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Digital barcodes of suspension 
array using laser induced 
breakdown spectroscopy
Qinghua He1,2, Yixi Liu1,2, Yonghong He1,2, Liang Zhu1,2, Yilong Zhang1,2 & Zhiyuan Shen1,2

We show a coding method of suspension array based on the laser induced breakdown spectroscopy 
(LIBS), which promotes the barcodes from analog to digital. As the foundation of digital optical 
barcodes, nanocrystals encoded microspheres are prepared with self-assembly encapsulation 
method. We confirm that digital multiplexing of LIBS-based coding method becomes feasible since 
the microsphere can be coded with direct read-out data of wavelengths, and the method can avoid 
fluorescence signal crosstalk between barcodes and analyte tags, which lead to overall advantages in 
accuracy and stability to current fluorescent multicolor coding method. This demonstration increases 
the capability of multiplexed detection and accurate filtrating, expanding more extensive applications 
of suspension array in life science.

As an essential tool for diagnosis, gene expression and other life science fields, multiplex microarray has got 
rapid development in recent years1,2, especially for suspension array, which may be the most promising direc-
tion because of its performance in high-throughput and multiplexed detection3–6. For example, suspension array 
shows high sensitivity and achieves far lower detection limits in clinical diagnosis, such as detection of hormone 
and virus antibody, than traditional technology7,8. In genome and protein analysis, it also proves its capability in 
multiplexing9. The current suspension array was mostly encoded by luminescent barcodes, assembling organic 
fluorophores or luminescent quantum-dots with functional microspheres10. Technically, the functional micro-
sphere can be identified by characteristic stimulated fluorescence spectra11,12. However, neither fluorophores nor 
quantum-dots can avoid the spectral overlaps in multiplexing, causing high constraints on decoding. Since the 
luminescent barcode is based on the waveforms and intensities of fluorescence peaks, both coding and decoding 
procedures require sophisticated operations, endowing barcodes distinctive characteristics of analogue quan-
tity13. For example, the complicated deconvolving algorithm is required in decoding because of the unavoidable 
overlapping14. One more point, in current fluorescent multicolor method, both microsphere barcodes and analyte 
tags are based on fluorescent materials, causing high signal crosstalk in detection15. In consideration of above 
limitations, it is significant to build coding barcodes with more distinguishable coding signals.

In this manuscript, we report a kind of barcodes based on the LIBS technology, which may promote the arrival 
of the digital era of suspension array. LIBS researchers utilize the emission of plasma generated by laser pulse to 
provide nonintrusive, qualitative and quantitative measurements of elements in gas, liquid and solid samples16. 
Recent advances in LIBS have led to an extensive applications in different occasions, such as industry analysis, 
environment monitoring and medicine analysis17,18. Due to the linear characteristic of plasma emission, LIBS 
can provide wavelength data corresponding to elements directly, building the foundation of digital barcodes19. 
Meanwhile, the LIBS encoded polystyrene microsphere is designed with no fluorescence emission and the col-
lection of LIBS spectra is independent from tag-fluorescence acquisition, eliminating the crosstalk between tag 
detection and barcodes decoding.

Methods
Optical method.  Our coding system of suspension array was shown in Fig. 1a, the barcode is based on 
the LIBS encoded polystyrene microsphere (LIBS-PS), LIBS-PS can be utilized in sandwich immunoassays as 
capturing microspheres after surface modification20,21. Through a complete mixture and reaction with analyte, 
capturing microspheres enter into the flow system with fluorescence-labeled captive, such as proteins and genes. 
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The microsphere experiences the laser stimulation of fluorescent tag on analyte and the detected fluorescence 
can prove the existence of captive. Then nanocrystals (NPs) on LIBS-PS were stimulated by pulse laser and the 
wavelength data of plasma emission can be collected to decode LIBS-PS, consequently accomplish the recogni-
tion of captive. A schematic of fluorescence detection system is shown in Fig. 1b.The laser beam (405 nm, 50 mw) 
was collimated by a 25.4 mm collimation lens and passed a 25 mm cylindrical convex lens. The beam was then 
reflected by a dichroic mirror (reflection band: 350–475 nm, transmission band: 492–950 nm) and focused by 
a 30 mm achromatic lens to form a line illumination on the sample. The fluorescence emitted from the sam-
ple was collected by the same achromatic doublet and transmitted through the dichroic mirror, then the light 
passes through the long pass filter (cut-on wavelength =​ 500 nm) to block the reflected laser. The spectrome-
ter-CCD (SBIG, 3326 ×​ 2504 pixels) system was put to detect the intensity of the fluorescence. The schematic of 
our home-built LIBS set-up is shown in Fig. 1c. Single pulse Q-switch Nd:YAG laser (1064 nm.180 mJ pulse-1, 
frequency =​ 1 Hz, pulse width =​ 8 ns), expended by a 20 mm focal length concave lens and then focused on sam-
ple surface by a 100 mm focal length quartz lens, generating micro plasmas on the LIBS-PS. Plasma light was 
collected through a fiber(62.5 μ​m in diameter, 1 m in length) after being focused by a 75 mm focal length quartz 
lens onto the entrance slit of spectrometer-CCD (Shenzhen Teksqray, 1024 ×​ 1 pixels, resolution 0.35 nm). This 
set-up allowed recording the plasma emission in the 450–800 nm spectral range. The sample can form plasma on 
the surface immediately after being excited by pulse laser and the lifetime of plasma radiation mainly keep in 10 
to 20 microseconds, thus we adopt external trigger mode to control the acquisition of plasma emission spectra, 
the integration time is set to 55 microseconds.

