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Thermodynamics and Equations of 
State of Iron to 350 GPa and 6000 K
P. I. Dorogokupets1, A. M. Dymshits2, K. D. Litasov2,3 & T. S. Sokolova1

The equations of state for solid (with bcc, fcc, and hcp structures) and liquid phases of Fe were defined 
via simultaneous optimization of the heat capacity, bulk moduli, thermal expansion, and volume at 
room and higher temperatures. The calculated triple points at the phase diagram have the following 
parameters: bcc–fcc–hcp is located at 7.3 GPa and 820 K, bcc–fcc–liquid at 5.2 GPa and 1998 K, and fcc–
hcp–liquid at 106.5 GPa and 3787 K. At conditions near the fcc–hcp–liquid triple point, the Clapeyron 
slope of the fcc–liquid curve is dT/dP = 12.8 K/GPa while the slope of the hcp–liquid curve is higher (dT/
dP = 13.7 K/GPa). Therefore, the hcp–liquid curve overlaps the metastable fcc–liquid curve at pressures 
of about 160 GPa. At high-pressure conditions, the metastable bcc–hcp curve is located inside the fcc-Fe 
or liquid stability field. The density, adiabatic bulk modulus and P-wave velocity of liquid Fe calculated 
up to 328.9 GPa at adiabatic temperature conditions started from 5882 K (outer/inner core boundary) 
were compared to the PREM seismological model. We determined the density deficit of hcp-Fe at the 
inner core boundary (T = 5882 K and P = 328.9 GPa) to be 4.4%.

Iron is a major component of the Earth’s core, therefore knowledge of its P–V–T relations and thermodynamic 
properties is extremely important1–6. The phase diagram of Fe is relatively complex due to the existence of several 
polymorphic modifications7,8. At the standard conditions (T =​ 298.15 K and P =​ 1 bar), iron is a ferromagnet 
and has a body-centred cubic (bcc) structure (α​-Fe or bcc-Fe). The Curie temperature (TC) of 1043 K marks 
the transition to the paramagnetic state with the same structure. At this transition, the heat capacity of Fe has a 
characteristic λ​-shape form with a maximum at TC

9,10. At 1185–1667 K the crystal structure of iron changes to a 
face-centred cubic (fcc) cell (γ​-Fe or fcc-Fe), however, above 1667 K and up to the melting temperature of 1811 K, 
iron again has the bcc structure (δ​-Fe).

At 10.5 GPa and 753 K7 (or by more precise and recent measurements at 8.2 GPa and 678 K11), there is a triple 
point between bcc-Fe, fcc-Fe, and the high-pressure phase hcp-Fe, which has the hexagonal close-packed (hcp) 
structure (hcp-Fe). It was argued that hcp-Fe is likely a stable phase in the inner core of the Earth12–14. However, 
bcc-Fe is also suggested as a reliable candidate in the inner core15,16. There are two triple points along the melt-
ing line of Fe. The bcc-Fe and fcc-Fe phases are stable with liquid at the first triple point at Р =​ 5.2 GPa and 
T =​ 1991 K7, whereas hcp-Fe and fcc-Fe were found in equilibrium with liquid at the second triple point, whose 
location is variable in different works (e.g. Р =​ 88 GPa and Т =​ 2800 K17 or Р =​ 98.5 GPa and Т =​ 3712 K14).

The most recent thermodynamic calculations of the Fe phase diagram including solid phases and liquid were 
performed in a few studies18–21 using the CALPHAD thermodynamic formalism10,22. In these calculations, the 
volume contribution to the Gibbs energy was calculated using the Anderson–Grüneisen parameter23. In addition, 
a wide-range multiphase equation of state (EoS) to 10 TPa and 105 K was calculated24.

