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Summary

� Light regulates the subcellular localization of plant photoreceptors, a key step in light signal-

ing. Ultraviolet-B radiation (UV-B) induces the plant photoreceptor UV RESISTANCE LOCUS

8 (UVR8) nuclear accumulation, where it regulates photomorphogenesis. However, the

molecular mechanism for the UV-B-regulated UVR8 nuclear localization dynamics is

unknown.
� With fluorescence recovery after photobleaching (FRAP), cell fractionation followed by

immunoblotting and co-immunoprecipitation (Co-IP) assays we tested the function of UVR8-

interacting proteins including CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1),

REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 in the regulation of

UVR8 nuclear dynamics in Arabidopsis thaliana.
� We showed that UV-B-induced rapid UVR8 nuclear translocation is independent of COP1,

which previously was shown to be required for UV-B-induced UVR8 nuclear accumulation.

Instead, we provide evidence that the UV-B-induced UVR8 homodimer-to-monomer photo-

switch and the concurrent size reduction of UVR8 enables its monomer nuclear translocation,

most likely via free diffusion. Nuclear COP1 interacts with UV-B-activated UVR8 monomer,

thereby promoting UVR8 nuclear retention. Conversely, RUP1and RUP2, whose expressions

are induced by UV-B, inhibit UVR8 nuclear retention via attenuating the UVR8–COP1 inter-

action, allowing UVR8 to exit the nucleus.
� Collectively, our data suggest that UV-B-induced monomerization of UVR8 promotes its

nuclear translocation via free diffusion. In the nucleus, COP1 binding promotes UVR8 mono-

mer nuclear retention, which is counterbalanced by the major negative regulators RUP1 and

RUP2.

Introduction

Light is a key environmental factor regulating plant growth and
development. Plants possess several classes of photoreceptors,
including UV RESISTANCE LOCUS 8 (UVR8) that senses and
signals ultraviolet-B radiation (UV-B; Galvao & Fankhauser,
2015; Podolec et al., 2021a). In the model plant Arabidopsis
thaliana and vegetable crop tomato (Solanum lycopersicum),
UVR8 regulates a broad range of physiological processes includ-
ing hypocotyl elongation (Favory et al., 2009; Jenkins, 2017; Yin
& Ulm, 2017; Liang et al., 2019; Podolec et al., 2021a). More-
over, the UVR8 pathway is particularly key in promoting plant

survival under UV-B (Kliebenstein et al., 2002; Brown et al.,
2005; Favory et al., 2009; Rai et al., 2019; Tissot & Ulm, 2020;
Shi & Liu, 2021).

The activities of photoreceptors, including UVR8, are depen-
dent on their subcellular locations within plant cells (Ronald &
Davis, 2019). UVR8 is primarily cytosolic, but UV-B induces
the nuclear translocation and nuclear accumulation of UVR8
without altering total UVR8 protein levels (Kaiserli & Jenk-
ins, 2007). In the nucleus, UVR8 regulates photomorphogenic
responses to UV-B by inducing massive reprogramming of gene
transcription (Brown et al., 2005; Favory et al., 2009). UV
RESISTANCE LOCUS 8 regulates gene transcription via several
different mechanisms, including modulating the abundance or
activity of multiple transcriptional regulators (Ulm et al., 2004;
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Brown et al., 2005; Brown & Jenkins, 2008; Liang et al., 2018;
Y. Yang et al., 2018, 2020; Lau et al., 2019; Sharma et al., 2019;
Qian et al., 2020; Tavridou et al., 2020a,b; Podolec et al., 2022;
G. Yang et al., 2022). Therefore, unraveling the mechanisms
underpinning the UV-B-induced nuclear translocation and accu-
mulation of UVR8 is crucial for understanding early UV-B
signaling events.

Ultraviolet-B radiation not only alters the subcellular localiza-
tion of UVR8, but also induces the photo-switching of UVR8
from a homodimer to a monomer (Rizzini et al., 2011; Christie
et al., 2012; D. Wu et al., 2012; Li et al., 2022). UVR8 mono-
mers also can reassociate to form homodimers (Heijde &
Ulm, 2013; Heilmann & Jenkins, 2013). In Arabidopsis, two
WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHO-
GENESIS 1 (RUP1) and RUP2, are critical negative regulators
of the UVR8 pathway (Gruber et al., 2010). REPRESSOR OF
UV-B PHOTOMORPHOGENESIS proteins interact with
UVR8 and accelerate the reassociation of UVR8 monomers into
inactive homodimers (Heijde & Ulm, 2013). Under photomor-
phogenic UV-B, both UVR8 homodimer and monomer are pre-
sent in plant cells (Heilmann & Jenkins, 2013; Findlay &
Jenkins, 2016). However, it is unknown whether UVR8 homod-
imers or monomers translocate into nucleus.

CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1),
a repressor of plant photomorphogenesis (Yi & Deng, 2005; Han
et al., 2019), is a key player of UVR8-mediated UV-B signaling
(Oravecz et al., 2006). CONSTITUTIVELY PHOTOMOR-
PHOGENIC 1 interacts with UVR8 in a UV-B-dependent man-
ner (Favory et al., 2009; Rizzini et al., 2011), via two domains in
UVR8, the core domain (Crefcoeur et al., 2013; Yin et al., 2015)
and a well-conserved C27 domain located within the C-terminus
(Cloix et al., 2012; Yin et al., 2015; Lin et al., 2020). Interestingly,
RUP1 and RUP2 also interact with UVR8 via the C27 domain
(Cloix et al., 2012; Yin et al., 2015), suggesting that COP1 and
RUP1/2 may compete for UVR8 binding. We previously reported
that COP1 is indispensable for UV-B-induced UVR8 accumula-
tion in the nucleus (Yin et al., 2016). Moreover, RUP1 and RUP2
inhibit the UV-B-induced nuclear accumulation of UVR8 (Qian
et al., 2016; Yin et al., 2016). However, the molecular mechanisms
of how COP1 and RUP1/2 regulate the nuclear accumulation of
UVR8 have remained unknown.

UV RESISTANCE LOCUS 8 does not contain any typical
nuclear localization signal (NLS; Kaiserli & Jenkins, 2007; Jenk-
ins, 2017; Yin & Ulm, 2017), whereas COP1 contains a bipartite
NLS as well as a nuclear exclusion signal (NES), and is known to
show light-dependent nucleocytosolic partitioning (Stacey
et al., 1999). UV RESISTANCE LOCUS 8 could enter the
nucleus via nuclear import by binding to an NLS-containing pro-
tein, such as COP1, or via free diffusion of the UVR8 monomer,
a c. 47-kDa protein in Arabidopsis (Yin & Ulm, 2017). Based on
available observations, particularly the finding that UV-B induces
the UVR8–COP1 interaction, three possible models could
explain the UV-B-induced nuclear accumulation of UVR8: (1)
the UVR8–COP1 heterodimer is imported into the nucleus
under UV-B via the NLS of COP1; (2) UVR8 enters the nucleus

independently of COP1, in the nucleus COP1 interacts with
UVR8 monomers and promotes their nuclear retention; or (3)
COP1 protects UVR8 from degradation in the nucleus.