Materials.  Silver (Ag), cuprous oxide (Cu2O), magnesium oxide (MgO) and zinc oxide (ZnO) NPs (Macklin 
reagent, China, diameters =​ 40~100 nm) were used as characteristic LIBS coding materials in this letter 
(Fig. 2a–d). The plasma emission peaks we chosed as coding signals of three kinds of NPs are 520.9 and 546.5 nm 

Figure 1.  A schematic of LIBS-based coding system. (a) Simplified coding system of suspension array with 
added LIBS section. (b) Schematic of fluorescence intensity detection system. (c) Schematic of our home-built 
LIBS set-up.
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Figure 2.  SEM images and LIBS spectra of NPs. SEM images of: (a) Ag NPs; (b) Cu2O NPs; (c) MgO NPs;  
(d) ZnO NPs. LIBS spectra of: (e) Ag NPs; (f) Cu2ONPs; (g) MgO NPs; (h) ZnO NPs. Scale bars are 200 nm for 
all SEM images.
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for Ag; 510.6, 515.3 and 521.8 nm for Cu2O; 516.7 nm for MgO; 472.2 and 481.0 nm for ZnO. The plasma emission 
in the spectral range is stimulated and collected by our LIBS system, and wavelengths of emission peaks match 
well with standard data22 (Fig. 2e–h). We chose monodisperse polystyrene microspheres (Nano-Micro Research 
Center, Peking University, diameters =​ 10 μ​m) as LIBS coding carrier.

Preparation of LIBS-PS.  The layer-by-layer self-assembly method was carried out in the preparation of 
the LIBS-PS with some modifications23, showing as follow: 50 mg polystyrene microspheres (PS) were dispersed 
in polyethylenimine (PEI, Mw =​ 600000, 50 wt% in water) solution (25 mL, 4 mg/mL, 0.5 M NaCl), the mixture 
was allowed to react for 1 h with continuous stirring for the PEI adsorption on the matte surface of initial PS. 
The PEI@PSdispersion was then centrifuged and the supernatant was replaced with water. After redispersing 
PEI@PSby agitation and sonication for 5 s, the washing process was repeated at least two times to remove excess 
PEI. NPswere adsorbed onto PEI @PS by adding a sufficient suspension (0.2 g/L)of NPs in 2-propanol directly 
to thedispersion. After shaking the mixture vigorously for a few minutes, the non-adsorbed NPs were removed 
and the NPs-assembled PEI@PS (NPs@PEI@PS) was washed by three centrifugation/redispersion cycles (once 
in 2-propanol and twice in chloroform). The encapsulation of the NPs@PEI@PS was achieved by polyvinylpyrro-
lidone (PVP) and tetraethyl orthosilicate (TEOS). Sufficient PVP was dissolved by ultrasonication for 15 minutes 
in chloroform/2-propanol (9:1). The NPs@PEI@PSwere added to the solution and the mixture was sonicated for 
10 seconds, then reacted overnight with continuous stirring. The beads were then centrifuged and redispersed in 
a solution of 4.2 wt% ammonia in 2-propanol. After this treatment, TEOS was added under continuous stirring 
and reacted for 12 hours to form final LIBS-PS. The total amount of PVP and TEOS depends on the desired thick-
ness of the shell. PEI, PSS, PVP and TEOS were provided by Macklin reagent. Since the digital coding of LIBS-PS 
relies on the existence instead of the assembled ratio of different NPs, we chose the mixed solution of different 
NPs with simple ratio to provide coding materials. The types and ratios of coding NPs of 15 kinds of LIBS-PS are 
listed as follows: 1. Ag, 2. Cu2O, 3. MgO, 4. ZnO, 5. Ag/Cu2O(1:1, m/m), 6. Cu2O/MgO (1:1, m/m), 7. MgO/ZnO 
(1:1, m/m), 8. Ag/ZnO (1:1, m/m), 9. Ag/MgO (1:1, m/m), 10. Cu2O/ZnO (1:1, m/m/), 11. Ag/Cu2O/MgO (1:1:1, 
m/m/m/), 12. Ag/Cu2O/ZnO (1:1:1, m/m/m), 13. Ag/MgO/ZnO (1:1:1, m/m/m), 14. Cu2O/MgO/ZnO (1:1:1, 
m/m/m), 15. Ag/Cu2O/MgO/ZnO (1:1:1:1, m/m/m/m).

