orientation per pixel (see
Appendix A for details). 1400� 1400 fibre orientations were then
combined into a frequency histogram to generate a 2D histology-derived
FOD, FOD2D;micro, at a spatial resolution comparable to the 0.4 mm dMRI
data. Due to the symmetric nature of the dMRI-derived FOD, we calcu-
lated a symmetric (rather than asymmetric) FOD from the histology data,
which was fully described over θ 2 ½ � π=2;π=2�. The FOD2D;micro was then
normalised such that

P
θFOD2D;microðθÞ ¼ 1.

To allow for voxel-wise comparison of the multimodal data, the dMRI
and histology were co-registered using a 2D registration based on a
Modality Independent Neighbourhood Descriptor (MIND) (Heinrich
et al., 2012) algorithm. The MIND algorithm computes a local
modality-indepdent similarity metric and so was highly applicable to the
multimodal data in this study. Co-registration of MRI-microscopy data is
typically challenging due to the large number of deformations (e.g.
shearing or tearing) that may occur in the histology tissue preparation.
Nonetheless, previous evaluation (Mollink et al., 2017) of the registered
data found the tissue boudaries to be generally well aligned (within one
0.4 mm MRI voxel (Fig. 3)). All three specimen show especially good
registration in the corpus callosum facilitating robust voxel-wise com-
parisons. However, slight mis-alignment was apparent at some tissue
boundaries, particularly in specimen 3.

3. Results

3.1. Model validation

Using simulated data we first assessed whether the joint model was
able to separate fibre dispersion from radial diffusion as intended. To
determine an appropriate weighting of the histological data, λmicro, we
examined the model specificity and accuracy when estimating daxial, dradial.
and the ODI. Fig. 4 considers a FOD oriented along the histological plane,
where the histology is most informative. Fig. 4a shows samples from fitting
a simulated FOD using MCMC where the ODI, daxial and dradial were opti-
mised simultaneously. With only dMRI data included in the model (Fig. 4a,
left), we found a clear degeneracy between fibre dispersion and radial
diffusion as expected. A similar degeneracy exists between daxial and the
ODI which is not shown. In comparison, Fig. 4a (right) depicts the same fit
but with both histology and dMRI data included in the model. Here the
histology data acted to constrain the within-voxel fibre dispersion. Even
though the histology data was only informative of the fibre dispersion in
2D, the joint model was able to overcome the degeneracy and estimate
both the fibre dispersion and radial diffusion simultaneously.

In the model, the histologically-derived error was weighted by a
regularisation factor λmicro; when λmicro ¼ 0, the histological data was
excluded from the model, corresponding to the left part of 4a. Fig. 4b
shows how the accuracy of estimating dradial and the ODI varies with
respect to λmicro. When λmicro ¼ 1, we observe a break in the degeneracy
between dradial and the ODI, demonstrated by the increase in precision
ssion from Mollink et al., (2017)). Generally, the co-registered data shows good
i.e 0.4 mm). There are also areas of poor alignment, perticularly in specimen 3,



Fig. 4. Overcoming the degeneracy between fibre dispersion and radial diffusion. Here, simulated data for a single-fibre FOD has been fit using MCMC. Note, the fibre
orientation dispersion index (ODI) ranges from 0 (no dispersion) to 1 (isotropic dispersion) and the light grey lines represents the ground truth. Here we simulate data
for a single fibre population oriented along the histological plane, where the histological data is most informative. a) Each point shows a sample from MCMC where the
cost function of the joint model has been minimised with equally good fit. When the model only considers the dMRI data (left), we see a clear degeneracy as expected.
However, the degeneracy may be overcome through the inclusion of histology data to the model (right). Part b) examines the effect of λmicro, the weighting of the
histological data. When λmicro ¼ 1, the joint model was able to estimate both the ODI and radial diffusivity to a high degree of accuracy and precision.
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and accuracy.
In Fig. 4a and b the FOD was oriented along the histological plane,

such that the 2D histological data was highly informative of the FOD
shape. In contrast, the histological data should be minimally informative
for FODs oriented out of the histological plane. Fig. 5 evaluates the
performance of the model for fibre FODs with increasing inclination, φ,
with respect to the histological plane. For λmicro � 1, both dradial and the
ODI were estimated with good accuracy for fibre inclinations of up to
60�. Accurate estimation of dradial and the ODI for fibres of higher incli-
nation required increasing values of λmicro. Finally, for an FOD oriented
perpendicular to the histological plane, the degeneracy between the ODI
and dradial remained for all λmicro.