Here, we provide evidence that, although required for nuclear
accumulation, COP1 is not required for the UV-B-induced
nuclear translocation of UVR8. Our data indicate that the UV-
B-induced photo-switching of UVR8 from a homodimer to a
monomer enables the nuclear translocation of UVR8 monomer,
probably via free diffusion. In the nucleus, COP1 interacts with
UVR8 monomer and promotes its nuclear retention. RUP1 and
RUP2 inhibit the nuclear retention of UVR8 by attenuating the
UVR8–COP1 interaction, thereby promoting the nuclear exit of
UVR8.

Materials and Methods

Plant material, growth conditions and UV-B irradiation

The Arabidopsis thaliana uvr8-6, uvr8-17D (UVR8G101S), cop1-4
and rup1 rup2 mutants are in the Columbia (Col-0) ecotype back-
ground (McNellis et al., 1994; Favory et al., 2009; Gruber et al.,
2010; Podolec et al., 2021b). The uvr8-6/35S:YFP-UVR8, cop1-4/
35S:YFP-UVR8, uvr8-6/35S:YFP-UVR8W285A, uvr8-6/35:YFP-
UVR8W285F, uvr8-6/35S:YFP-UVR8, uvr8-7/35S:YFP-UVR8VP-AA

Arabidopsis lines were described previously (Heijde et al., 2013; Yin
et al., 2015, 2016; YFP, yellow fluorescent protein). The uvr8-6/
35S:YFP-UVR8 line was crossed with rup1 rup2 to generate uvr8-6
rup1 rup2/35S:YFP-UVR8. The synthetic nucleotide fragments of
YFP-YFP-UVR8 and NLS-YFP-YFP-UVR8 (Fig. S1) were cloned
into pDONR207. The sequences were confirmed and cloned into
pB7WGY2 (Karimi et al., 2002), yielding YFP-YFP-YFP-UVR8
and YFP-NLS-YFP-YFP-UVR8. The binary vectors were trans-
formed into uvr8-6 to generate uvr8-6/35S:YFP-YFP-YFP-UVR8
and uvr8-6/35S:NLS-YFP-YFP-YFP-UVR8 Arabidopsis lines. A
NLS or NES was added to COP1 by PCR using primers shown in
Table S1. The NLS-COP1 and NES-COP1 fragments were cloned
into pB7WGY2 (Karimi et al., 2002), yielding YFP-NLS-COP1
and YFP-NES-COP1, respectively. The binary vectors were trans-
formed into cop1-4 to generate cop1-4/35S:YFP-NLS-COP1 and
cop1-4/35S:YFP-NES-COP1 Arabidopsis lines. The double mutant
uvr8-17D cop1-4 was generated by genetic crossing. The tomato
sluvr8-1 and slrup-22mutants are in the Ailsa Craig wild-type (WT)
background (Zhang et al., 2021).

Arabidopsis and tomato seeds were surface-sterilized and sown
on half-strength Murashige & Skoog basal salt medium (MS;
Duchefa Biochemie, Haarlem, the Netherlands) containing 1%
(w/v) sucrose and 1% (w/v) agar (pH = 5.8). The seeds were strati-
fied for 2 d in the dark at 4°C and transferred to a growth chamber
with continuous white light (3.6 lmol m�2 s�1; –UV-B) or white
light supplemented with photomorphogenic UV-B (TL20W/
01RS; Philips, Hamburg, Germany; 1.5 lmol m�2 s�1) for the
indicated periods (Oravecz et al., 2006; Lin et al., 2020). Broad-
band UV-B treatment was performed with a Philips TL40W/
12RS to enhance UVR8 monomerization rapidly as reported pre-
viously (Rizzini et al., 2011; Lin et al., 2020).
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Protein extraction and immunoblots

Total protein was extracted from the samples with buffer con-
taining 50 mM Tris pH 7.6, 150 mM NaCl, 10% glycerol,
5 mM MgCl2, 0.1% NP-40, 1% DTT, 1% protease inhibitor
cocktail (Sigma). The protein extracts were separated by SDS-
PAGE and transferred to PVDF membranes according to the
manufacturer’s instructions (Bio-Rad). To detect UVR8 homod-
imers, the SDS-PAGE gels were UV-B-irradiated before elec-
trophoretic transfer to PVDF membranes as described previously
(Rizzini et al., 2011). Polyclonal anti-UVR8426-440 (Favory
et al., 2009), anti-UVR8410-424 (Heijde & Ulm, 2013), anti-
COP1 (Abiocode, Agoura Hills, CA, USA), anti-GFP (Protein-
tech, Wuhan, China), anti-histone H3 (Abcam, Shanghai,
China), anti-UGPase (Agrisera, V€ann€as, Sweden), anti-GADPH
(Abmart, Shanghai, China) and anti-Actin (Abmart) antibodies
were used as primary antibodies. Horseradish peroxidase (HRP)-
conjugated protein A (Pierce, Shanghai, China), anti-rabbit
(Abmart) and anti-mouse (Abmart) secondary antibodies were
used as required. Signals were detected using a LumiBest ECL
reagent solution kit.

Yeast two-hybrid assay

The coding sequences of Arabidopsis UVR8, YFP-UVR8 and
YFP-YFP-YFP-UVR8 were cloned into the pGBKT7 vector as
baits. Arabidopsis COP1 was cloned into the pGADT7 vector as
prey. Specific bait and prey constructs were co-transformed into
yeast strain AH109. Yeast two-hybrid (Y2H) assays were carried
out using the Matchmaker Two-Hybrid System (Clontech;
TaKaRa, Tokyo, Japan) according to the manufacturer’s proto-
cols. Selection was performed on solid SD/�Leu/�Trp/-His
selection medium. Primers used to construct the vectors for Y2H
are listed in Table S1.

Cell fractionation

Total proteins were isolated from 7-d-old Arabidopsis or tomato
seedlings with lysis buffer (20 mM Tris pH 7.4, 25% glycerol,
150 mM NaCl, 2 mM EDTA, 2.5 mM MgCl2, 250 mM
sucrose, 1 mM DTT, 1 mM PMSF). The protein extracts were
filtered through three layers of Miracloth. After centrifugation at
1500 g for 10 min at 4°C, the supernatants were collected as
cytosolic fraction, and the pellet was washed three times with
NRBT nucleus resuspension buffer (20 mM Tris pH 7.4, 25%
glycerol, 2.5 mM MgCl2, 0.2% Triton X-100). The clean pellet
was washed with NRB nucleus resuspension buffer (20 mM Tris
pH 7.4, 25% glycerol, 2.5 mM MgCl2). The nuclei were boiled
in 59 SDS loading buffer and used for immunoblot analysis. For
Fig. 1b, nuclei were incubated with above-mentioned total pro-
tein extraction buffer with 0.2% NP-40.

