
sensors

Article

Preliminary Study for Designing a Novel
Vein-Visualizing Device

Donghoon Kim 1,2, Yujin Kim 1, Siyeop Yoon 1,3 and Deukhee Lee 1,3,*
1 Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Korea;

kim.5404@buckeyemail.osu.edu (D.K.); yujin_429@kist.re.kr (Y.K.); h14515@kist.re.kr (S.Y.)
2 Department of Electrical and Computer Engineering, the Ohio State University, Columbus, OH 43210, USA
3 Department of Biomedical Engineering, Korea University of Science and Technology, Deajeon 305-350, Korea
* Correspondence: dkylee@kist.re.kr; Tel.: +82-2-958-5633

Academic Editors: Octavian Adrian Postolache, Alex Casson and Subhas Chandra Mukhopadhyay
Received: 31 October 2016; Accepted: 3 February 2017; Published: 7 February 2017

Abstract: Venipuncture is an important health diagnosis process. Although venipuncture is one of
the most commonly performed procedures in medical environments, locating the veins of infants,
obese, anemic, or colored patients is still an arduous task even for skilled practitioners. To solve this
problem, several devices using infrared light have recently become commercially available. However,
such devices for venipuncture share a common drawback, especially when visualizing deep veins
or veins of a thick part of the body like the cubital fossa. This paper proposes a new vein-visualizing
device applying a new penetration method using near-infrared (NIR) light. The light module is
attached directly on to the declared area of the skin. Then, NIR beam is rayed from two sides of the
light module to the vein with a specific angle. This gives a penetration effect. In addition, through an
image processing procedure, the vein structure is enhanced to show it more accurately. Through a
phantom study, the most effective penetration angle of the NIR module is decided. Additionally, the
feasibility of the device is verified through experiments in vivo. The prototype allows us to visualize
the vein patterns of thicker body parts, such as arms.
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1. Introduction

Venipuncture is a process for obtaining blood from a vein, and it is done frequently during medical
checks or blood donation. However, subcutaneous fat or dark skin color hinders the visualization
of vein structures. Thus, the nurse has no choice but to perform a blind stick based on anatomical
knowledge and their experience. These shortcomings leave room for human error, which may lead
to direct or indirect harm, including severe cases leading to death [1–3]. In this sense, if it is easier to
visualize the vein structures on the hand-dorsal or arm, it could be possible not only to prevent the
side effects as well as serious direct or indirect risk factors of phlebotomy errors, but also to reduce a
significant amount of practice and effort required in phlebotomy.

Fortunately, some devices helping the venipuncture procedure by visualizing vein patterns exist
in the market, and many of them uses near-infrared (NIR) light because it has several benefits. Low
cost and safety of NIR is the one of the reasons. Two types of infrared light methods are mostly used to
visualize veins. One is by using far-infrared (FIR) light. The other one is by using NIR light. By utilizing
these two types of IR camera methods, researchers can obtain images of procedures ranging from
visualizing vein structures to performing segmentation. For the FIR light method [4], a thermal camera
is needed owing to the absorption of water. The FIR method could help one collect high quality images
for segmentation, some research has been performed with the FIR method. This method, however,
still needs to overcome the disadvantage of high cost. Instead of the expensive FIR method, the NIR
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light range of the spectrum (700 nm–2500 nm) can be used to visualize the vein pattern under the skin.
Although a collected image by using NIR method has low quality, this method is relatively cheaper
than the FIR method. In the addition, the safety of NIR is proved [5].

Secondly, ‘NIR window’ exists. Peripheral veins of the arm for venipuncture, are usually located
up to a few millimeters below the skin surface. However, melanin and hemoglobin highly absorb
the visible range of the spectrum (400 nm–700 nm) [6]. Because of this, the vein structure cannot be
observed easily without any supporting devices. However, in the infrared range of the spectrum
(700 nm–1 mm), especially above 900 nm, the absorption of water increases, whereas the melanin and
hemoglobin levels are lower [5]. Above 1300 nm, water in the skin absorbs all photons [7]. Therefore,
the so called ‘NIR window’ is observed in the range of 700 nm~1000 nm. Further, the absorption of
blood in the near-infrared window range is sufficiently high to create a large contrast between the vein
and surrounding tissue [5]. In this sense, using infrared light can be one of the methods of solving
this problem.