During the last several years, a significant amount of new P–V–T data for fcc-Fe and hcp-Fe, especially at very 
high temperatures, have appeared6,13,25–28 and, in addition, the melting curve of Fe was shifted to higher temper-
atures according to measurements in ref. 14. In these works, various pressure scales were used based on the EoSs 
of Au, MgO, NaCl, KCl, and hcp-Fe. Thus, the problem of consistent EoSs for solid phases (bcc-Fe, fcc-Fe, and 
hcp-Fe) and liquid iron remains extremely important. These EoSs should be consistent with the phase diagram of 
iron, including the melting curve and with P–V–T, thermochemical, and sound velocity data at 0.1 MPa.

In this work, we propose updated EoSs for Fe phases based on a formalism from our recent publications29–36. 
In addition, the magnetic contribution to the Helmholtz free energy was calculated according to ref. 10 and 37, 
whereas the EoS of Fe liquid was calculated using the standard approach38–40.

1Institute of Earth’s Crust, SB RAS, Irkutsk, Russia. 2V. S. Sobolev Institute of Geology and Mineralogy SB RAS, 
Novosibirsk, Russia. 3Novosibirsk State University, Novosibirsk, Russia. Correspondence and requests for materials 
should be addressed to P.I.D. (email: dor@crust.irk.ru)

received: 10 October 2016

accepted: 29 December 2016

Published: 06 March 2017

OPEN

mailto:dor@crust.irk.ru


www.nature.com/scientificreports/

2Scientific Reports | 7:41863 | DOI: 10.1038/srep41863

Thermodynamic model for solid and liquid iron
The Helmholtz free energy of solid phases can be expressed in its classical form41 as:

= + + − + − + −F U E V F V T F V T F V T F V T F T F T( ) ( , ) ( , ) ( , ) ( , ) ( ) ( ), (1)0 0 th th 0 e e 0 mag mag 0

where U0 is the reference energy, E0(V) is the potential (cold) part of the free energy at the reference isotherm 
T0 =​ 298.15 K, which depends only on V, Fth(V, T) is the thermal part of the free energy, which depends on V and 
T, Fe(V, T) is the free electrons’ contribution to the Helmholtz free energy, which also depends on V and Т, and 
Fmag(T) is the magnetic contribution, depending on T only.

The pressure at 298 K isotherm is calculated from the Vinet–Rydberg equation42:

η= − −−P V K X X X( ) 3 (1 )exp[ (1 )], (2)0 0
2

where X =​ (V/V0)1/3, and η =​ 3K0′​/2 −​ 3/2. Differentiating eq. (2) with respect to volume, we obtain the bulk mod-
ulus at reference isotherm T0 =​ 298.15 K and its pressure derivative:
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The potential energy at the 298 K isotherm is:

η η η= − − − − .−E V K V X X( ) 9 {1 [1 (1 )]exp[(1 ) ]} (5)0 0 0
2

The thermal part of the Helmholtz free energy can be expressed via the Einstein model, which coincides with 
the Debye model at the high-temperature limit43:
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where Θ​ is the characteristic temperature depending on volume, which is related to the Debye temperature (Θ​D) 
via Θ​ =​ 0.75 Θ​D; n is the number of atoms in the chemical formula of the compound, and R is the gas constant.

Differentiating eq. (6) with respect to temperature at constant volume one can obtain the entropy, the thermal 
part of the free energy and the heat capacity at constant volume:
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Differentiating eq. (6) with respect to volume at constant temperature, one can obtain the thermal pressure 
and isothermal bulk modulus:
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In eqs (10, 11) γ is the Grüneisen parameter, γ = − ∂ Θ ∂ V( ln / ln )T, and γ= ∂ ∂q V( ln / ln )T. Differentiation 
of the thermal pressure with respect to temperature at constant volume gives the pressure slope at constant 
volume:

γ
∂ ∂ = ⋅P T

V
C( / ) (12)V V

The volume dependence of γ and q was accepted in the Altshuler form44:
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The volume dependence of the Einstein temperature can be expressed as:
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In eqs (12–15) γ0 is the Grüneisen parameter at reference conditions, γ∞ is the Grüneisen parameter at infinite 
compression (x =​ 0), and β​ is a fitted parameter.