Co-immunoprecipitation (Co-IP)

Total protein extracts were incubated with anti-UVR8426-440

antibodies. Proteins were extracted with IP buffer (50 mM Tris

pH 7.6, 150 mM NaCl, 10% glycerol, 5 mM EDTA, 0.1% NP-
40, 1% protease inhibitor cocktail (Sigma)) and incubated at
4°C with slow rotation for 30 min. Following centrifugation at
4°C for 20 min at 14 000 g, the clear supernatant was mixed with
protein-A beads and incubated at 4°C for 2 h. The agarose beads
were washed three times with IP buffer. Proteins were eluted by
boiling the beads in 59 SDS loading buffer.

Subcellular localization assay and confocal fluorescence
microscopy

The YFP fluorescent signals in epidermal cells of cotyledons or
hypocotyls were visualized and imaged using a Leica TCS SP8
microscope (Leica, Shanghai, China) according to the manufac-
turer’s instructions. Yellow fluorescent protein was excited at a wave-
length of 514 nm, with an emission wavelength of 525–600 nm.

Fluorescence recovery after photobleaching (FRAP)

Four-days-old seedlings expressing uvr8-6/35S:YFP-UVR8, cop1-
4/35S:YFP-UVR8, cop1-4/35S:YFP-COP1 or hy5-215/35S:HY5-
YFP were grown in weak white light devoid of UV-B (–UV-B) or
supplemented with UV-B under a 304-nm cutoff filter and used
for the FRAP assay. Confocal images of YFP in hypocotyls were
collected with an LSM 780 confocal laser-scanning microscope
(Zeiss) using a water 940 NA 1.2 C-Apochromat lens. Yellow
fluorescent protein was excited at 514 nm, and the emission was
collected between 525 and 561 nm with a GaAsP detector (YFP).
Pre-bleach and post-bleach images were taken using six slices in a
10-lm z-stack range encompassing the nuclei. For photobleach-
ing, 25 iterations and 100% output intensity (514 nm argon
laser) were used. For FRAP analyses, single nuclei were defined as
regions of interest (ROI). For each experiment, a single pre-
bleach 10-lm six-slice z-stack was taken, followed by the same z-
stack parameters for post-bleach images over the course of 50
cycles at 30 s intervals between cycles. The fluorescence in non-
bleached nuclei within the same image plane served as a control.
Analyses of YFP intensity were performed with IMAGEJ.

Fluorescence loss in photobleaching

Fluorescence loss in photobleaching (FLIP) assays were performed
using 4-d-old seedlings expressing uvr8-6/35S:YFP-UVR8 or uvr8-
6 rup1rup2/35S:YFP-UVR8 grown in weak white light and treated
with 20min of broadband UV-B under a 304-nm cutoff filter.
Confocal images of YFP in cotyledons were collected with an
FV3000 confocal laser-scanning microscope (Olympus, Shanghai,
China) using a 920 objective lens. YFP was excited at 488 nm and
the emission was collected between 525 and 600 nm. For photo-
bleaching of cytosol, a 50% output intensity (488 nm argon laser)
for 500ms was used. For FLIP analysis, single nuclei of bleached
cells were defined as ROI. For each experiment, two pre-bleach
images were taken, followed by one bleaching image and 77 post-
bleach images over the course of 80 cycles at 2.17-s intervals
between cycles. The fluorescence in nuclei of nonbleached cells
within the same image plane served as a control.
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RNA extraction and quantitative reverse transcription-PCR
analysis

Total RNA was isolated from Arabidopsis seedings with a Plant
RNA Extraction kit (OMEGA, Norcross, GA, USA) according
to the manufacturer’s instructions. Reverse transcription was car-
ried out with cDNA synthesis SuperMix with gDNA remover
(TransGen, Beijing, China). qPCR was performed with Fast

SYBR Green Master Mix (TransGen) on a CFX96 Real-time
PCR machine (Bio-Rad). The 18S rRNA gene was used as an
internal control. Primers used are listed in Table S1.

Statistical analysis

Statistics used in this article are indicated in respective figure
legends.
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Fig. 1 Ultraviolet-B radiation (UV-B) induces the nuclear translocation and nuclear accumulation of UV RESISTANCE LOCUS 8 (UVR8) monomer. (a)
Ultraviolet-B radiation induces the nuclear translocation of UVR8 fused to yellow fluorescent protein (YFP-UVR8). Fluorescence recovery after photo-
bleaching (FRAP) assays were performed with 4-d-old Arabidopsis seedlings of the indicated genotype grown in white light (–UV-B) or white light supple-
mented with UV-B for 24 h (+UV-B). After bleaching the nucleus, the recovery of fluorescence in the bleached nucleus was recorded (circles). Nonbleached
nuclei (triangles) served as controls. The experiments were repeated three times with similar results and three nuclei in one experiment are shown. Error bars
represent� SEM (n = 3). (b) Ultraviolet-B radiation induces UVR8 monomer accumulation in the nucleus. Four-days-old wild-type Arabidopsis seedlings
were grown in white light (0 h UVB) or white light supplemented with UV-B for 6 and 24 h as indicated. Immunoblot analysis was performed with
nonheat-denatured total protein extracts and nuclear fractions to detect UVR8 homodimer (D) and monomer (M) with anti-UVR8410-424. The asterisk indi-
cates a nonspecific band. Histone H3 served as a nuclear loading control. The negative control uvr8-6 is included in Fig. S3. (c, d) YFP-UVR8W285A but not
YFP-UVR8W285F translocate into the nucleus under white light treatment. FRAP assays with uvr8-6/35S:YFP-UVR8W285A (c) and uvr8-6/35S:YFP-

UVR8W285F (d) Arabidopsis seedlings grown in white light. After bleaching the nucleus, the recovery of fluorescence in the bleached nucleus was recorded
(circles). Nonbleached nuclei (triangles) served as controls. The experiments were repeated three times with similar results and three nuclei in one experi-
ment are shown. Error bars represent� SEM (n = 3).

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2022) 236: 1824–1837
www.newphytologist.com

New
Phytologist Research 1827



Accession numbers

Sequence data from this article can be retrieved from the Ara-
bidopsis Genome Initiative or GenBank/EMBL databases under
the following accession numbers: At5g63860 (UVR8),
At2g32950 (COP1), At5g11260 (HY5), At5g52250 (RUP1) and
At5g23730 (RUP2).