For the NIR method, two types of vein image collecting systems are used widely. One is based on
reflection and the other one is based on penetration, as shown in Figure 1. As the reflection method
is highly affected by reflected lights, the collected image becomes brighter. Thus, it not only has
lower contrast but also limited visibility compared to the penetration method. Also, the penetration
method also has limitations. To be specific, even though it is applied successfully for detecting vein
structures on the hand-dorsal, it cannot penetrate to a sufficient depth in an adult’s arm at a common
site for venipuncture.
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(b) Penetration method. 

Many kinds of vein visualizing devices use above methods, reflection or penetration of NIR 
light. However current devices in the market, have drawbacks. They are big or inconveniently 
designed. So it is difficult to use that device alone during the venipuncture. Also they have a difficulty 
when visualizing deep vein. In the addition, the high cost becomes a barrier to access [8]. For instance, 
Veinviewer (Luminetx, Memphis, TN, USA) projects an image of vessels in green on the skin by using 
the reflection method, and AccuVein (AccuVein LLC, Cold Spring harbor, NY, USA) also projects a 
red image with vessels in black on the skin. These types of devices have to be used in darker settings 
for projection. Furthermore, the projection image can be less accurate depending on the projection 
angle. Other devices such as the Transilluminator Device (Rabin & Berdo, P.C., Washington, DC, 
USA), Vein Navigation Device (Novarix Ltd., Abingdon, UK) and VascuLuminator (de Konigh 
Medical Systems, Arnhem, The Netherlands) use the penetration method. Despite this, they all have 
their own drawbacks. The Transilluminator Device technique can only be used for veins on the  
hand-dorsal. VascuLuminator can visualize blood vessels in the hand and wrists of children and 
adults but is not able to visualize the vein patterns on adults’ arms. In addition, in the case of the Vein 
Navigation Device, the device captures NIR vein images from the patient’s skin and displays them 
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(b) Penetration method.

Many kinds of vein visualizing devices use above methods, reflection or penetration of NIR light.
However current devices in the market, have drawbacks. They are big or inconveniently designed.
So it is difficult to use that device alone during the venipuncture. Also they have a difficulty when
visualizing deep vein. In the addition, the high cost becomes a barrier to access [8]. For instance,
Veinviewer (Luminetx, Memphis, TN, USA) projects an image of vessels in green on the skin by using
the reflection method, and AccuVein (AccuVein LLC, Cold Spring harbor, NY, USA) also projects a
red image with vessels in black on the skin. These types of devices have to be used in darker settings
for projection. Furthermore, the projection image can be less accurate depending on the projection
angle. Other devices such as the Transilluminator Device (Rabin & Berdo, P.C., Washington, DC, USA),
Vein Navigation Device (Novarix Ltd., Abingdon, UK) and VascuLuminator (de Konigh Medical
Systems, Arnhem, The Netherlands) use the penetration method. Despite this, they all have their own
drawbacks. The Transilluminator Device technique can only be used for veins on the hand-dorsal.
VascuLuminator can visualize blood vessels in the hand and wrists of children and adults but is not
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able to visualize the vein patterns on adults’ arms. In addition, in the case of the Vein Navigation
Device, the device captures NIR vein images from the patient’s skin and displays them through a
screen. However, as the device and screen visually mask the skin during the process, the intuitiveness
and accuracy of the process are significantly impeded.

Meanwhile, Veinlite (TransLite LLC., Sugarland, TX, USA) , not using an NIR light, use the
penetration method but applies in the direction opposite to the penetration at Figure 1, as shown
in Figure 2. This is an attempt to avoid the issue that the common penetration method in Figure 1
cannot visualize vein patterns of thicker body parts such as arms. Because the human arm is one of the
most common sites of venipuncture and the vessels for venipuncture on the arm are not located at a
significant depth, using the direction opposite to that of penetration seems feasible. However, in the
first attempt to locate veins of patients, there was at most a 3.2% difference in peripheral intravenous
insertion success rates between Veinlite and standard of care [9]. Further, as this device uses a high
intensity halogen bulb, it consumes considerable energy [10]. A comparison of three image collecting
methods can be checked at the Table 1.
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contrast, Can’t penetrate
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Can’t penetrate thick
part like an arm

No major difference with
standard of care/Consumes
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Device Veinviewer/AccuVein
Transilluminator