The contribution of free electrons to the Helmholtz free energy in the simplest form can be expressed as41:
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where the parameter e0 denotes the electronic contribution to the Helmholtz free energy, g is an electronic ana-
logue of the Grüneisen parameter, and x =​ V/V0. The contribution of this part to entropy, internal energy, heat 
capacity, pressure, isothermal bulk modulus, and pressure slope at constant volume can be estimated as:
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It should be emphasized that if the electronic contribution to the Helmholtz free energy is not equal to zero, 
the thermal Grüneisen parameter:
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will be different from the Grüneisen parameter calculated from eq. (13).
The formalism for the magnetic contribution to the Helmholtz free energy was adapted from ref. 10 and 37 

with modifications from ref. 45 to obtain the correct limit of entropy at 0 K. The magnetic contribution to the 
Helmholtz free energy can be expressed as45:

τ= + −F T RT B f( ) ln( 1)( ( ) 1), (19)mag 0

where B0 is an average magnetic moment per atom, τ​ =​ T/T*, T* is the critical temperature (TC for ferromagnetic 
materials and Neel temperature TN for paramagnetic materials). The magnetic moment10,37 of bcc-Fe is B0 =​ 2.22. 
The function f(τ​) can be written as:
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The value of the parameter p changes from p =​ 0.4 (for bcc-Fe) to p =​ 0.28 for other Fe polymorphs. However, 
it was shown that at 18 GPa bcc-Fe transforms into hcp-Fe and the value of the magnetic moment becomes zero46. 
Based on another study47, the magnet moment of both fcc-Fe and hcp-Fe approaches zero with increasing tem-
perature and pressure. In our study, the EoS of fcc-Fe and hcp-Fe were constrained with the magnetic moment 
fixed to zero and this assumption is common for thermodynamic calculations of the iron phase diagram at high 
pressures6,18–21,48,49.

The equation for the Helmholtz free energy for liquid metal can be rewritten38–40. The entropic parameter aS, 
which characterizes residual entropy of the liquid at 0 K is introduced. Accordingly, in equation (1) for liquid Fe, 
the magnetic part is excluded, whereas the entropy parameter is added:

= + + − + − − −F U E V F V T F V T F V T F V T a R T T( ) ( , ) ( , ) ( , ) ( , ) ( ), (22)S0 0 th th 0 e e 0 0

The reference temperature for liquid Fe at 0.1 MPa is T0 =​ 1811 K. Along the reference isotherm, the pres-
sure was calculated using eq. (2). In the first approximation, the entropic parameter is independent of volume. 
Calibration of fitted parameters for liquid iron is considered below.

The full solution of the equations allowed us to find all necessary parameters for the thermodynamic descrip-
tion of the EoS for a solid phase. In addition, from the obtained parameters one can calculate the coefficient of 
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thermal expansion α =​ (∂​P/∂​T)V/KT, heat capacity at constant pressure CP =​ CV +​ α2TVKT, and adiabatic bulk 
modulus KS =​ KT +​ VT(αKT)2/CV, which can also be compared with direct experimental measurements. The 
enthalpy and the Gibbs free energy can be found from the following relations: H =​ E +​ PV, G =​ F +​ PV.

EoSs for solid and liquid Fe to 350 GPa
The fitted parameters of the EoSs for bcc-Fe, fcc-Fe, hcp-Fe, and liquid iron (Table 1) were obtained by simultane-
ous optimization of the experimental measurements of the heat capacity, volume and thermal expansion, adiabatic 
bulk modulus at room pressure, and P–V–T data (all references are included in the Supplementary Information). 
Pressures in the P–V–T dataset were corrected based on the self-consistent ruby pressure scale or EoSs of Au, 
MgO, and W31,35,36. Supplementary Figures S1–S4 show the temperature dependence of the isobaric heat capacity, 
the volume coefficient of thermal expansion, molar volume, adiabatic and isothermal bulk modulus for bcc-Fe, 
fcc-Fe, and hcp-Fe at 0.1 MPa calculated from our EoSs in comparison with direct experimental measurements 
and reference data. Supplementary Figures S5–S8 show the differences between calculated pressures at different 
temperatures with direct experimental measurements of pressure. The pressure scales are shown in the legends 
to the figures.