On occassion, in Fig. 5, the joint model appeared to estimate radial
diffusivities higher (φ ¼ 15∘) or lower (φ ¼ 45∘) than the ground truth.
Notably, the estimated radial diffusivity is consistent across λmicro � 1.
When evaluating noiseless data, the joint model repeatedly recovered the
Fig. 5. How the accuracy of the joint model, for a given λmicro, is affected by the FO
simulated for a single-fibre FOD and fit using MCMC. The light grey line represent
estimate both the ODI and radial diffusivity for fibres of inclinations up to 60∘ out of t
model estimated a value of radial diffusivity lower than the ground truth. The estima
the model consistently estimated radial diffusivities very similar to the ground truth (
estimated radial diffusivity and the ground truth (which are consistent for λmicro � 1
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ground truth values of both radial diffusivity and ODI (data not shown).
Therefore, we conclude that these deviations are an artefact of the dMRI
noise, not the performance of the model.

Fig. 5 suggests that it is optimal to set λmicro to a very high value
(� 100). Since the simulated histology FOD is both noiseless and
perfectly aligned to the dMRI data, this is to be expected. For a large
λmicro, the histological FOD becomes similar to a ‘ground truth’ or a hard
constraint. In real data however, there are various sources of noise in the
histology images (e.g tissue deformation or tearing) and some degree of
mis-registration of the dMRI-histology data. This will result in a lack of
spatial overlap and/or a rotation of the histology data with respect to the
dMRI data. Fig. 6 considers the robustness of the joint model to rotations,
Δθ, of the histology FOD with respect to the diffusion data. As in Fig. 4,
Fig. 6 considers simulated data for a single-fibre population oriented in
the histological plane (φ ¼ 0). For large λmicro > 1 and rotations
Δθ � 12∘, the model estimated both the ODI and radial diffusivity with
D inclination with respect to the histological plane, φ. As in Fig. 4 , data was
s ground truth values. When λmicro ¼ 1, the joint model was able to faithfully
he histological plane. For an inclination of φ ¼ 45∘ and when λmicro � 1, the joint
ted value appears consistent across λmicro � 1. When investigating noiseless data,
data not shown). Therefore we can conclude that such discrepancies between the
) are artefacts due to noise, not the performance of the model.



Fig. 6. Evaluating the robustness of the joint model to mis-alignment (here rotation) of the histology FOD with respect to the diffusion data. Data was simulated for a
single fibre population oriented in the histological plane, the histological FOD was rotated Δθ with repsect to the dMRI data, and optimised using MCMC. Again, the
light grey line represents ground truth values. For λmicro > 1 and rotations Δθ � 12∘, the joint model estimated the ODI with high precision, but without accuracy: the
ground truth no longer lies within the distribution of estimated values. For λmicro ¼ 1, the model could estimate the ODI and radial diffusivity with both good precision
and accuracy for rotations Δθ � 12∘.
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increasing precision, but with reduced accuracy. For λmicro ¼ 1, the
model could estimate the ODI and radial diffusivity with good precision
and accuracy both for rotationsΔθ � 12∘ (Fig. 6) and fibres of inclination
φ � 60∘ (Fig. 5). Therefore, λmicro ¼ 1 was chosen for all further optimi-
sations: the histology FOD was considered to a be a soft-constraint and
the model estimates were less susceptible to mis-registration or histology
artefacts.

With λmicro ¼ 1, a procedure of cross-validation was used to determine
the weighting of the complexity penalty, λcomplex. Fig. 7 plots the out-of-
sample residual error with respect to λcomplex. To remove spurious peaks
from the FOD requires the highest complexity penalty supported by the
data (i.e. one which does not detrimentally increase the residual error).
Consequently, λcomplex ¼ 1� 10�3 was considered optimal.
Fig. 7. Determining λcomplex , the weighting of the complexity penalty. A
complexity penalty was added to prevent spurious peaks occurring in the FOD.
Left: Having performed cross-validation on simulated data, the residual error of
the out-of-sample data was estimated for various λcomplex . λcomplex ¼ 1� 10�3 was
chosen for all future optimisations due to the unsubstantial increase in the re-
sidual error. Right: An example voxel from the postmortem dataset. The voxel
was optimised both with a very low complexity penalty (λcomplex ¼ 1� 10�5)
and with λcomplex ¼ 1� 10�3. We see how the complexity penalty successfully
minimises the presence of spurious peaks in the FOD which are unlikely to be
biologically meaningful.
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3.2. Residual error

Fig. 8 compares the fit of the joint model and CSD to both the dMRI
and histological data. For standard CSD, the FRF was estimated empiri-
cally from the most likely ‘single-fibre’ voxels using the Tournier algo-
rithm (Tournier et al., 2012, 2013). Once estimated, the FRF was held
constant across the sample and used as a deconvolution kernel to esti-
mate, in each voxel, the FOD from the dMRI data. In comparison, the
joint model acted as a forwards model, fitting to both the dMRI and
histology data to estimate the FRF and FOD on a voxel-by-voxel basis.
Fig. 8 shows the mean absolute percentage error between the predicted
diffusion signal (convolution of the FOD and FRF, Eq. (1)) and the dMRI
data (top), and the Kullback-Leibler divergence (Eq. (4) and (5)) between
the histological data and the model FOD when projected into the histo-
logical plane (bottom).