Device/Vein Navigation
Device/VascuLuminator

Veinlite

In this sense, the researchers, Sangjun Lee, Se Hyung Park and Deukhee Lee [11], of the previous
study proposed a new vein-visualizing device. As shown in Figure 3, the proposed device will improve
the intuitiveness by resolving the visual separation between the two scenes. To be specific, the device
projects a cross-shaped laser light onto the skin indicating the puncture point. In addition, the same
cross-shaped grid appears on the screen. Through these two identical cross-shapes, the operator can
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easily match the two visual feedbacks. Furthermore, the proposed device is portable and by based on
stereo camera system, it can give a depth information of vein that would be helpful for venipuncture.
Also through the simple configuration, it is expected to be enable to lower cost.
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They also conducted a phantom study on the propagation of NIR rays under the skin with the IR
695 nm long-pass filter and NIR light diode module, which emits NIR rays of 740 nm. In that study,
they showed that the vein model takes much light when the NIR light propagates perpendicularly to
the surface just above the vein model. However, the researchers recommended a large incidence angle
between the NIR diode module and skin. This is because the NIR module visually occludes the skin in
the perpendicular angle [11].

This paper proposes methods for improving and developing the device, inspired by
Sangjun Lee et al. [11]. The angle of penetration of method 3 is changed to utilize the advantages of
perpendicular propagation and discard the disadvantages of visual hindrances. The remainder of
this paper consists of the following sections. Section 2 explains methods for the hardware and image
processing. In the next section, various experiments were conducted using phantoms and in vivo.
The way of obtaining several parameters that drive the design of the proposed device is presented
in Section 3.1. Then, the experimental results in Section 3.2 verify the effectiveness of the proposed
device and algorithm. Finally, this paper will be finished with a discussion and problematic points to
be solved in future work.

2. Methods

Proposed methods are composed of two parts. One is for designing an NIR light module, and the
other one is for image processing to enhance the visual effect. First, a limitation of current methods
is presented, and then a new model to overcome the drawback is suggested. For the last, an image
processing method to show veins more accurately, is explained.

2.1. Methods for Equipment

To visualize the vein model and improve the previous module, several pieces of equipment were
used such as an NIR CCD camera (Grasshopper3 GS3-U3-41C6NIR-C, Point Grey Inc., Richmond, BC,
Canada) and a high resolution lens (GMTHR48014MCN, Goyo Optical Inc., Asaka, Japan). To improve
and overcome the shortcomings of the previous study [11], the incidence angle of propagation is
adjusted. Although the absorption of deoxyhemoglobin has a peak value near 750 nm, the maximum
intensity ratio between the blood vessel and surrounding tissue has a peak value near 850 nm [5,6].
In the case of the vein visualizing process, the advantage of the maximum intensity ratio far outweighs
the disadvantage of the absorption of deoxyhemoglobin at 850 nm. Therefore, the vein can be observed
well at this wavelength. It is why an 850 nm band-pass filter (BP850-S44.5, Midwest Optical System
Inc., Palatine, IL USA) is used instead of a 695 nm long-pass filter. For the same reason, 850 nm emitting
diodes are used for the NIR diode module.

In the following sections, first a limitation of the reflection method will be confirmed by comparing
with a current penetration method. Second, a drawback of a conventional penetration approach will
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be explained simply which is presented by Cuper et al. [5]. Then the development of the device and
the working principle of the module will be introduced to overcome the limitations.

2.1.1. Limitation of the Reflection Method

To compare the reflection method to the conventional penetration method, an experiment is
conducted. Figure 4 shows the images obtained by using method 1 (reflection) and method 2
(penetration) respectively as in Figure 1. To evaluate the effectiveness of each method, vein structures
is extracted by skeletonizing the images [12]. The image using the penetration method allowed us to
obtain more accurate morphology results as shown in Figure 5. This shows that the existing penetration
method is better than the reflection method when using 850 nm NIR light.
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2.1.2. Limitation of the Existing Penetration Method

As presented in Section 2.1.1, using an existing penetration method shows better performance
when extracting the vein pattern from the images. However, the conventional penetration method
also has the drawback of limited maximum visibility depth. Natascha J. Cuper and his colleagues [5]
used both NIR light and the penetration method to visualize subsurface blood vessels. Although
they successfully visualized blood vessels in the hand-dorsal and wrists of children and adults and
at the inside of the elbow in small children, they presented that there were some areas for further
development because in thicker body parts like the arm the NIR light cannot reach the other side of
the arm through the penetration method. This is because of the fact that all trans-illuminated NIR
light will be absorbed before penetrating to the other side of the arm [5]. For this reason, this paper
proposes a new penetration method.
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2.1.3. Working Principle of the NIR Module

When NIR light penetrates human skin, it is scattered [13]. The scattered NIR light generates both
transmitted and reflected light as shown in Figure 6. Thus, through the NIR camera, the reflective
image of skin tissue can be detected. This skin optic principle is applied to our new device.
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The incident NIR light at a peak wavelength of 850 nm penetrates the skin of the arm in the
direction of the vein and scatters. The scattered light travels to the vein and provides a penetration
effect. The penetrating NIR light is absorbed in the vein. Finally, through the subsurface scattering and
absorption in both the vein and layers of skin, the vein pattern can be obtained.