Body-centred cubic iron (bcc-Fe).  Supplementary Figure S5 shows that our EoS for bcc-Fe is reliably 
consistent with experimental measurements49–51, which were obtained in quasihydrostatic conditions in He 
or Ne pressure media. The pressure in these works was calculated using ruby30,35 and Au52 pressure scales and 
in the pressure range of 0–15 GPa these scales give consistent results. The measurements in Ne and Ar pres-
sure media show an alternative deviation from our data53. In another paper54, the measurement was performed 
in non-hydrostatic conditions and deviates from our data at higher pressures. In ref. 55 and 56, pressure was 
calculated using the NaCl EoS57,58. As was shown recently59, this scale underestimates pressure by 0.5 GPa (at 
10–15 GPa) in comparison with another NaCl EoS60. If one recalculates the data from ref. 55, 56 and 60 using 
the NaCl scale60, a better consistency with our EoS for bcc-Fe is obtained, which confirms the relevance of the 
experimental data mentioned above55,56. The pressure obtained based on the compressional wave sound velocity 
and density measurements of bcc-Fe61 is also shown in Supplementary Figure S5 for comparison. The calculated 
thermodynamic properties (P, T, x =​ V/V0, α​, S, CV, CP, KT, KS, γth, K′​, and Gibbs energy, G) for α​-Fe (bcc-Fe) are 
listed in Supplementary Table S1 (see also bcc-Fe.xls in the Supplementary Information).

Face-centred cubic iron (fcc-Fe).  The calculated thermodynamic properties for γ​-Fe (fcc-Fe) are listed in 
Supplementary Table S2 (see also fcc-Fe.xls in Supplementary Information). Supplementary Figure S6 shows that 
our EoS is reliably consistent with experimental P–V–T data26,28,62,63 calibrated using Au, MgO, and NaCl pres-
sure scales. At high pressures, the present EoS of fcc-Fe averages out the experimental measurements14,17, where 
pressures were calculated using the EoS of hcp-Fe49. One more experimental dataset64 overestimates pressures 
by up to 6 GPa compared with our data for fcc-Fe. The calculated molar volume of fcc-Fe at 0.1 MPa is consistent 
with measurements in ref. 65 and 66 (Supplementary Figure S6). The calculated volumes of fcc-Fe26,28 are plotted 
between bcc and fcc phases in Supplementary Figure S2. Their isothermal bulk modulus is consistent with our 
calculations (Supplementary Figure S4). The Grüneisen parameter for fcc-Fe (eq. 13) is almost independent of 
volume (Table 1); however, the thermal Grüneisen parameter (eq. 18) decreases with increase of temperature and 
pressure up to 1.5–1.6 at 100 GPa and 3000–4000 K (Supplementary Table S2).

Hexagonal close-packed iron (hcp-Fe).  The calculated thermodynamic properties for ε​-Fe (hcp-Fe) are 
listed in Table S3 (see also hcp-Fe.xls in Supplementary data). The 298 K isotherm for ε​-Fe was calculated using 
the compressibility curve from ref. 49 corrected based on pressure scales31,35. The other parameters were calcu-
lated by optimization of the P–V–T data (Supplementary Figures S7, S8). Most measurements are scattered for 
less than ±​2 GPa in the 80 GPa pressure range (Supplementary Figure S7). However, the more scattered data62 
deviate by −​2 to +​4 GPa at 298 K isotherm and significantly overestimate pressures at high temperatures. It can be 