DNA immobilization of LIBS-PS.  As an efficient intermediary with abundant active catechol and amine 
groups, polydopamine (PDA) was coated on the surface of LIBS-PS (ZnO NPs assembled) to provide binding 
groups for DNA and other analyte24. The LIBS-PS were redispersed in Tris-HCl buffer (pH =​ 8.5), and the dopa-
mine hydro-chloride (Alfa Aesar Co., Inc.) was dissolved in the solution with a concentration of 2 mg/mL. The 
mixture was stirred for 24 h at 37 °C. The PDA coated LIBS-PS were separated by filtration and centrifuged and 
washed with deionized water for several times. The target ssDNA (BGI, China) sequences were labeled with 
carboxyl groups modified water-soluble QDs (Wuhan Jiayuan Quantum Dot Technological Development 
Corporation, emission wavelength =​ 520 nm). The PDA coated LIBS-PS were dispersed in Tris-HCl buffer solu-
tion, followed by the addition of DNA-QDs. The mixture was stirred for 6 h at 57 °C. The solution was washed 
several times with 0.1 wt % SDS in phosphate buffer solution (prepared by NaH2PO4 and Na2HPO4, pH =​ 7.4).

Multiplexed fluorescence imaging application of LIBS-PS in fluoroimmunoassay.  To explore the 
performance of LIBS-PS in multiplexed detection, we carried out a two-color fluoroimmunoassay experiment.
We selected LIBS-PS 1,4 to be capture microspheres after carboxylation. Mouse IgG (Beyotime Biotechnology)/
Goat Anti-Mouse IgG (labeled with 525 nm QDs, Wuhan Jiayuan Quantum Dot Technological Development 
Corporation) and Rabbit IgG (Beyotime Biotechnology)/Goat Anti-Rabbit IgG (labeled with 605 nm QDs, 
Wuhan Jiayuan Quantum Dot Technological Development Corporation) are chosen to be antigen-antibody com-
binations.The experiment step are list as follow: First of all, 100 μ​L LIBS-PS 1 solution (10 mg/mL) was mixed with 
1 mL phosphate buffer solution (PBS, 50 mM, pH7.4), 50 μ​L N-Ethyl-N’-(3-dimethylaminopropyl) carbodiimide 
hydrochloride (EDC, Aladdin Co., Inc.) solution (10 mg/mL) was added to the dispersion.The mixture was stirred 
for 15 minutes at room temperature. Then10 μ​L Mouse IgG solution (1 mg/mL) was added into the solution and 
incubated for 2 hours at 37 °C and the beads were washed with PBS by centrifugation for several times. 5% bovine 
serum albumin (BSA) solution (TBST, pH7.4) was used as blocking solution and mixed with beads for 1 hour 
to cover excess group. After washing for several times, the beads were redispersed in 1 mL PBS to form Mouse 
IgG-bonded LIBS-PS solution. The Rabbit IgG-bonded LIBS-PS solutionwas prepared with the same method. 
Finally, these two types of IgG-bonded LIBS-PS solution were mixed together, 10 μ​L Goat Anti-Mouse IgG solu-
tion(50 mM) and 10 μ​L Goat Anti-Rabbit IgG solution (50 mM) added into this dispersion. After incubation for 
30 minutes at 37 °C, the beads were washed with PBS by centrifugation for several times.