When compared to CSD, the joint model shows a slight increase in the
dMRI-associated error which is concurrent with a largely improved fit to
the histological data. This is as expected: CSD by definition minimises the
error with respect to the dMRI data. In comparison, the joint model
considers additional information about the ‘true’ fibre dispersion (from
the histology data) to avoid overfitting.

3.3. Variations in axial and radial diffusivities

Standard CSD methods define a global FRF and thus assume that the
diffusion characteristics of the tissue remain constant across the sample.
In contrast, the joint model overcomes the degeneracy between fibre
dispersion and radial diffusion to estimate the FRF on a voxel-by-voxel
basis. In the joint model the FRF is considered an axially symmetric
diffusion tensor described by daxial and dradial. So, the joint model can
estimate how the axial and radial diffusivities (and thus the FRF) vary
voxel-wise across the sample.

Fig. 9 shows considerable variation in the estimated axial and radial
diffusivities across all three specimens. Here we should again note the
less accurate registration of dMRI and histology data in specimen 3
(Fig. 3). Previous work (Mollink et al., 2017) demonstrates the
mis-alignment of the tissue around the grey matter tissue boundaries of



Fig. 8. Top: The residual error (calculated as the mean absolute percentage error) of the model fit to the dMRI data only. Bottom: The error of the model with respect
to the histological data, defined as the symmetric Kullback-Leibler (KL) divergence. When KL¼ 0, the 2D-FODs are identical. Compared to CSD, there is a slight
increase in the residual error of the joint model with respect to the dMRI data. This is to accommodate the highly improved fit to the histological data.

Fig. 9. Heatmaps (top) and raincloud plots (bottom,
specimen 1 only) show how the axial and radial dif-
fusivities (and thus the FRF) vary on a voxel-wise
basis across the white matter. We find notably lower
radial diffusivities in the corpus callosum compared to
other white matter tracts: the centrum semiovale,
corticospinal tract and cingulum bundle. Additionally,
we find two apparent distributions of radial diffusiv-
ities in the white matter. These results challenge
standard CSD methods where a global FRF is assumed
constant across the sample. Note the change in scale
bar between the axial and radial diffusivities, with the
radial diffusivity generally lower.
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specimen 3 as well as the more robust registration across the corpus
callosum. Values of axial and radial diffusivity outside of the corpus
callosum in specimen 3 should therefore be viewed with a sceptical eye.
Nonetheless, in Fig. 9 (top) we generally see a similar pattern of variation
8

in both axial and radial diffusivities, with particularly low values of
diffusivity often found in the corpus callosum.

To assess how the diffusivities vary with anatomical regions of in-
terest, Fig. 9 (bottom) compares the distribution of axial and radial
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diffusion in all white matter voxels to those only in the corpus callosum,
centrum semiovale, corticospinal tract and cingulum bundle. We see
considerably lower diffusivities in the corpus callosum, as well as two
distinct distributions of radial diffusivities across all white matter voxels.

3.4. Fibre response function

Fig. 10 compares three ways of estimating the FRF from the dMRI
data alone: the two conventional approaches estimate a global FRF,
whilst the joint model estimates the FRF on a voxel-by-voxel basis. The
FRF was first estimated from the 300 highest FA voxels and from the
most-likely single-fibre voxels defined by the iterative Tournier algo-
rithm (Tournier et al., 2012, 2013). This was compared to the joint model
estimates of the FRF for voxels in the corpus callosum, centrum semiovale
and corticospinal tract. To consider local changes in the FRF (rather than
the voxel-wise variations of Fig. 9), Fig. 10 shows the mean FRF across a
2� 2 neighbourhood of voxels in each anatomical region.