Results

COP1 is not required for UV-B-induced rapid nuclear
translocation of UVR8

In order to test whether the nuclear translocation of UVR8
requires COP1, we performed FRAP assays using previously
established Arabidopsis transgenic lines expressing a YFP-UVR8
fusion protein in the presence or absence of functional COP1
(Yin et al., 2016). For this we took advantage of the COP1-4
allele that has a premature stop codon at the position of Gln-283;
thus cop1-4 expresses a truncated protein containing only the N-
terminal 282 amino acids including the NLS but lacking the
WD40 repeats responsible for interaction with UVR8 (McNellis
et al., 1994; Favory et al., 2009; Wang et al., 2022). It should be
noted that although cop1-4 is a nonlethal, weak cop1 allele
(McNellis et al., 1994; Ordonez-Herrera et al., 2015), UV-B sig-
naling is essentially abolished in cop1-4 (Oravecz et al., 2006;
Favory et al., 2009).

Although low amounts of UVR8 can be detected in the
nucleus in the absence of UV-B (Kaiserli & Jenkins, 2007; Qian
et al., 2016; Yin et al., 2016), no significant nuclear translocation
of YFP-UVR8 was observed in white light in our FRAP assays
over the timescale of the experiment (Fig. 1a). Surprisingly, how-
ever, UV-B induced the nuclear translocation of YFP-UVR8 in
both WT and cop1-4mutant backgrounds (Fig. 1a). As a negative
control, we performed FRAP with Arabidopsis expressing a
HY5-YFP fusion protein. Consistent with the fact that HY5 is a
constitutively nuclear protein, there was no recovery of fluores-
cence after photobleaching of the nucleus; that is, no nuclear
translocation of HY5-YFP was observed in the absence or pres-
ence of UV-B over the time scale of the experiment (Fig. S2).
Thus, we conclude that, although required for UVR8 nuclear
accumulation in response to UV-B (Yin et al., 2016), COP1 is
not required for the UV-B-induced rapid nuclear translocation of
UVR8.

UV-B-induced nuclear translocation of UVR8 monomers
probably can occur via free diffusion

Because UVR8 exists as a homodimer in Arabidopsis in white
light, and UV-B induces the dissociation of homodimers into
monomers, we reasoned that UVR8 might translocate into the
nucleus as a monomer. To test this possibility, we subjected Ara-
bidopsis seedlings to photomorphogenic UV-B treatment, which
monomerizes only a small fraction of the total UVR8 pool, and
examined which form of UVR8 accumulates in the nucleus
(Figs 1b, S3). Although the majority of total cellular UVR8

existed as a homodimer under UV-B irradiation, UVR8 mono-
mer was dominant in the nucleus, supporting the hypothesis that
UVR8 monomers translocate into the nucleus (Fig. 1b).
UVR8W285A and UVR8W285F are both nonresponsive to UV-B
due to mutation of the W285 key residue (Rizzini et al., 2011;
O’Hara & Jenkins, 2012; Heijde et al., 2013; Huang et al.,
2014). However, UVR8W285A shows weak constitutive activity,
probably associated with its only weak homodimeric conforma-
tion and thus possibly being partially monomeric in vivo,
UVR8W285F exists as constitutive homodimer (Rizzini et al.,
2011; O’Hara & Jenkins, 2012; Heijde et al., 2013; Huang
et al., 2014). Nuclear translocation of YFP-UVR8W285A but not
YFP-UVR8W285F was observed in FRAP assays of plants grown
in white light (Fig. 1c,d), consistent with the notion that UVR8
translocates into the nucleus in a monomer form.

UV RESISTANCE LOCUS 8 monomers might enter the
nucleus via facilitated nuclear import or via free diffusion. The
calculated molecular mass of Arabidopsis UVR8 monomer is
c. 47 kDa. Independent research provided evidence that soluble
proteins with molecular weight beyond 60 kDa can enter the
nucleus via free diffusion in the physiologically relevant time scale
(Wang & Brattain, 2007; Popken et al., 2015; Timney et al.,
2016). We reasoned that if UVR8 monomers enter the nucleus
via free diffusion, adding a large protein tag without NLS would
prevent the UV-B-induced nuclear accumulation of UVR8.
Therefore, we generated transgenic Arabidopsis lines expressing
the YFP-YFP-YFP-UVR8 fusion protein in the uvr8 mutant
background. The molecular mass of YFP-YFP-YFP-UVR8
monomer is >130 kDa, which is most likely beyond the molecu-
lar mass limit for free diffusion into nucleus within physiologi-
cally relevant timescale. We analyzed whether YFP-YFP-YFP-
UVR8 could form homodimers and respond to UV-B. The YFP-
YFP-YFP-UVR8 fusion protein was detected as a high molecular
mass band and a lower molecular mass band in nonheat-
denatured protein extracts from Arabidopsis grown in white light
and UV-B light, respectively (Fig. S4a). As established previously
for UVR8 (Rizzini et al., 2011), the larger of these two bands can
be considered to be YFP-YFP-YFP-UVR8 homodimer and the
lower band YFP-YFP-YFP-UVR8 monomer (Fig. S4a). In agree-
ment with this notion, only a single band corresponding to YFP-
YFP-YFP-UVR8 monomer was detected from heat-denatured
protein.

Extracts (Fig. S4a). Moreover, YFP-YFP-YFP-UVR8 retained
the ability to interact with COP1 in a UV-B-dependent manner
in Y2H assays (Fig. S4b). Thus, the triple YFP tag fusion protein
retained the protein folding and other properties of UVR8.