Results and Discussion
Characterization of LIBS-PS.  Scanning electron microscopy (SEM, ZEISS SUPRA®​55), energy dispersive 
spectrometer (EDS, ZEISS SUPRA®​55), Fourier transform infra-red (FT-IR, Thermo Scientific Nicolet iS 50) 
spectra analysis, Zeta potential measurements (Zetasizer Nano ZS+​MPT2)and transmission electronic micros-
copy (TEM, FEI TECNAI F30) had been used to characterize the resulted LIBS-PS. As shown in Fig. 3, SEM 
images described the surfaces of initial PS (Fig. 3a), PEI@PS (Fig. 3b), NPs@PEI@PS (Fig. 3c), NPs@PEI@PS 
with PVPpassivation (Fig. 3d) and finished LIBS-PS with SiO2 coating (Fig. 3e).The EDS image described the 
distribution of NPs (ZnO) assembled on LIBS-PS (Fig. 3f).

To demonstrate the reliability and reproducibility of self-assembling to LIBS-PS, the EDS measurements and 
infra-red spectra analysis were carried for LIBS-PS1(AgNPs@PEI@PS), 2 (Cu2ONPs@PEI@PS), 3 (MgONPs@
PEI@PS), 4 (ZnONPs@PEI@PS). The histogram in upper table in Fig. 4 shows the data of mass content of coding 
element in different LIBS-PS, the below image shows the composition of SEM images, SEM-EDS coupled images 
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and EDS images of four types of NPs@PEI@PS, it is obvious that the coding NPs were effectively assembled on 
various PEI@PS.

The result of FT-IR spectra analysis is showed in Fig. 5, three lines represent initial PS, NPs@PEI@PS, LIBS-PS 
respectively. As we can see, the broad absorption peak around 3400 cm−1 in middle line proved the existence of 
PEI, the peak between 400 cm−1 and 600 cm−1 in middle line indicates that the NPs (ZnO) were assembled on 
PEI@PS, the absorption peak around 1650, 1500 and 1300 cm−1 in below line were caused by PVP coating, and 
the signal of SiO2 could be found around 1100 cm−1 in the below line. The results verified the existence of various 
chemical composition of coating.

The Zeta potential measurements of each assembling states of LIBS-PS 1 (A), 2 (C), 3 (M), 4 (Z) were carried 
in Fig. 6, it is shown that the initial NPs and PS were both showing negative electricity. After decorating with 
PEI, four types of PEI@PS all turn to show positive electricity, which indicates that the PEI coating provides an 
appropriate electronic environment for self-assembling. The final Zeta potential of NPs@PEI@PS was negative, 
verifying that the NPs had been successfully assembled on the PEI@PS.

Finally, as shown in Fig. 7, TEM images showed the distribution of NPs on the surface of PS core for every type 
of sample. Obviously, different coding NPs can be assembled on the bead.

These measurements demonstrate the layer-by-layer self-assembly method is suitable to different types of NPs 
and is repeatable for LIBS-PS preparation.

Figure 3.  Experimental demonstration of the preparation of LIBS-PS. SEM image of (a) initial PS; (b) PEI@
PS; (c) NPs@PEI@PS; (d) NPs@PEI@PS with PVPpassivation; (e) LIBS-PS with silica coating; (f) EDS image of 
the distribution of NPs (ZnO) assembled on LIBS-PS. Scale bars are 2 μ​m for all images.
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LIBS spectra and integrated digital barcode-map of LIBS-PS.  We made experiments of pulse laser 
stimulation on LIBS-PS 1–15, and plasma emissions were shown in Fig. 8a. In the measured spectral range, in 
addition to the common emission peaks of the basement in yellow frame, signal emission peaks match well with 
standard data of NPs, and they are sharp enough to read out peak wavelengths directly, substantiating the possi-
bility of creating digital barcodes. Based on these eight coding emissions: 472.2, 481.0, 510.6, 515.3, 516.7, 520.9, 
521.8 and 546.5 nm, we create a digital barcode-map and fifteen operator sequences for LIBS-PS. The colored 
plaid, corresponding to basic operator 1 in operator sequence, represents that coding emission is selected in the 
spectrum, and vice versa, blank plaid represents the unselected emission, corresponding to operator 0. According 
to this rule, the information of LIBS-PS were integrated into the digital barcode-map, creating fifteen operator 
sequences, as genuine digital barcodes to LIBS-PS. Also, LIBS-based digital barcodes can easily achieve multiplex-
ing in high-throughput detection, to illustrate this viewpoint, a rough estimate is making as follows: Assuming 
that there are n kinds of element can be shown in the spectral range. We can obtain an approximate amount of 
barcodes with the operation of permutation and combination as follows:

Figure 4.  EDS measurements of various LIBS-PS. The upper histogram shows element contents, collected 
from a certain amount of beads, of different LIBS-PS, and the below image is the integration of SEM images, 
layered EDS images and EDS images of LIBS-PS 1–4. Scale bar is5 μ​m.
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W represents the amount of barcodes. This is undoubtedly an enormous quantities, the practical amount may be 
much smaller while negative factors are concerned, such as spectral overlaps and emission deficiency. However, 
it is predictably that the amount of LIBS-based barcodes will appear an exponential growth with the increase of 
element types and expansion of spectral range, which is essential to the multiplexing performance of suspension 
array.