Here both conventional methods estimated the FRF from voxels either
in the corpus callosum or the cingulum bundle (data not shown): both of
which are known to contain coherently oriented, single-fibre voxels. In
Fig. 10, we see how the conventional FRFs most closely resemble those
estimated by the joint model in the corpus callosum, as expected.
Although the FRFs are similar, there are also noteable differences. In the
corpus callosum (Fig. 10a), the joint model estimated an FRF with lower
radial diffusivity and higher diffusion anisotropy (daxial � dradial) when
compared to the conventional FRFs. This would be consistent with
standard methods conflating fibre dispersion with diffusivity in the
voxels used to generate the FRF.

In the joint model, the FRF appeared to vary considerably with
neuroanatomy. Compared to the corpus callosum, Fig. 10 depicts a
higher radial diffusivity in the corticospinal tract as well as a more
spherical FRF in the centrum semiovale.

Notably, Fig. 10 demonstrates FRF variability across the corpus cal-
losum, which is typically considered a homogenous tract of coherently
oriented fibres. Comparing the example FRF’s in Fig. 10a and b, the
midline of the corpus callosum is characterised by lower axial diffusivity,
higher radial diffusivity and a subsequent decrease in diffusion anisotropy.
Fig. 10. Variations in the observed fibre response function (FRF); here the FRF descri
the page. The axial and radial diffusivities which describe the FRF are plotted below. A
algorithm (Tournier et al., 2013) which selects the most likely ‘single-fibre’ voxels (
callosum, centrum semiovale and corticospinal tract. The joint model estimates the FR
FRFs shown were characterised by the mean axial and radial diffusivities over a 2� 2
in general a more anisotropic (oblate) FRF in the corpus callosum and that the FRF
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3.5. FODs

Notable changes to the estimated FODs were also observed. Fig. 11
(top) shows representative voxels from the corpus callosum of specimen
1 where, when compared to the CSD, the joint model estimated narrower
FODs and a lower degree of dispersion in the underlying fibres. This
finding was consistent across many (but not all) voxels in the corpus
callosum of all three specimens.

Furthermore, in the joint model we sometimes observed the emer-
gence of additional distinct fibre populations in the FOD. Fig. 11 shows
an example from the centrum semiovale; a known region of crossing
fibres.

Fig. 11 right (‘FOD2D’) shows the improved fit of the FOD when
projected into the histological plane and compared to the histologically
derived FOD2D;micro. This is quantified by the reduced KL divergence as
shown in Fig. 8. We see here how the histological data acts as a soft
constraint on both the fibre orientation and amount of dispersion in the
MRI voxel.

3.6. Biasing the shape of the FOD: model limitations

Fig. 12 demonstrates two cases where, due to limitations of the 2D
histological data, the histology may bias the joint model prediction of the
FOD. Firstly, the histology may underestimate, or totally omit, the vol-
ume fraction of a secondary fibre population (Fig. 12 top). We see how
the joint model thus attempts to minimise the presence of a secondary
fibre population, the resultant FOD being perhaps biased or biologically
improbable.

Secondly, the histological data is most sensitive to fibre bundles in, or
close to, the histological plane. This effect was first observed in simulated
data (Fig. 5) where the joint model was able to accurately estimate the
fibre dispersion and radial diffusion for fibres of inclination angles
φ � 60∘, but struggled to faithfully reconstruct highly inclined FODs with
good accuracy. As the fibre inclination was increased, the histology FOD
became evermore circular and information about the FOD dispersion was
lost: for highly-inclined fibres, the model again became degenerate.
Fig. 12 (bottom) shows a single voxel from real data in two orthogonal
bes the diffusion profile of a single fibre bundle aligned vertically with respect to
global FRF was first estimated from the 300 highest FA voxels and the Tournier

left). This was compared to the FRF estimated by the joint model in the corpus
F on a voxel-wise basis. However, here we consider local changes in the FRF; the
neighbourhood in each anatomical region. We see how the joint model predicts
appears to vary considerably with anatomy.



Fig. 11. 3D fibre orientation distributions
(FODs) derived from CSD and the joint model in
both the corpus callosum (top) and centrum
semiovale (bottom). Top: The joint model esti-
mates narrower FODs and lower dispersion in the
underlying fibres. Bottom: In the centrum semi-
ovale, additional distinct fibre populations are
evident in the joint model FODs when compared
to CSD. Notably, these peaks are recognisable in
both the CSD FOD and the histology indepen-
dently, and are not introduced by the histology
only. In the right-hand pane (‘FOD2D’) the CSD
and joint model FODs have been projected onto
the plane of the histological data and are
compared to the histology-derived FOD. Here we
see the greatly improved fit of the joint model
FOD to the histology.