Parameter
bcc-Fe 
α

fcc-Fe 
γ

hcp-Fe 
ε

Liquid Fe 
T0 = 1811 K

U0 (kJ mol−1) 0 4.470 4.500 −​100.204

V0 (cm3 mol−1) 7.092 6.9285 6.8175 7.95784

K0 (GPa) 164.0 146.2 148.0 83.7

K0′​ 5.50 4.67 5.86 5.97

Θ​0 (K) 303 222.5 227 263

γ0 1.736 2.203 2.20 2.033

β​ 1.125 0.01 0.01 1.168

γ∞ 0 0 0 0

e0 (10−6 K−1) 198 198 126 198

g 1.0 0.5 −​0.83 0.884

TC or TN (K) 1043

B0 2.22

aS 2.12

Table 1.   Fitting parameters of EoSs for solid and liquid phases of iron.
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emphasized that in the Supplementary Figure S8 the measurements for hcp-Fe14 deviate in the same way, but with 
larger scattering at 140 GPa than data for fcc-Fe in Supplementary Figure S6. Two sets of data13,67 at 250–300 GPa 
are significantly different (Supplementary Figures S8). This may indicate that either the pressure scales used were 
incorrect or significant stress was accumulated in the samples.

Calibration of Gibbs energy of hcp-Fe.  The calibration of the Gibbs energy of hcp-Fe was performed 
using the α​–γ​–ε​ triple point11, the α​–ε​ transition at room temperature68–70, and considering the slope of the  
γ​–ε​ transition14 (Fig. 1). One more important marker for calibration of the Gibbs energy for hcp-Fe and liquid Fe 
was the γ​–ε​–liquid triple point14. Recently, the P–V–T relationships for hcp-Fe in different pressure-transmitting 
media at 300 K up to 205 GPa and at 1800 K up to 100 GPa have been investigated6. To calculate the pressure, the 
Ne, NaCl-B2, and Pt pressure scales52, and the MgO pressure scale71 were used. Supplementary Figures S7, S8 
show that values obtained in ref. 6 are in reasonable agreement with our EoS of hcp-Fe. The authors6 used a 
third-order Birch–Murnaghan EoS to fit the parameters on the room temperature isotherm with a fixed initial 
density ρ0 =​ 8.2695 g cm−3 and obtained K0 =​ 172.7 GPa and K0′​ =​ 4.79. The pressure calculated based on these 
parameters is 3 GPa higher than that obtained by our EoS at 50–150 GPa. At higher pressures, the room tempera-
ture isotherm6 is consistent with our EoS of hcp-Fe (Supplementary Figure S8). At the condition of the inner core 
boundary (~330 GPa and ~6000 K), our EoS is in good agreement with the EoS obtained in ref. 6. These authors 
determined the density deficit at the inner core boundary72 to be 3.6%, whereas based on our data it would be 
4.4% at T =​ 5882 K and P =​ 328.9 GPa.

γ–ε–liquid triple point.  The position of the γ​–ε​–liquid triple point in the phase diagram of iron has been 
determined many times and revealed highly controversial results (Fig. 2). The position of the triple point was 
estimated at 75 GPa and 2500 K73. This point was also placed at 100 GPa and 2700 K1. Later, the point was shifted 

Figure 1.  Calculated phase diagram of iron at pressures up to 16 GPa in comparison with reference 
data7,11,68–70.