2.1.4. Development of New NIR Diode Module

To overcome the drawback of the conventional penetration method being absorbed before
penetrating to the other side of the arm, a new device is proposed in this article. This new and
improved device overcomes the limitation to detect vein patterns on arms by penetrating two scenes
at the same time from a penetration angle. To be specific, two lines of NIR diodes’ ray penetrates the
skin in the middle. If we know the vein depth (D) and penetration depth (d), the penetration angle (θ)
could be calculated by a trigonometric relation on Figure 7. Values of the parameters were decided
through a phantom study. The process for finding the values will be presented at the Section 3.1.
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The prototype of the device is shown in Figure 8, which was designed by SolidWorks and printed
by a 3D printer (Objet260 Connex2 multi-material 3D Printer, Stratasys, Eden Prairie, MN USA). The
prototype of the NIR diode module contains two lines of NIR diodes including 20 NIR diodes (850 nm).
The NIR CCD camera captures NIR vein images from the skin through the infrared IR filter (850 nm).
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Figure 8. The prototype of the newly proposed device.

2.2. Methods for Image Processing

The purpose of the newly proposed device is to visualize vein structure in thick body parts, like
arms, as shown in Figure 3. Thus, the subsurface veins should become visible on the screen of the
device. In other words, since the screen of the device displays the vein structure, image processing
is required to extract and show the exact vein pattern from the arm. Figure 9 shows the flow charts
for image processing. First, ROI setting method will be presented. Second, a complex histogram
equalization method will be introduced that uses both a global histogram equalization image and a
contrast-limited adaptive histogram equalization image. Then brief explanation of the multi-scale line
enhancement filter (or Frangi filter) will be presented [13]. Then adaptive threshold and morphological
closing will be presented. Finally, the desired image with skeleton will be shown. Algorithm is based
on OpenCV [14].
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2.2.1. Setting the ROI

ROI (Region of Interest) means the region of an image that one desires to handle. NIR light is
shone from both sides of the module, and the band-pass filter creates a dark image except for the ROI,
shown as a highlighted segment as in Figure 10a. The ROI image was used only because using the
whole image takes too much time and the result would not be optimum. Before the next step, Gaussian
blurring was conducted to reduce the noise in the image.
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2.2.2. Complex Histogram Equalization

Since the module shines from two sides, non-uniform light distribution exists in the ROI image.
This condition makes image processing difficult. To solve this problem, histogram equalization
was performed.

Histograms in image processing represent the pixel value distribution of an image. If the image
contrast is low, the width of the histogram becomes narrow. Therefore, the histogram is stretched from
0 to 255 to obtain a high contrast image. This procedure is called ‘histogram equalization’.

General histogram equalization (GHE) uses histogram information of the whole image for its
transformation function. Though this global approach is suitable for overall enhancement, it works
badly with local brightness features [15]. However, contrast limited adaptive histogram equalization
(CLAHE) is done locally with small regions of an image. CLAHE reduces the effect of noise by
applying the contrast limit. In the case of pixels having values above the contrast limit, they would be
clipped before doing the histogram equalization [16]. GHE and CLAHE was compared by applying
GHE and CLAHE to the ROI image. In Figure 11, it is possible to observe a reduced effect from the
non-uniform light distribution in the image with CLAHE method comparing to the GHE method.
Then, a Frangi filter [17] was applied to the output of the histogram equalization. The details of Frangi
filter will be explained at the following section. The filter output from the GHE image cannot capture a
branch line. However, the output from the CLAHE image can enhance a branch line, but also captures
a needless black line in the background.
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Therefore, the CHE was introduced, obtained by adding half of the GHE image’s intensity with
half of the CLAHE image’s intensity. Through this new CHE method, a better result was observed.
It captured the branch lines better than GHE and also suppressed the black line that was not necessary
in the background. The comparison result is shown in Figure 11.