Fig. 12. Two cases where the histological data might bias the 3D FOD predicted by the joint model. Histology may under-estimate the volume fraction of in-plane
secondary fibre populations (top), or omit out-of-plane fibres from the histology-derived 2D FOD (bottom). Here the 3D FOD is seen from two orthogonal views:
looking onto (view 1) and out of (view 2) the histological plane (denoted x/y).
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views: looking down on the histological plane (view 1), and perpendic-
ular to the plane (view 2). In CSD, we see a single fibre population,
primarily oriented out of the histological plane; the CSD-derived 2D FOD
is consequently fairly circular. The histology-derived FOD however looks
substantially different. This may be due to the histology-derived FOD
over-emphasising either in-plane components of mostly through-plane
fibres or minor fibre populations which lie in the histological plane.
10
Alternatively, there could be mis-registration of the dMRI and histology
data such that the two datasets are incompatible. Consequently, as the
joint model tries to fit the histological data, it assumes a much less bio-
logically plausible FOD shape. Both examples in Fig. 12 were taken from
the centrum semiovale on the left hand side of specimen one: a known
region of complex fibre configurations and, in this specimen, a region of
high dMRI-associated error in the joint model.
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3.7. Orientation of the FOD peak

In the joint model, the histological data constrains both the fibre
orientation and amount of dispersion in each dMRI voxel. This is likely to
affect the orientation of the estimated FOD peak in two respects. Here we
define the peak orientation by the azimuthal angle in, and inclination out
of, the histological plane. Firstly, any mis-registration of the dMRI and
histology data may cause a rotation in the azimuthal angle. Secondly, as
the histological data is most informative of in-plane fibres, the joint
model may favour FODs of low inclination. Fig. 13 investigates these
effects by comparing the orientation of the primary peaks of FODs esti-
mated by both CSD and the joint model. Fig. 13a shows the angular
deviation of the two peaks where the three samples have a median dif-
ference of 12:8∘, 12:9∘ and 13:5∘. Fig. 13b and c compare the azimuth and
inclination of the primary peaks respectively. We see how all three
specimen show very close correlation with the robust regression line
close to the line of unity and r-values between r¼ 0:93� 0:98 . Note that
here we use robust linear regression to limit our sensitivity to outliers and
that the r-values of robust regression (here calculated using MATLABs
fitlm (MathWorks, 2017)) are typically inflated when compared to stan-
dard linear regression.
Fig. 13. Comparing the orientation of the primary FOD peak derived from both CS
inclination angle which is defined with respect to the histological plane (inclination ¼
result in a rotation of the peak azimuth. In addition, as histology is most informative
FODs of low inclination angles. In all 3 specimen there is a low angular deviation (a)
azimuthal (b) and inclination (c) angles: the robust regression lines are close to unit
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In 13b specimen 1 we see a prevalence of joint model estimated FOD
peaks at azimuthal angles of θ ¼ 	90∘, i.e along the superior-inferior
axis. This is due to an almost equal prevalence of histology-defined
FODs with peaks at these angles and is probably caused by an artefact
in the histology data. This however does not appear to greatly impact
either the inclination (Fig 13c) or total angular difference (Fig. 13a)
between the CSD and joint model derived FODs of specimen 1. Overall,
Fig. 13 indicates a markedly stable relationship between the FOD peaks
derived from CSD (dMRI analysis only) and the joint model (combined
dMRI and histology analysis).

4. Discussion

In the joint model we utilised a data-fusion framework to combine
co-registered dMRI and histology data from the same tissue samples,
acquired from three postmortem human brains. This allowed us to test
the validity of a brain-wide fibre response function as used in CSD
(Tournier et al., 2007). With the inclusion of histological data, we were
able to constrain both the fibre orientation and amount of dispersion
within each MRI voxel, albeit in 2D. Consequently, the joint model
could overcome the degeneracy between fibre dispersion and radial
D and the joint model. The peak orientation is described by an azimuth and an
0∘). In the joint model, any mis-registration of the dMRI and histology data may
of fibres lying in or close to the histological plane, the joint model might favour
between the CSD and joint model FOD peaks, with good correlation between the
y with r-values between 0.93 and 0.98.
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diffusion to estimate the FRF and FOD simultaneously on a
voxel-by-voxel basis.

Using simulated data, we evaluated the model specificity and ac-
curacy. For simulated data of single-fibre populations, the joint model
provided particularly robust estimates of both orientation dispersion
and radial diffusion for fibre populations in or close to the histology
plane (up to inclinations of 60∘), where the histological data was most
informative. However, in both simulation and post-mortem data the
joint model was less effective at reconstructing out-of-plane fibre
populations. This was due to an inherent limitation of the microscopy
technique, where fibres oriented out of the plane aren’t readily detected
in the 2D histological data. The bias of the model could be reduced if the
microscopy was able to reconstruct the FOD in 3D; 3D polarised light
imaging developed by Axer et al. (2011), or 3D confocal microscopy
from Schilling et al. (2016) being two examples of such techniques. In
addition, future work could take a more heuristic approach where the
regularisation factor λmicro could depend on fibre inclination, as a proxy
of how informative the microscopy data is of the 3D FOD.