We then analyzed whether UV-B would induce the nuclear
accumulation of the YFP-YFP-YFP-UVR8 fusion protein in
plants. YFP-UVR8 localized to both the cytosol and nucleus in
white light, and UV-B induced its accumulation in the nucleus,
yet the YFP-YFP-YFP-UVR8 fusion protein localized to the cyto-
sol and no nuclear signal could be detected, even in the presence
of UV-B (Fig. 2a). As a positive control we generated lines
expressing an YFP-NLS-YFP-YFP-UVR8 fusion protein, which
localized to the nucleus under both white light and UV-B treat-
ment (Fig. 2a). Immunoblotting analysis confirmed that UV-B
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Fig. 2 Fusion of triple yellow fluorescent protein (YFP) tag to UV RESISTANCE LOCUS 8 (UVR8) strongly impairs its ultraviolet-B radiation (UV)-B-induced
nuclear accumulation. (a, b) Fusion with triple YFP disrupts the UV-B-induced nuclear accumulation of UVR8. (a) Subcellular localization of the YFP-YFP-
YFP-UVR8 fusion protein. YFP fluorescence in the cotyledon adaxial epidermis of 4-d-old uvr8-6/35S:YFP-UVR8, uvr8-6/35S:YFP-YFP-YFP-UVR8 and
uvr8-6/35S:YFP-NLS-YFP-YFP-UVR8 seedlings. Seedlings were grown in white light (–UV-B) or white light supplemented with UV-B (+UV-B) for 24 h.
Bar, 10 lm. (b) Immunoblot analysis of cytosolic and nuclear proteins of 7-d-old Arabidopsis seedlings grown in white light (–UV-B) or white light supple-
mented with UV-B for 24 h (+UV-B) probed with anti-UVR8426-440, anti-histone H3 (nuclear control) and anti-UGPase antibodies (cytosolic control). WT,
wild type. (c, d) Representative image (c) and quantification (d) of hypocotyl length in the WT, uvr8-6, uvr8-6/35S:YFP-UVR8, uvr8-6/35S:YFP-YFP-YFP-
UVR8 and uvr8-6/35S:YFP-NLS-YFP-YFP-UVR8 seedlings grown in white light (�) or white light supplemented with UV-B (+) for 4 d. In (d) the median
(the horizontal line), the lower quartile, the upper quartile and the minimum point and maximum point are included in each box (n = 15). One outlier is rep-
resented by an open circle. P < 0.05 for 3XYFP-UVR8 #4, P < 0.01 for all the rest from Student’s t-test (-UVB vs +UVB for each genotype). Bar, 1 cm in
Fig. 2c. (e) UV-B fails to induce HY5 transcription in uvr8-6/35S:3XYFP-UVR8 Arabidopsis lines. Quantitative reverse transcription (qRT) PCR analysis of
HY5 transcripts in 4-d-old seedlings grown in white light (–UV-B) or white light supplemented with UV-B for 2 h (+UV-B). The value for the WT treated
with white light was set to 1. Means and � SE of six biological samples are shown. Each open circle represents one datum. (f) Ultraviolet-B radiation fails to
induce anthocyanin accumulation in uvr8-6/35S:YFP-YFP-YFP-UVR8 Arabidopsis lines. Anthocyanin levels were quantified in seedlings grown in white
light (–UV-B) or white light supplemented with UV-B (+UV-B). Mean and� SE of three biological samples are shown. Each open circle represents one data
point. **, P < 0.01; *, P < 0.05 (Student’s t-test to compare-UVB and + UVB for each genotype). No asterisks indicate not significant.
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did not induce the nuclear accumulation of the YFP-YFP-YFP-
UVR8 fusion protein, albeit low levels were detected in the
nuclear fraction (Fig. 2b). Thus, adding triple YFP tag to UVR8
strongly impaired the UV-B-induced nuclear accumulation of
UVR8. These observations suggest that the UV-B-induced
nuclear translocation of UVR8 occurs via free diffusion.

We tested whether YFP-YFP-YFP-UVR8 Arabidopsis lines
would exhibit typical UV-B-induced photomorphogenesis.
Hypocotyl elongation was efficiently inhibited by UV-B in the
WT and a uvr8-6/35S:YFP-UVR8 complementation line, but
not in the uvr8-6/35S:YFP-YFP-YFP-UVR8 lines (Fig. 2c,d). By
contrast, however, the uvr8-6/35S:YFP-NLS-YFP-YFP-UVR8
lines exhibited strong inhibition of hypocotyl elongation under
UV-B, suggesting that the triple YFP tag did not abolish the
activity of UVR8 (Fig. 2c,d). Likewise, the expression of the UV-
B marker gene HY5 and anthocyanin accumulation were induced
by UV-B in the YFP-NLS-YFP-YFP-UVR8 control lines, but
not in the YFP-YFP-YFP-UVR8 expressing lines (Fig. 2e,f).
Thus, adding triple YFP tag strongly impaired the nuclear accu-
mulation of UVR8 and thereby UV-B signaling, both of which
could be restored by adding an NLS.

Nucleus-localized COP1 promotes UV-B-induced nuclear
accumulation of UVR8

Based on the notion that COP1 is not required for the UV-B-
induced nuclear translocation of UVR8, together with the obser-
vation that UVR8 protein levels are not altered by UV-B or
COP1 (Fig. S5a; Oravecz et al., 2006; Kaiserli & Jenkins, 2007;
Yin et al., 2016), we postulated that nucleus-localized COP1 reg-
ulates the nuclear accumulation of UVR8. To test this possibility,
we took advantage of a strong viral NLS and NES, as reported
previously (Kaiserli & Jenkins, 2007). We generated Arabidopsis
lines expressing YFP-NLS-COP1 or YFP-NES-COP1 in the
cop1-4 background, as no UV-B-induced nuclear accumulation
of UVR8 can be detected in this mutant (Yin et al., 2016).

For unknown reasons, YFP-NES-COP1 fusion protein
levels were much higher than YFP-NLS-COP1 fusion protein
levels in multiple independent plant lines (Fig. S5b). UVR8
protein levels in the YFP-NLS-COP1 and YFP-NES-COP
lines are similar under both white light and UV-B (Fig. S5a).
The YFP-NLS-COP1 fusion protein localized to the nucleus,
forming typical photobodies in white light, and UV-B
enhanced its nuclear accumulation (Fig. 3a). By contrast, YFP-
NES-COP1 fusion protein constitutively localized to the cyto-
sol, forming cytosolic inclusion bodies similar as reported pre-
viously (Stacey et al., 1999).

Interestingly, UV-B did not alter YFP-NES-COP1 protein
levels (Fig. 3a). Therefore, these YFP-NLS-COP1 and YFP-NES-
COP1 Arabidopsis lines could be used to distinguish whether
COP1 acts in the nucleus or cytosol to regulate the UV-B-
induced nuclear accumulation of UVR8. Ultraviolet-B radiation
induced the nuclear accumulation of UVR8 in the YFP-NLS-
COP1 lines, which was accompanied by a slight decrease in
UVR8 levels in the cytosol (Fig. 3b). By contrast, UV-B failed to
induce the nuclear accumulation of UVR8 in the YFP-NES-

COP1 lines (Fig. 3b). We conclude that nucleus-localized COP1
promotes UV-B-induced nuclear retention and thus accumula-
tion of UVR8.

In white light, YFP-NLS-COP1, but not YFP-NES-COP1,
complemented the dwarf phenotype of cop1-4 (Fig. 3c), which is
consistent with the notion that COP1 inhibits photomorphogen-
esis in the nucleus (von Arnim & Deng, 1994; Qin et al., 2020).
Ultraviolet-B radiation efficiently inhibited hypocotyl elongation
in seedlings of the YFP-NLS-COP1 lines, but not the YFP-NES-
COP1 lines (Fig. 3c). Moreover, UV-B promoted HY5 expres-
sion in the YFP-NLS-COP1 lines, but not in the YFP-NES-
COP1 lines (Fig. 3d). Collectively, these results indicate that
nucleus-localized COP1 promotes the nuclear accumulation of
UVR8 and UV-B signaling.