2.2.3. Vein Structure Enhancement Method Using 2D Line Filter

Frangi filter or multiscale vessel enhancement filter is used to enhance the Vesselness before
applying an adaptive threshold to get better segmentation. Frangi et al. proposed a 3D multiscale
vessel enhancement filter (or Frangi filter) based on a Hessian matrix (or Hessian) analysis [17]. This
enhances a tube-like structure for several scales by considering eigenvalues of the Hessian matrix.
For this paper, adjusted method to a 2D image was used. When analyzing a 2D image intensity: I(x)
where x = (x, y), it could be considered as Taylor series expansion starting from x0.

I(x) ∼= I(x0) + ∆xT · ∇I(x0) +
1
2

∆xTH(I(x0))∆x, (1)

∆x = x− x0, (2)

The second term of the right hand side in Equation (1) is the directional derivative of I, and the
third term represents the second order directional derivative with the Hessian matrix. In the second
term, ∇I(x0) refers to the image gradient at x0. Since the image gradient indicates the direction of
maximum intensity change, it is orthogonal to the direction of constant intensity. Next, H(I(x0))

indicates the Hessian matrix at point x0. The local shape of I is determined by the third term with H.
Therefore, by getting the eigenvalues (λ1, λ2) and the eigenvectors (ν1, ν2) of the Hessian matrix, we
can determine the shape and the principal direction of image I. Let |λ1| ≤ |λ2|. Then particularly for
the vessel structure, λ1 is almost 0 and λ2 is large. For the eigenvectors, the direction of ν1 is along the
vessel, while ν2 is orthogonal to ν1. Therefore, with this combination of eigenvalues tubular structures
can be distinguished. The differentiation is calculated by convolution with a derivative of the Gaussian
function. It can be described as

∂

∂x
I(x; σ) = σγ ∂

∂x
G(x; σ) ∗ I(x), (3)

where G(x; σ) is a Gaussian function with standard deviation σ,

G(x; σ) =
1

2πσ2 exp

(
−|x|

2

2σ2

)
, (4)

Lindeberg [17] proposed the parameter γ to normalize the derivatives. This normalization
is important in comparing the response of differentiations for various scales, because as the scale
increases, the intensity and deviation decrease. γ has to be set as 1, if no scale is preferred.

In addition, Frangi et al. introduce a ratio in Equation (5) that helps to distinguish between a line
structure and a blob-like pattern.

RB =
λ1

λ2
, (5)

This ratio would be 0 when the λ1 is near 0 (at the line structure) and would be large at the
blob-like pattern. At the ROI image, the vessel structure is darker than the background. Therefore,
following Frangi’s approach, the line function is defined as:

V0(s) =

 0 , i f λ2 < 0

exp
(
− R2

B
2β2

)(
1− exp

(
− S2

2c2

))
, else

(6)



Sensors 2017, 17, 304 10 of 19

S =
√

λ1
2 + λ2

2, (7)

where S is a norm of the Hessian and β, c are thresholds controlling the sensitivity. The c depends on
the gray scale range of the image. To enhance the brightness of the structure, the condition should be
inverted. In Equation (6), V0(s) represents the different scales, s. The result of V0(s) would be biggest
at a specific scale (s). Therefore, the final equation is,

Vo(γ) = max
smin≤s≤smax

Vo(s,γ), (8)

Since the Frangi filter is very sensitive to noise, a Gaussian blur was applied to reduce noise.
The result of Frangi filtering is shown in Figure 11.

2.2.4. Segmentation Using Adaptive Thresholding and Morphology-Closing

The thresholding function can be defined as Equation (9). In the thresholding function, one sets a
value called threshold (T). Then pixels with intensity below T become black (0), and the others above T,
become white (255).

I(x, y) =

{
0 , i f I(x, y) < T
255 , else

(9)

Adaptive thresholding is a kind of thresholding method, but is a little bit different from the
basic one, and more efficient in an image with non-uniform light. For the general threshold, only one
threshold value is set for the whole image and adjust it globally. Adaptive thresholding, however,
locally computes different threshold values for the small different region. Thus, it covers the
non-uniform light condition (providing better results than basic thresholding).

Adaptive thresholding was performed on the filtered output. T value was set as the mean of mask
area, and the mask size was set as 63 when the image size was 80 × 320. By this step, the vein structure
and background could be separated.