In this joint model, the FRF was characterised by axial and radial
diffusivities, which appear to vary considerably across the human brain.
Generally, both diffusivities seem to follow a similar pattern of variation,
with particularly low values of radial diffusivity found in the corpus
callosum. Contrary to the assumption of a brain-wide FRF in CSD, our
results demonstrate that the FRF is dependent on the local anatomy. This
supports recent findings by Schilling et al. (2019) who used 3D confocal
microscopy to investigate FRF variation across the brain of a squirrel
monkey. FRF variation is expected as tissue characteristics such as axonal
density, packing and myelination are unlikely to hold across the entire
brain (Walhovd et al., 2014). For example, areas of the corpus callosum
have been reported to have only 30% myelination (Sturrock, 1980)
which would significantly impact the FRF; decreased myelination has
been shown to be associated with high radial diffusivity (Beaulieu, 2002;
Song et al., 2002, 2005). Indeed, characteristically different fibres should
each have their own unique FRF, although in practice this would be
difficult to model.

Not only does FRF variation challenge the assumption of the brain-
wide FRF used in CSD, but also implies that current analyses may be
biasing the shape of their reconstructed FODs throughout the brain.
Indeed, in known regions of crossing fibres such as the centrum semi-
ovale, the joint model estimated distinct secondary fibre populations
which were often recognisable but not well defined in the CSD-derived
FODs. Furthermore, the joint model often estimated FODs of lower
dispersion in single-fibre voxels, particularly across the corpus callosum.
Current algorithms which estimate the FRF directly from the data
(Tournier et al., 2013; Tax et al., 2014) typically estimate the FRF from
voxels in the corpus callosum which exhibit high fractional anisotropy.
However, even these voxels are unlikely to contain a perfectly coherent
fibre bundle. Indeed, recent studies of both histology (Budde and Annese,
2013), polarised light imaging and dMRI data (Mollink et al., 2017) have
found significant levels of dispersion in the corpus callosum, particularly
at the midline (Mollink et al., 2017). To obtain accurate estimates of the
FOD, both this study and that by Schilling et al. (2019) support the
development of analyses which estimate a local rather than global FRF.
Both approaches are however limited as they require co-registered dMRI
and microscopy data in postmortem tissue samples. Building on the work
by Lasi�c et al. (2014) and Szczepankiewicz et al. (2015), Cottaar et al.
(2019) combine linear and spherical tensor diffusion encoding to over-
come the degeneracy between fibre dispersion and diffusion anisotropy
to estimate both on a voxel-wise basis, with highly consistent results.
Similar techniques could provide exciting new avenues for local FRF
estimation in in vivo data and more faithful FOD reconstruction in
spherical-deconvolution based analyses.

Multimodal datasets also present a number of challenges: one being
that the microscopy data is only representative of a subset of the tissue
microstructure. Here the tissue sections were stained to visualise the
myelin content of the tissue, yet only pixels above a certain staining
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intensity were recognised as myelinated fibres. Fibres that failed to meet
the staining threshold (perhaps those with with less myelin and typically
lower diameter), and other cell types (e.g. glia) may have therefore been
underrepresented or omitted from the microscopy-derived FOD. Sec-
ondly, as the histological stain was only sensitive to myelin, other cell
types (e.g. glia) were excluded from the microscopy FOD. If the unmy-
elinated axons or glia both contributed to the diffusion signal and acted
to increase the dispersion of the true FOD, the FOD of the joint model
would underestimate the amount of dispersion compared to that of the
true contributing microstructure. Nonetheless, as seen in Fig. 11, the
joint model did not always act to fit to the histological data perfectly.
Indeed the joint model often estimated a slightly higher degree of
dispersion than prescribed by the histology and on occasion assumed a
substantially different FOD, if this was both driven and supported by the
dMRI data. This is a result of the histology acting as a soft constraint,
rather than fixing the fibre orientation and dispersion.