We then asked how nucleus-localized COP1 promotes the
nuclear accumulation of UVR8. UVR8 protein levels appear to
be affected neither by UV-B (Kaiserli & Jenkins, 2007; Heijde &
Ulm, 2013; Heilmann & Jenkins, 2013), nor by COP1
(Fig. S5a; Oravecz et al., 2006; Yin et al., 2016). We hypothe-
sized that nucleus-localized COP1 binds to UVR8 to promote
the nuclear retention of this photoreceptor. Indeed, YFP-NLS-
COP1 formed protein complexes with UVR8 in plants in
response to UV-B as revealed by Co-IP assays (Fig. 3e). Notably,
YFP-NES-COP1 also formed protein complexes with UVR8 in
plants under UV-B (Fig. 3e), which is consistent with our previ-
ous finding that UVR8 interacts with COP1 both in nucleus and
cytosol (Yin et al., 2016). Moreover, the substitutions of valine
(410) and proline (411) residues located at UVR8 C-terminus
with alanine, UVR8VP-AA, leads to decreased UV-B-induced
UVR8–COP1 interaction (Yin et al., 2015), and UVR8 nuclear
accumulation (Fig. 4), confirming that UVR8–COP1 interaction
is critical for UVR8 nuclear accumulation. We conclude that
although UVR8 interacts with COP1 both in the cytosol and
nucleus, nuclear COP1 is required for nuclear retention of
UVR8, as well as UVR8 signaling.

RUP1 and RUP2 inhibit the nuclear retention of UVR8 by
inhibiting the UVR8–COP1 interaction

In order to understand UVR8 nucleocytosolic partitioning
dynamics, we treated Arabidopsis seedlings with UV-B for 24 h
to induce the nuclear accumulation of UVR8 and transferred
them to white light for recovery. In the WT, nuclear UVR8 levels
were enhanced by UV-B treatment and strongly decreased at 3 h
post UV-B treatment, eventually reaching a level comparable to
the starting point at 7 h post-UV-B treatment (Fig. 5a). UV
RESISTANCE LOCUS 8 levels in the cytosol were complemen-
tary to those in the nucleus, showing opposite patterns (Fig. 5a).
Thus, UVR8 exits the nucleus following the cessation of UV-B
treatment. Co-immunoprecipitation assays revealed that the
UVR8–COP1 interaction was induced by UV-B and was rapidly
attenuated during recovery in white light in the WT (Fig. 5b;
Heijde & Ulm, 2013); this pattern is positively correlated with
the nuclear retention of UVR8.

REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1
and RUP2 interact with the C27 domain of UVR8, which also
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cence and chloroplast autofluorescence, respectively. Bar, 10 lm. **, P < 0.01 (two-tailed Student’s t-test), ns, not significant. (b) Nuclear COP1 promotes
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P < 0.01 (Student’s t-test). (d) Quantitative reverse transcription (qRT)-PCR analysis of HY5 transcript levels in 4-d-old wild-type (WT), uvr8-6, cop1-4,
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white light supplemented with UV-B (+) for 12 h. Anti-UVR8426-440 antibody was used for immunoprecipitation. Immunoblotting analyses were performed
with anti-UVR8426-440 and anti-GFP antibodies. The asterisk indicates a nonspecific band.
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mediates the interaction of UVR8 with COP1 (Gruber
et al., 2010; Cloix et al., 2012; Yin et al., 2015). The UVR8–
COP1 interaction was maintained at high levels for much longer
periods in the rup1 rup2 double mutant than in the WT follow-
ing the cessation of UV-B treatment (Fig. 5b), which is consistent
with previous observations (Heijde & Ulm, 2013). These results
indicate that RUP1 and RUP2 interfere with the UVR8–COP1
interaction. Nuclear UVR8 also was maintained at high levels for
a much longer period following the cessation of UV-B irradiation
in the rup1 rup2 double mutant than in the WT (Fig. 5b). Con-
versely, cytosolic UVR8 was maintained at low levels after UV-B
treatment in rup1 rup2 (Fig. 5c). To analyze the nuclear exit of
UVR8 post UV-B treatment, we performed FLIP assays. The
decline of the nuclear YFP-UVR8 occurred much more slowly in
rup1 rup2 than in the WT (Fig. 5d).

We reason that RUP1 and RUP2 may inhibit UVR8 nuclear
retention via inhibiting UVR8–COP1 interaction or promoting
the nuclear exit of UVR8 independent of COP1. To further
investigate the function of RUP1 and RUP2, we generated the
cop1-4 rup1 rup2 triple mutant by genetic crossing. We found
that UV-B could not induce UVR8 nuclear accumulation in
cop1-4 rup1 rup2 triple mutant plants (Fig. 5e), suggesting that
the effect of RUP1 and RUP2 on UVR8 nuclear accumulation is
dependent on COP1.Collectively, we conclude that RUP1 and
RUP2 inhibit the nuclear retention of UVR8 by inhibiting the
UVR8–COP1 interaction.

Tomato UVR8 (SlUVR8) regulates UV-B photomorphogene-
sis and UV-B stress tolerances (Liu et al., 2020). We recently
reported that tomato RUP (SlRUP) is a functional ortholog
of Arabidopsis RUP1 and RUP2 (Zhang et al., 2021). UV-B
induced the nuclear accumulation of Tomato UVR8 (SlUVR8)
in the WT and nuclear SIUVR8 levels declined post UV-B irra-
diation (Fig. S6). We noticed that UV-B-induced nuclear accu-
mulation of Arabidopsis UVR8 is much more pronounced than
SlUVR8 in the respective WT plants. Nuclear SlUVR8 levels
were much higher in slrup than in the WT under UV-B and post
UV-B treatment at each time point (Fig. S6). Thus, SlRUP inhi-
bits the nuclear retention or SlUVR8 in tomato (Fig. S6). These

results indicate that the role of RUP proteins in the regulation of
the nuclear retention of UVR8 is well conserved in Arabidopsis
and tomato.

Discussion

Light regulates the subcellular localizations of several plant pho-
toreceptors to adjust their activities during photomorphogenesis
(Sakamoto & Briggs, 2002; Chen et al., 2005; Hiltbrunner et al.,
2005; Kong et al., 2006; Kaiserli & Jenkins, 2007; Genoud et al.,
2008; Rausenberger et al., 2011; Pfeiffer et al., 2012; Klose et al.,
2015). Available evidence points to the nucleus as the primary
site of UVR8 action (Kaiserli & Jenkins, 2007; Qian et al., 2016;
Yin et al., 2016). In the current study, we demonstrated that
UVR8 shuttles between the cytosol and nucleus based on the
availability of UV-B. This is analogous to the red/far-red light
induced shuttling of phytochrome A between the cytosol and
nucleus (Rausenberger et al., 2011). However, the mechanism
underlying the nucleocytosolic distribution of UVR8 remained
unclear. Here we show that a UV-B-induced conformational
change in UVR8 from a homodimer to monomer facilitates the
nuclear translocation of UVR8 (Fig. 5f). UVR8 monomer can
translocate into the nucleus independent of COP1 binding. In
the nucleus, COP1 interacts with UVR8 to promote UVR8
nuclear retention. RUP1 and RUP2 inhibit UVR8 nuclear reten-
tion via inhibiting UVR8–COP1 interaction.