After thresholding, a morphology closing operation was performed with structuring element of
ellipse with size 13 × 3. Closing is an operator of mathematical morphology. In addition, it can be
done with erosion and dilation as,

A•B = (A⊕ B)	 B, (10)

where A is a binary image (thresholding output) and B is the structuring element. Also ⊕ and 	 mean
dilation and erosion. With this process, we can fill the hole and connect the broken points. With this
effect, better skeletons were obtained from the image.

2.2.5. Skeletonizing the Vein Structure

A skeleton is a thin centered line, which represents a structure, and ‘Skeletonization’ is a procedure
to find a skeleton. To overlay the position of the vein onto the skin more accurately, the image was
skeletonized. For this, Zhang-Suen’s thinning algorithm was used [12]. Finally, the image was
skeletonized and the skeleton of the vein pattern was found. Then the skeleton image was added to
the CHE image to show the vein structure more accurately. The desired image is shown in Figure 12.
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3. Experimental Results and Analysis

Various experiments were conducted for designing an NIR light module by using a tissue
mimicking phantom. Then the feasibility tests were conducted with phantom and in vivo. Finally, the
effectiveness of the proposed device was verified through the experiments.

3.1. Phantom Study

A phantom study was performed to get some parameters for designing a module, such as a
penetration angle and a depth as shown in Figure 7.

First, a tissue phantom was composed based on agar and lipid. An experiment is conducted, to
show the effectiveness of an attached penetration mode. Then the penetration depth was measured
with the NIR module attached to the skin. The depth, in this paper, was defined as the point at which
the intensity becomes 80% of the original intensity. Through that, the NIR light angle could be set.
After determining those values, a real module was made and a feasibility test was conducted with a
vein model phantom.

3.1.1. Composition of the Tissue Phantom

There are many ways to make a phantom with optical properties similar to tissue. For this
phantom study, a solid tissue phantom was made based on a widely used agar and lipid. The
composition of the phantom is agar, distilled water, Intra Lipid (IL) and India ink. The ingredients for
the phantom are easy to get, not harmful to humans, and are cheaper than other materials [18].

The optical properties of tissue are represented by the scattering (µa) and absorbance (µ′s)
coefficient. The role of agar is to make the phantom solid, and it has negligible effects on the
performance factors. One can also use gelatin instead of agar, but because the solidity with agar
is harder than with gelatin, agar was used instead of gelatin. To meet the desired optical properties
of real tissue, IL and India ink were added to the solution. IL is a solution of pure soybean oil
and water. It is similar to the actual scattering material in human tissue, so it performs well as the
scattering material of the phantom. India ink makes the phantom meet the desired absorbance of the
tissue [19,20].
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There are multiple steps for making the phantom [18]. First, a pure agar powder is dissolved into
the distilled water at about 1% concentration, and melted at 95 ◦C. Because a heater could burn the
agar easily, it should be stirred continuously. After melting the agar, we lowered the temperature to
60 ◦C while continuously stirring it. At 60 ◦C, the IL was added as 1 × 10−2 concentration and the
India ink as 1 × 10−5 concentration. Then we lowered the temperature again down to 40 ◦C while
stirring the solution to obtain better uniformity, and poured it into the mold and cooled it at room
temperature. Using a refrigerator is not recommended, because it can negatively affect the optical
properties of the tissue phantom.

3.1.2. Comparison of Detached and Attached Penetration Modes

In this experiment, a phantom with 1.5 cm thickness was made, and NIR camera (Point
grey-GrassHopper3 NIR cam) and NIR light were set as shown in Figure 13. Then, the mean intensity
of the penetrated NIR light was measured while lifting the NIR light source to the phantom (from
distance = 0 to 20 cm). The mean intensity was calculated only using the phantom region. As shown
in Figure 14, as the distance between the light source and the phantom decreases, the light intensity
becomes stronger. This result can be expected, because brightness is inversely proportional to the
square of distance. As expected, the attached mode (distance = 0) shows better penetration than the
detached mode (distance = constant).Sensors 2017, 17, 304 12 of 19 
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3.1.3. Measuring the Penetration Depth of the NIR Light Source

As shown in Figure 15, to find the penetration depth of the NIR light source, a base phantom
with a 1.5 cm thickness, and additional phantoms with 0.5 cm thickness were made. Then the base
phantom was put on the light source and the additional phantoms were added in order. Then the
image was captured using the NIR camera. When testing the intensity in a light-off condition, it was
0. As presented in Figure 16, by calculating the phantom part’s mean intensity of images, at about
2 cm thickness, the intensity was around 80% compared to the initial light intensity. As a result, the
penetration depth (d) was set as 2 cm.
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3.1.4. Determining the LED Penetration Angle of the Prototype