The postmortem dMRI data used here presents a second challenge.
Although the data provides high spatial resolution (0.4mm isotropic), it
has relatively low diffusion contrast. This is likely due to the postmortem
interval (time between death and fixation) and immersion fixation of the
human brains from which our samples were taken. It is most likely that
the meninges, specifically the pia mater and the components of the dura,
were attached during immersion fixation of the postmortem brains in this
study. As the samples originated from the centre of each brain, the uptake
of fixative to this area will have been particularly slow as fixative will
have had to diffuse from the cortical surface to reach the callosum,
increasing the apparent postmortem interval. Prior to fixation, post-
mortem tissue may begin to decompose, wherein both the postmortem
interval and fixation method have been shown to change the diffusion
properties of the tissue (Shepherd et al., 2009; Miller et al., 2011). This
likely explains both the inter-specimen variation in estimated diffusiv-
ities and why the diffusivities reported here are low when compared to in
vivo data where, for comparison, the NODDI model assumes daxial ¼
1:7 μm2=ms (Zhang et al., 2011, 2012). It is important to note that the
joint model generalises to any dataset which includes dMRI alongside
microscopy data from which we can estimate fibre orientations. This
encompasses existing, open access, dMRI and histology datasets (Schil-
ling et al., 2016, 2018; Mollink et al., 2017), as well as data from alter-
native microscopy techniques such as the mesoscopic fibre orientations
obtained from polarised light imaging (Axer et al., 2011; Leuze et al.,
2014; Mollink et al., 2017). As such, future work aims to apply the
CSD-based joint model to other datasets, of both human and monkey
(perfusion-fixed at death) brain tissue.

Thirdly, the joint model simultaneously analyses co-registered dMRI
and microscopy data from the same tissue sample. The accuracy with
which the model estimates the FOD, axial and radial diffusivities is
therefore dependent on the quality of the registration. dMRI-histology
registration is particularly challenging as histological images suffer
from various non-linear tissue deformations (e.g. due to sectioning, tissue
shrinkage or tearing) or imaging artefacts such as dirt, air bubbles or un-
even immunohistochemical staining. This study analyses previously
published, pre-processed data where the dMRI and histology data was
registered using a Modality Independent Neighbourhood Descriptor
(MIND) algorithm (Heinrich et al., 2012). Previous evaluation (Mollink
et al., 2017) of the tissue boundaries (Fig. 3) showed generally good
alignment of the dMRI-histology data with the tissue boundaries mostly
within one MRI voxel (0.4mm). Nonetheless, there are areas which show
less good alignment where the joint model will estimate the FOD and
diffusivities with a higher degree of uncertainty. The development of
reliable tools the for high-quality co-registration of microscopy and dMRI
data (Alegro et al., 2016; Iglesias et al., 2018; Huszar et al., 2019) will
greatly aid future joint-modelling work and the field of dMRI validation
in general.

With very high-quality co-registered data, the joint modelling
approach could further take advantage of the highly detailed fibre ori-
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entations obtained from histology. Here, we combine 1400� 1400
histologically-derived fibre orientations into a frequency histogram to
create a 2D FOD which is considered symmetric about the origin. The
FOD is therefore essentially a summary measure, where ultra-high-
resolution information about the spatial distribution of the fibre orien-
tations within the MRI voxel is lost. Instead, the histology data could
describe an asymmetric FOD and the joint-modelling approach could be
used to either validate or drive the modelling of FOD asymmetry (Bas-
tiani et al., 2017). Alternatively, we could use the joint model to directly
predict the diffusion signal (through the convolution of the FRF and FOD,
c.f. Eq. (1)) in each histology pixel, or over a small local neighbourhood,
much smaller than the MRI voxel. In this manner, a joint modelling
approach may be able to differentiate crossing fibres from those in fan-
ning, bending or kissing configurations which are known to produce the
same diffusion signal (Jbabdi and Johansen-Berg, 2011).

Finally, this report looks through the lens of a convolution-based joint
model to detail both the advantages and challenges of a dMRI and mi-
croscopy data-fusion framework. As such, we recognise this model to be
only one example of a joint modelling approach. The microstructure
model at the centre of the data-fusion framework can itself take a range of
forms, or be extended to increase both its complexity and specificity. For
example, future work will consider a multi-compartment model of the
fibre response function, which distinguishes intra- from extra-axonal
space, each characterised by a unique diffusion profile. In this manner,
we hope to disentangle which tissue compartment is driving the FRF
variation across the brain. Alternatively, the joint-modelling approach
could be utilised to obtain high-precision estimates of fibre dispersion
from, for example, a NODDI-based model (Zhang et al., 2011). Lastly,
future joint models will benefit from a Bayesian framework where the
datasets are combined optimally in the sense of precision-weighting, i.e.
the shared parameters get information from the fused datasets while
accounting for uncertainties inherent to the data, noise, and model
structures. The data and code related to this work is publicly available at
https://git.fmrib.ox.ac.uk/amyh/jointmodelling. The original data can
be downloaded from http://www.fmrib.ox.ac.uk/DigitalBrainBank.
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5. Conclusion