Figure 5.  The fourier transform infra-red spectra analysis of LIBS-PS. The fourier transform infra-red 
spectra of initial PS (blue), NPs@PEI@PS (red) and LIBS-PS (purple).

Figure 6.  Zeta potential measurements in the preparation of LIBS-PS. Thehistogram showsZeta potential of 
initial materials (NPs and PS), intermediates (PEI@PS and NPs@PEI@PS) of LIBS-PS 1 (A), 2 (C), 3 (M), 4 (Z).

Figure 7.  TEM images of NPs@PEI@PS. (a) Ag NPs; (b) Cu2O NPs; (c) MgO NPs 3; (d) ZnO NPs. Scale bars 
are 5 μ​m. The detail of surface are shown in the inset images and scale bars are 100 nm.
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Figure 8.  LIBS spectra and digital barcodes of LIBS-PS 1–15 and experimental demonstration of 
characteristics of the LIBS-PS. (a) LIBS spectra of 15 kinds of LIBS-PS, LIBS based digital barcode-map and 
operator sequences; (b) PL spectra of the QDs@PS, PVP@QDs@PS, and the SiO2@PVP@QDs@PS; (c) LIBS 
spectra of the NPs@PS, PVP@NPs@PS, and theSiO2@PVP@NPs@PS microsphere.

Figure 9.  Experimental demonstration of DNA immobilization of LIBS-PS. (a) the SEM image of PDA 
coated LIBS-PS. (b) the confocal image of the DNA immobilized LIBS-PS. (c) the compare of PL intensity 
between DNA immobilized LIBS-PS (average =​ 42421.4, standard deviation =​ 8821.3) and unreacted LIBS-PS 
(average =​ 0, standard deviation =​ 0). (d) LIBS spectra of of the DNA immobilized LIBS-PS, the initial peak 
wavelengths of nanocrystal (ZnO) was put on the top of the image as standard. Scale bars are 2 μ​m for (a) and 
5 μ​m for (b).



www.nature.com/scientificreports/

9Scientific Reports | 6:36511 | DOI: 10.1038/srep36511

Stability and potential of LIBS based coding.  The peak positions of plasma emission hardly move 
with the influence of external factors, such as combined-state, chemical experience and physical state, providing 
LIBS another superiority in stability to luminescent multicolor coding, with a view of the fluorescence quenching 
and the blue/red-shift of peak positions caused by dimensional change and external disturbance25,26. To illus-
trate this point, quantum-dots doped microspheres (QDs@PS) (emission wavelength =​ 545 nm) were prepared 
with layer-by-layer self-assembly method and the fluorescence spectra were collected to make comparison with 
LIBS-PS. Obviously, both PVP and silica deposition lead to blue-shift of emission spectra (Fig. 8b), while the 
plasma peak positions of LIBS-PS can maintain stability in the total process of synthesis (Fig. 8c), which demon-
strated the stability of LIBS-PS. Besides, the potential of LIBS-based digital multiplexing highly depends on the 
space of plasma emissions. The full width at half-maximum (FWHM) of emission peak is an important parameter 
to represent the potential of optical coding. Generally, smaller FWHM means less spectral overlaps and back-
ground interference, providing more coding space and accurate read-out data for digital barcodes. The FWHM of 
QDs@PS emission peak is between 40–50 nm while the LIBS-PS is less than 2–3 nm, shown in Fig. 8b,c. In other 
words, we narrowed down more than an order of magnitude of FWHM with the application of LIBS technology, 
providing enormous potential to LIBS based coding.