As explained before, a penetration angle was proposed to get a penetration effect by shining
the light at the angle. The most commonly done venipuncture site is the cubital fossa (same as the
antecubital fossa), which refers to the part of the arm in front of the elbow. Since there are only small
nerves and arteries in this area, there are less pain and less possibility of hematoma [21]. The veins at
the cubital fossa are usually located about 1.5 cm below the skin [22]. Thus, the mean vein depth (D)
was assumed as 1.5 cm. The penetration depth (d) is 2 cm as obtained before. With these values, the
effective light propagation angle (θ) could be determined. As shown in Figure 7, the angle could be
obtained by Equations (11) and (12):

sinθ =
D
d

, D = 1.5 cm, d = 2 cm, (11)
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∴ θ = sin−1
(

D
d

)
≈ 48.6◦. (12)

Through a trigonometric relation, the light width (W) was derived as 2.65 cm. Then a prototype
was made using these values.

3.2. Feasibility Test

3.2.1. Feasibility Test with a Phantom

A feasibility test was conducted with a phantom. For this experiment, a tissue phantom containing
a vein model was made. The vein model is composed of a transparent silicone tube and sheep blood.
Since the diameter of a vein at the cubital fossa is about 3 mm [22], a silicone tube with a 3 mm diameter
was used. Also for the vein model, sheep blood without fibrin, which does not coagulate so could be
used for a relatively long time, was injected to the tube using a syringe. Both sides of the tube were
then sealed with EVA (Ethylene-vinyl-acetate) glue. Then the tube was located to a 1.5 cm-depth of a
mold and the mold was filled with the phantom solution. After the phantom hardened, the phantom
was taken out and the experiment was conducted with the designed module. Figure 17c shows the
phantom with a prototype. With the prototype on, the vein model was observed more distinctly
than with the naked eye as shown in Figure 18. This result illustrates that the proposed device has
a feasibility.Sensors 2017, 17, 304 14 of 19 
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3.2.2. Feasibility Test in Vivo

As shown in Figure 19, the prototype of the NIR diode module was placed on a subject’s arm and
was gently pressed to see the vein more clearly. A raw image was obtained by an NIR camera with
an 850 nm band-pass filter. As shown in Figure 20, the veins are clearly visualized in the raw image.
As expected from the phantom study, the proposed device also showed good result in vivo.
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3.3. Verifying the Effectiveness of the Proposed Method

To evaluate the effectiveness of the proposed device, a reference test was conducted to compare
the conventional reflection method to the proposed method. The conventional reflection method in
Figure 1 can only be applied to someone whose veins are also visible without any devices. In this case,
although the vein pattern looks better than without any supporting devices, as shown in Figure 21a,b,
there might not be any significant clinical value for the venipuncture process. In the case of patients
whose veins on the arm are not visible, both the NIR light source and the NIR camera cannot visualize
the vein pattern, as shown in Figure 21c,d. Since to visualize the vein pattern on the patient of
Figure 21c was impossible through the conventional reflection method, the proposed prototype model
was tested on this patient. Not only could it visualize a vein pattern at the cubital fossa but also
skeletonize the vein pattern, as shown in Figure 22.

In the addition, for a comparison with other conventional devices such as Veinviewer Flex and
Veinlite EMS, their vein-visualization performances were tested together with the prototype as shown
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in Figure 23. A tissue phantom, with three 3 mm-diameter vein models located at 5 mm, 10 mm and
15 mm depth respectively, was made for the tests.
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As shown in Figure 24, the prototype could catch and skeletonize the vein pattern at all depths.
But it was effected by a flaw of the phantom. Veinviewer Flex also could visualize the vein pattern at
all depths, but not clear at 15 mm depth. Veinlite EMS, however, could only visualize vein at the 5 mm,
and showed poor performance at the others. The results show that the prototype has an effectiveness,
compared to other conventional devices.
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4. Discussion 

Venipuncture is a very important procedure and is done frequently. However, often a nurse is 
not able to find a vein because of many hindrances. To overcome these problems, there are many 
types of vein visualization devices. However, they have difficulty visualizing veins in thicker body 
parts like an adult’s arm. 