The joint model takes a data-fusion approach, combining dMRI and
histology data from the same tissue sample to investigate the diffusion
properties of white matter under conditions where multiple modalities
are informative of the ‘true’ tissuemicrostructure. In themodel, histology
acted as a soft constraint on both the fibre orientation and amount of
dispersion in each dMRI voxel. This allowed us to overcome the de-
generacy between fibre orientation dispersion and radial diffusion, to
estimate the FOD and FRF on a voxel-by-voxel basis. Our results
demonstrate how the diffusion characteristics of a single fibre (here
characterised by axial and radial diffusivities) vary considerably across
the brain. Notably, the diffusivities were found to vary both between and
within white-matter tracts; even in the corpus callosum where the
microstructure is typically considered fairly homogenous. These findings
contradict the assumption of a brain-wide FRF, currently used in many
deconvolution-based analyses. Finally, our results suggest that current
diffusion models may be overestimating dispersion in single-fibre voxels
and underestimating the number of distinct fibre populations in known
regions of crossing fibres; both of which have important implications for
tractography (Behrens et al., 2007).
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Appendix A. Structure tensor analysis

Structure tensor analysis (Bigun et al., 2004; Budde and Frank, 2012; Seehaus et al., 2015) of the histological images estimated the primary fibre
orientation per pixel (Mollink et al., 2017). In each histological pixel, the structure tensor matrix J was defined as,

J ¼
2
4< Ix; Ix>w < Ix; Iy>w

< Iy; Ix>w < Iy; Iy>w

3
5; (A.1)

where Ix; and Iy are the first derivatives of Iðx; yÞ along x and y respectively. The notation < g; h>w describes the weighted inner product between two
images gðx; yÞ and hðx; yÞ and a Guassian weighting function wðx; yÞ with width σ, where,

< g; h>w ¼
ZZ

R2
wðx; yÞ gðx; yÞ hðx; yÞ dx dy: (A.2)

Here the local neighbourhood of the Gaussian weighting function, σ, was equivalent to 10 histological pixels of 0:28μm. The primary fibre orien-
tation was then calculated as,

θ ¼ 1
2
arctan

�
2

< Ix; Iy>w

< Iy; Iy>w� < Ix; Ix>w

�
: (A.3)

1400� 1400 local fibre orientations (a neighbourhood equivalent to an MRI voxel) were then combined into a frequency histogram to generate the
histologically-derived FOD2D;micro. Fig. 14 shows example FODs in both the corpus callosum and centrum semiovale.

Appendix B. FOD projection onto the 2D plane

The 3D FOD was projected onto the 2D histological plane for comparison with the histologically-derived FOD2D;micro. In the histological plane, the
inclination angle φ ¼ 0. The 3D FOD (characterised by 28 spherical harmonics coefficients) was first estimated for discrete points ðθ;φÞ on the sphere

https://git.fmrib.ox.ac.uk/amyh/jointmodelling
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producing FODjointðθ; φÞ. Due to the rotational symmetry of the 3D FOD, only a hemi-sphere (θ; φ 2 ½ � π=2; π=2�) was required. The projection of
FODðθ;φÞ onto the 2D plane was thus defined as,

FOD2D;jointðθÞ ¼
Xπ=2

φ ¼�π=2

FODjointðθ;φÞcosðφÞΔφ: (B.1)

The FOD2D;jointðθÞ was then normalised such that
P
θ
FOD2D;jointðθÞ ¼ 1. As FOD2D;joint and the microscopy-derived FOD2D;micro were defined over the

same values of θ, the discrete distributions were directly comparable.

Fig. 14. Using structure tensor analysis (Bigun et al., 2004; Budde and Frank, 2012; Seehaus et al., 2015) of histological images to derive a 2D FOD. Left: A section from
specimen 3 was immunohistochemically stained with antibodies against proteolipid protein (MCA839G; Bio-Rad; 1:1000) and imaged at a spatial resolution of
0.28 μm/pixel. Right: The red colour channel was then extracted for structure tensor analysis after which fibre orientations were combined into histologically-derived 2D
FODs (overlaid). In the corpus callosum (top) we see coherently oriented fibres and low dispersion in the FOD. In comparison, in the centrum semiovale (bottom) we see
crossing fibres in the histology image which are reflected in the FOD as multiple, distinct fibre populations and more disperse fibre profiles. In addition, we see small areas
of tissue tearing (at the tissue boundary, top right) and degradation (in the cingulum bundle), both of which are artfeacts commonly found in histology data.
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