Figure 10.  The performance of LIBS-PS in two-color fluoroimmunoassay. (a) the fluorescence 
microscopy image of two types of LIBS-PS which achieved specific detection of QDs labeled Anti-IgG. (b) the 
corresponding LIBS spectra of two types of LIBS-PS. (c) the laser confocal fluorescence sections of reacted 
LIBS-PS, the scanning increment was 1.75 μ​m. Scale bars are 10 μ​m.
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Availability of LIBS-PS.  To verify the availability of the LIBS-PS in practical application, we made an 
experiment of DNA immobilization on LIBS-PS. We prepared PDA coated LIBS-PS as capturing microspheres 
(Fig. 9a), the QDs labeled target ssDNA sequences were utilized as analyte. After sufficient mixture and reaction, 
the DNA immobilized LIBS-PS was characterized by a laser confocal microscope (FV1000, Olympus), the image 
is shown in Fig. 9b. The average PL intensities of DNA immobilized LIBS-PS and unreacted LIBS-PS are shown in 
Fig. 9c, the existence of the target DNA can be proved by the detection of fluorescence intensity. The LIBS spectra 
of recorded LIBS-PS was collected by our system and the spectra is shown in Fig. 9d, the emission peaks match 
well with initial data. Hence, we achieved the whole detection link and demonstrated that the LIBS-PS is available 
in practical detection.

Performance of LIBS-PS in multiplexed fluorescence imaging application.  Two-color fluoroim-
munoassay experiment was carried to prove the performance of LIBS-PS in imaging application. As shown in the 
fluorescence microscopy image (Fig. 10a), there are two types of beads in the image, green beads were covered by 
QDs with 525 nm emission while the red ones were covered by QDs with 605 nm emission, which indicates that 
the QDs-labeled Anti-IgG had been captured by IgG-bonded LIBS-PS and every single LIBS-PS had been bonded 
with only one type of QDs. The corresponding LIBS spectrum was listed in Fig. 10b which has verified the specific 
bonding between barcodes and analytes. Consequently, these results demonstrate that LIBS-PS can successfully 
achieve specific detection to different Anti-IgG.

The crosstalk-resistant design of LIBS-PS is another essential innovation of suspension array. First of all, in 
the process of LIBS-PS based coding, we accomplished the collection of fluorescent tag on analyte first, and then 
collected the LIBS spectra to recognize the stimulated LIBS-PS respectively, which effectively separated the cod-
ing signal with analyte tags. Secondly, the coding material and chemical composition of LIBS-PS would not cause 
any fluorescence emission during the imaging application, which provided a clean background for fluorescence 
labeled analyte detection. We carried out laser confocal fluorescence section to reacted LIBS-PS in Fig. 10c, thes-
canning increment was 1.75 μ​m and sections shows that the fluorescence signal was pure and the inner LIBS-PS 
would not produce any fluorescence emission. Based on these strategies, we could accomplish tag detection with-
out coding interference and digital coding without fluorescence background, which provides a more accurate 
detection and decoding in practical application.

Conclusion
Based on above demonstrations, we confirmed that the LIBS-PS based digital barcodes of suspension array has 
several significant advantages. (1) Plasma peaks of the LIBS-PS are sharp enough to achieve digital coding with 
read-out wavelength data, highly promoting the coding accuracy of suspension array. (2) The amount of barcodes 
can obtain an exponential growth with the increase of element types and expansion of spectral range. (3) The 
location of plasma peaks can keep stable on various occasions, promoting the accuracy and stability of barcodes. 
(4) Benefited from special design of LIBS-PS and the respective signal collection of barcodes and analyte tags, we 
can obtain clean signal of tag detection and decoding with this method. (5) Since the FWHM of LIBS-PS emis-
sion peak is more than one order of magnitude lower than current coding spectral, the spectral space is released 
for a large amount of barcodes, consequently promoting the performance of multiplexing. In fact, we can totally 
achieve much smaller FWHM than 0.5 nm if peak-broaden affecting elements, such as self-absorption, matrix 
effect and the initial continuous spectra, are eliminate27, then the performance of digital multiplexing can get an 
obvious promotion.

In summary, we have demonstrated a successful digital multiplexing method of suspension array based on 
laser induced breakdown spectroscopy technology. We introduced the preparation and performance of LIBS-PS 
as the foundation of digital multiplexing. The compare with luminescent barcodes-based coding method illus-
trated that the LIBS-PS based coding method can create digital barcodes without fluorescence background, and 
own overwhelming advantages in accuracy, stability and multiplexing performance. Although there are still some 
limitations in practical application, for example, LIBS stimulation would destroy the whole sample, which hinders 
additional experiments or manipulation, it is still reasonable to consider that the LIBS-PS based digital barcodes 
can be a leap-style development of suspension array and play more important role in multiplexed detection over 
the coming decades.
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