In this paper, these drawbacks were investigated and solutions were proposed to counter it. This 
paper proposed a new design of the NIR light module that has a specific penetration angle.  
In addition, to show a more accurate line on a screen, an image processing algorithm is proposed. 
With this design, a penetration effect could applied even to the thicker regions, like an arm. To find 
the penetration parameter values, a phantom study was conducted. A solid tissue phantom was 
composed based on agar and lipid, then experiments were performed to get a penetration depth. 
Through a trigonometric relation, a penetration angle was calculated and the designed module 
showed good performance within a phantom study and in vivo. After checking the feasibility, 
additional tests were conducted to verify the prototype. The proposed design made it possible to 
detect even invisible veins in thick tissue. If a tourniquet is used and arm of a subject is cleaned with 
the alcohol swab to remove a thin oily layer, the result would be better. In addition, the image 
processing algorithm effectively enhanced the visual effect. Also when the prototype is compared to 
the other devices, it showed good performance. Considering the cost of Veinviewer Flex, about 
$8,500, prototype is more competitive. As shown in Figure 3, the proposed device is small and 
portable. By the simple configuration, the price will be much lowered than the current devices. And 
through the stereo camera system, it can give a depth information of vein that is necessary for 
venipuncture. Also by including a screen attached to the NIR diode module, the proposed device 
does not require any extra skills to match hand-eye coordination. In addition, the device includes a 
cross-shaped laser pointer. Since the laser pointer is attached and fixed with the NIR module, the 
indicating point for cannulation does not have any visual distortions deriving from the projection 
angle. Furthermore, not only are the cross-shaped grid on the screen and the cross-shaped laser 
pointer fixed with the device but they are also aligned. Therefore, the crossing point can lead the 
operators to recognize the actual venipuncture point. 

The drawbacks are (1) only a rough estimation of the penetration parameters; and (2) undesired 
skeleton lines on the final image. Since light scatters before it arrives at the vein and the decreasing 
intensity within the tissue wasn’t considered this research, the designated parameters can still have 
errors. This can decrease the effectiveness of the proposed device. As shown in the result figures, a 
needless skeleton line exists, that does not indicate the vein structure. These lines can be confused 
with the real vein structure. All of these weaknesses will be addressed and improved in future 
studies. 
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4. Discussion

Venipuncture is a very important procedure and is done frequently. However, often a nurse is not
able to find a vein because of many hindrances. To overcome these problems, there are many types of
vein visualization devices. However, they have difficulty visualizing veins in thicker body parts like
an adult’s arm.

In this paper, these drawbacks were investigated and solutions were proposed to counter it. This
paper proposed a new design of the NIR light module that has a specific penetration angle. In addition,
to show a more accurate line on a screen, an image processing algorithm is proposed. With this design,
a penetration effect could applied even to the thicker regions, like an arm. To find the penetration
parameter values, a phantom study was conducted. A solid tissue phantom was composed based on
agar and lipid, then experiments were performed to get a penetration depth. Through a trigonometric
relation, a penetration angle was calculated and the designed module showed good performance
within a phantom study and in vivo. After checking the feasibility, additional tests were conducted to
verify the prototype. The proposed design made it possible to detect even invisible veins in thick tissue.
If a tourniquet is used and arm of a subject is cleaned with the alcohol swab to remove a thin oily
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layer, the result would be better. In addition, the image processing algorithm effectively enhanced the
visual effect. Also when the prototype is compared to the other devices, it showed good performance.
Considering the cost of Veinviewer Flex, about $8500, prototype is more competitive. As shown in
Figure 3, the proposed device is small and portable. By the simple configuration, the price will be
much lowered than the current devices. And through the stereo camera system, it can give a depth
information of vein that is necessary for venipuncture. Also by including a screen attached to the NIR
diode module, the proposed device does not require any extra skills to match hand-eye coordination.
In addition, the device includes a cross-shaped laser pointer. Since the laser pointer is attached and
fixed with the NIR module, the indicating point for cannulation does not have any visual distortions
deriving from the projection angle. Furthermore, not only are the cross-shaped grid on the screen and
the cross-shaped laser pointer fixed with the device but they are also aligned. Therefore, the crossing
point can lead the operators to recognize the actual venipuncture point.

The drawbacks are (1) only a rough estimation of the penetration parameters; and (2) undesired
skeleton lines on the final image. Since light scatters before it arrives at the vein and the decreasing
intensity within the tissue wasn’t considered this research, the designated parameters can still have
errors. This can decrease the effectiveness of the proposed device. As shown in the result figures, a
needless skeleton line exists, that does not indicate the vein structure. These lines can be confused with
the real vein structure. All of these weaknesses will be addressed and improved in future studies.
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