Previously, we reported that UV-B-induced UVR8 accumula-
tion in the nucleus requires COP1 with unknown mechanisms
(Yin et al., 2016). Current work is consistent with our previous
report showing that COP1 is required for UV-B-induced nuclear
accumulation of UVR8, and further revealed the mechanisms of
COP1 in this process. Under the artificial mammalian glucocorti-
coid receptor (GR)-COP1 fusion system, UVR8 interacts with
GR-COP1 under UV-B in the cytosol and can be co-imported
into nucleus in the presence of dexamethasone, a chemical ligand
for GR (Yin et al., 2016). This co-import model is further sup-
ported by the fact that COP1 contains an NLS, whereas no NLS
could be identified in UVR8. However, the artificial GR-COP1
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nuclear retention. In cytosol, UV-B induces UVR8 monomerization. UVR8 monomer translocate into nucleus most probably via free diffusion. In the
nucleus, COP1 binds to UVR8 monomer and promotes UVR8 nuclear retention. RUP1 and RUP2 promote UVR8 nuclear exit via inhibiting UVR8–COP1
interaction. In addition, UVR8 also interacts with several transcription factors including WRKY36 in the nucleus. The solid and dashed arrows indicate stim-
ulation and the blunt-ended arrows indicate inhibition.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2022) 236: 1824–1837
www.newphytologist.com

New
Phytologist Research 1833



system primarily shows that a co-import mechanism is possible,
but not that this is the main mechanism in a WT setting. Here we
show that UV-B-induced UVR8 rapid nuclear translocation can
occur independently of binding to COP1(Fig. 1). Consistently,
UV-B-induced nuclear accumulation of COP1 (taking c. 24 h) was
shown to be much slower than that of UVR8 (taking only minutes
to a few hours; Oravecz et al., 2006; Kaiserli & Jenkins, 2007). Yet,
our FRAP data do not exclude the possibility that UVR8 translo-
cate into nucleus with co-import model through interaction with
other protein containing an NLS, such as one of the UVR8-
interacting transcription factors (Liang et al., 2018; Yang et al.,
2018, 2020; Qian et al., 2020). The proposed free diffusion model
and a co-import model via an unknown protein for UV-B induced
UVR8 nuclear translocation are not mutually exclusive and can
happen in parallel. It is of note that the possible COP1-
independent co-imported UVR8 would eventually require COP1
for its nuclear retention and nuclear accumulation. However, addi-
tion of triple YFP tag prevented UV-B-induced UVR8 nuclear
accumulation, which does not support a co-import model.

Both UV-B-treated YFP-UVR8 fusion protein and the consti-
tutively partially monomeric YFP-UVR8W285A translocated into
the nucleus, whereas the constitutive dimer YFP-UVR8W285F

and non-UV-B-treated YFP-UVR8 did not, suggesting that
UVR8 translocates into the nucleus in a monomer form. Indeed,
previous work reported that YFP-UVR8W285F and UVR8W285F

are deficient in nuclear accumulation (Qian et al., 2016; Yin
et al., 2016). Supporting this finding, total cellular UVR8 protein
is primarily homodimeric but nuclear UVR8 protein is predomi-
nantly monomeric in Arabidopsis seedlings treated with a low
fluence rate of UV-B (Fig. 1b; Qian et al., 2016). It is of note that
residual levels of UVR8 homodimer were detected in nucleus
from non-UV-B-treated plant materials (Fig. 1b; Kaiserli & Jenk-
ins, 2007; Qian et al., 2016; Yin et al., 2016). It is possible that a
small fraction of (newly synthesized) UVR8 monomers translo-
cate into nucleus before they could form homodimer in cytosol.
These escaped UVR8 monomers form homodimers in the
nucleus. We propose that UV-B induces the dissociation of
UVR8 homodimers into monomers, which facilitates their
nuclear translocation (Fig. 5f). The role of conformational
changes in facilitating the nuclear translocation of proteins also
was identified for the SA receptor NONEXPRESSOR OF PR
GENES 1 (NPR1; Kinkema et al., 2000; Y. Wu et al., 2012).
Inactive NPR1 oligomers reside in the cytosol. SA induces the
switch of NPR1 from an oligomer to a monomer, which facili-
tates its nuclear translocation (Tada et al., 2008).

Protein traverses the nuclear pore complexes (NPCs) through
either passive diffusion or facilitated transport systems (Grossman
et al., 2012; Timney et al., 2016). Small protein can transverse
the NPCs via free diffusion, and large protein via facilitated
nuclear import. The prevailing view for the functional model of
passive transport through NPCs is that have a barrier size thresh-
old of 60 kDa for passive diffusion (Grossman et al., 2012).
However, evidence was provided that proteins with molecular
mass > 60 kDa, including three to four tandem fusion green fluo-
rescent protein (GFP; c. 27 kDa for one GFP), can enter nucleus
via free diffusion in vivo (Wang & Brattain, 2007; Popken

et al., 2015; Timney et al., 2016). Thus, the size exclusion limit
of NPCs for free diffusion is debated (Wang & Brattain, 2007;
Popken et al., 2015; Timney et al., 2016). In our model, we pro-
pose that the YFP-UVR8 monomer, c. 74 kDa, translocate into
the nucleus via free diffusion. The Arabidopsis UVR8 homod-
imer is c. 94 kDa, which may not enter the nucleus via free diffu-
sion within the timescale of FRAP assays. Moreover, the shape of
the UVR8 homodimer may hinder its nuclear translocation. Fus-
ing a triple YFP tag to UVR8 prevented its UV-B-induced
nuclear translocation and nuclear accumulation. Moreover, add-
ing a strong NLS to YFP-YFP-YFP-UVR8 rescued its nuclear
localization and function in UV-B signaling. Overall, these obser-
vations favor the model that UVR8 monomers translocate into
the nucleus via free diffusion. However, the possibility that fusion
of the triple YFP tag disrupted the interaction of UVR8 with
unknown nuclear import components cannot be excluded.

Because UVR8 interacts with the E3 ligase COP1 under UV-
B, it can be postulated that COP1 may regulate the stability of
UVR8. However, UVR8 protein levels are altered neither by
UV-B (Kaiserli & Jenkins, 2007; Heijde & Ulm, 2013; Heil-
mann & Jenkins, 2013) nor by COP1 (Fig. S5a; Oravecz
et al., 2006; Yin et al., 2016). Structural work revealed that the
UV-B-activated UVR8 monomer binds to the WD40 domain of
COP1 with a well-conserved VP motif, leading to COP1 inacti-
vation (Lau et al., 2019). The blue light photoreceptor CRY2
inactivates COP1 with a similar mechanism (Ponnu et al., 2019).
Therefore, the protein degradation model proposed in the intro-
duction part is not supported by available evidence.

Using the Arabidopsis cop1-4 mutant line harboring YFP-NLS-
COP1 or YFP-NES-COP1, we demonstrate that COP1 in the
nucleus, but not in the cytosol, promotes UV-B-induced nuclear
accumulation of UVR8. Intriguingly, we detected UV-B-induced
UVR8–COP1 interaction in cytosol in the WT (Yin et al., 2016)
and also in the YFP-NES-COP1 Arabidopsis line (Fig. 3f). The
physiological function of the cytosolic UVR8–COP1 interaction
remains unclear. Notably, UV-B induces UVR8 interaction with
both YFP-NES-COP1 and YFP-NLS-COP1, yet only the latter
leads to elevated nuclear UVR8 levels (Fig. 3b). These YFP-NES-
COP1 lines can serve as valuable tools for further analysis of the
function of cytosolic UVR8–COP1 interaction and the cytosolic
activities of COP1. We propose that in the nucleus, COP1 binds
to UVR8 monomer under UV-B treatment and promotes the
nuclear retention of UVR8 (Fig. 5f). This retention model is fur-
ther supported by the observation that UV-B also induces the colo-
calization and interaction of UVR8 with COP1 in the nucleus
(Oravecz et al., 2006; Favory et al., 2009). The constitutively par-
tially monomeric UVR8 mutant protein UVR8W285A interacted
with COP1 constitutively and localized to the nucleus at high levels
in Arabidopsis irrespective of UV-B supplementation (Yin
et al., 2016). The constitutively monomeric UVR8G101S mutant
has residual interaction with COP1 in the absence of UV-B, which
is accompanied by slightly higher accumulation of its protein in the
nucleus than in the WT (Fig. S7; Podolec et al., 2021b).
Ultraviolet-B radiation-induces its interaction with COP1 and
increases its nuclear accumulation in a COP1-dependent manner
(Fig. S7; Podolec et al., 2021b). The data obtained with the UVR8
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mutant variants are consistent with the COP1-dependent UVR8
nuclear retention model. In addition to COP1, several other
nuclear proteins interact with UVR8 (Liang et al., 2018; Yang
et al., 2018, 2020; Qian et al., 2020). It is not known whether these
proteins regulate UVR8 nuclear localization dynamics.

After UV-B treatment is terminated, nuclear UVR8 levels
gradually decline. Supporting the nuclear retention model,
nuclear UVR8 level is positively correlated with that of the UV-
B-induced UVR8–COP1 interaction and its attenuation follow-
ing UV-B treatment in wildtype. RUP1 and RUP2 are key nega-
tive regulators of the UVR8 pathway in Arabidopsis (Gruber
et al., 2010). A comparison of nuclear UVR8 levels and the
UVR8–COP1 interaction in rup1 rup2 and WT plants indicated
that RUP1 and RUP2 inhibit the nuclear retention of UVR8 by
inhibiting the UVR8–COP1 interaction (Fig. 5f). UVR8 inter-
acts with the WD40 domain of COP1 (Favory et al., 2009; Riz-
zini et al., 2011). A recent work indicated that the structure of
the COP1WD40 domain is similar to that of RUP2 (Wang
et al., 2022). Surprisingly, both RUP2 and COP1 interact with
UVR8 with similar interacting surface via similar key amino acid
residues (Wang et al., 2022). In vitro, RUP2 can successfully out-
compete COP1-SPA4 from UVR8 interaction (Wang
et al., 2022), which supports the proposed function of RUP pro-
teins in the regulation of UVR8–COP1 interaction and UVR8
nuclear retention in this work. UV-B could not induce UVR8
nuclear accumulation in cop1-4 rup1 rup2 and UVR8 can exit
the nucleus in the rup1 rup2 mutant background as revealed by
FLIP assays, suggesting that RUP1 and RUP2 are not essential
for UVR8 nuclear exit. RUP1 and RUP2 previously were shown
to inhibit UV-B signaling by accelerating the re-binding of
UVR8 monomers to form inactive homodimers (Heijde &
Ulm, 2013). In another study, RUP1 and RUP2 were shown to
act in an E3 ligase complex targeting HY5 for degradation to
negatively regulate UV-B signaling (Ren et al., 2019). Here we
show that RUP1 and RUP2 also can inactivate UV-B signaling
via inhibiting UVR8 nuclear retention. Thus, RUP1 and RUP2
may inhibit UV-B signaling via distinct mechanisms. Currently,
it is not clear how COP1 binding promotes UVR8 nuclear reten-
tion. It is plausible that the relatively large molecular mass of
UVR8/COP1 heterodimer (c. 122 kDa) may slow down its
nuclear exit. Moreover, UVR8–COP1 interaction may block the
NES of COP1 to promote UVR8 nuclear accumulation. It also
is possible that binding of COP1 blocks the binding of an
unknown NES-containing protein to UVR8.

In summary, we propose that UV-B-induced monomerization
of UVR8 and the concurrent size reduction promotes UVR8
nuclear translocation via diffusion. In the nucleus, COP1 bind-
ing promotes UVR8 nuclear retention, which is counter-
balanced by RUP1 and RUP2. A COP1-independent co-import
of UVR8 into the nucleus under UV-B is possible, a hypothesis
which awaits further investigations.
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Fig. S1 Sequence of synthetic yellow fluorescent protein (YFP)-
YFP-UV RESISTANCE LOCUS 8 (UVR8) and NLS-YFP-
YFP-UVR8.

Fig. S2 No nuclear translocation of yellow fluorescent protein-
HY5 fusion protein was observed with fluorescence recovery after
photobleaching assays.

Fig. S3 Corresponding to Fig. 1b (the same blot was used in Figs
1b, S3; the uvr8-6 mutant is included in Fig. S3).

Fig. S4 Yellow fluorescent protein (YFP)-YFP-YFP-UV RESIS-
TANCE LOCUS 8 (UVR8) fusion proteins form homodimers
and respond to ultraviolet-B radiation similar to UVR8.

Fig. S5 Immunoblotting analysis of yellow fluorescent protein-
CONSTITUTIVELY PHOTOMORPHOGENIC 1 and UV
RESISTANCE LOCUS 8 proteins.

Fig. S6 SlRUP inhibits ultraviolet-B radiation-induced SlUVR8
nuclear accumulation.

Fig. S7 Immunoblot analysis of UV RESISTANCE LOCUS 8,
UGPase (cytosolic marker) and H3 (nuclear marker) levels in
cytosolic and nuclear extracts.
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