Figure 2.  Calculated phase diagram of iron at pressures from 40 to 140 GPa in comparison with reference 
data14,17,20,73–75,77,79–81,97. TP: triple point fcc–hcp–liquid in Fe.
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back to 75 GPa and 2700 K74. Another scientific group75 placed the γ​–ε​–liquid triple point at 60 GPa and 2800 K 
using pressures calculated from the EoS of hcp-Fe12 and EoS of MgO76. The melting line of Fe determined in 
ref. 77 is located at a higher temperature than most determined triple points (Fig. 2). The pressure in this work 
was estimated before laser heating using the old ruby scale78. Melting of Fe was also determined at 105 GPa and 
3510 K79 with pressures estimated by the EoS of hcp-Fe12 before laser heating. Estimations in ref. 17 revealed 
the triple point at 88 GPa and 2800 K. In addition, the melting temperature of Fe at the core–mantle boundary 
(P =​ 135 GPa) at 3500 ±​ 100 K with careful estimation of thermal pressure and anharmonicity was determined80. 
A novel method was presented for detecting the solid–liquid phase boundary of compressed iron at high temper-
atures using synchrotron Mössbauer spectroscopy81. The melting points are shown in Fig. 2 and the pressure was 
determined using the ruby scale82 with corrections for thermal pressure (note that at Fig. 2 their data are shown 
without these corrections). Finally, the melting line of Fe measured using a synchrotron-based fast X-ray diffrac-
tion method was also proposed14. The authors fixed the triple point at P =​ 98.5 GPa and T =​ 3712 K. The pressures 
were estimated from the EoS of hcp-Fe49 and KCl83. Thus, direct experimental measurements of the melting line 
of Fe and the γ​–ε​–liquid triple point indicate about 40 GPa uncertainty in pressure and about 1000 K uncertainty 
in temperature. The triple point calculated from our data is located at P =​ 106.5 GPa and T =​ 3787 K.

EoS of liquid iron.  The EoS of liquid Fe was estimated using the following approach (eq. 22). Standard 
conditions for liquid Fe were chosen at T0 =​ 1811 K and P =​ 0.1 MPa. For these conditions, the following 
parameters were recommended84: V0 =​ 7.957 cm3 mol−1, KS0 =​ 109.5 GPa, α(V) =​ 92E–6 K−1, γ0 =​ 1.735, and 
CP =​ 46.632 J mol−1 K−1. Fitting parameters for our EoS for liquid iron were calculated using the following 
assumptions (as a starting point for calculations): (i) the Gibbs energy of α​-Fe and liq-Fe must be the same at 
1811 K and 0.1 MPa; (ii) the entropy of liquid Fe increases by 7.626 J mol−1 K−1 upon melting9 in comparison with 
the entropy of α​-Fe; (iii) the melting line of Fe was taken from ref. 14 as more accurate. The fitted parameters 
of EoS for liquid Fe are listed in Table 1. The calculated thermodynamic properties for liquid Fe are listed in 
Supplementary Table S4 (see also liquid-Fe.xls in Supplementary Information). The calculated melting lines of 
iron from the bcc, fcc, and hcp phases are shown in Figs 1, 2 and 3.

The thermodynamic properties of liquid iron at a pressure of 0.1 MPa calculated from our EoS 
(Supplementary Table S4) are in good agreement with the measured values of density84, the sound velocity (vP) 
and adiabatic bulk modulus84–86. The calculated entropy at pressure 0.1 MPa is very close to the reference data9.

Discussion and geophysical implications
We applied the new EoS data for all Fe phases to calculate the phase diagram up to 350 GPa (Figs 1, 2 and 3). 
Our melting line of Fe is in close agreement with that from ref. 14 because our EoS of liquid iron is based mainly 
on these data. The calculated triple points have the following parameters: α​–γ​–liquid is located at 5.2 GPa and 
1998 K, α​–γ​–ε​ at 7.3 GPa and 820 K, and γ​–ε​–liquid at 106.5 GPa and 3787 K.

Melting of iron at high pressure.  Most of the previous estimations plot the melting temperature of iron 
below the melting line obtained from our EoSs (Fig. 3). For example estimations in refs 1 and 18 indicate melting 
temperatures of 5000 K and 5600 ±​ 200 K at 330 GPa, respectively. The melting line of Fe in ref. 19 was calculated 
using the revised thermodynamic properties of Fe. Their triple point γ​–ε​–liquid is located at 81 GPa and 3200 K 
and at 330 GPa the melting line is located at 5400 K. Another estimation indicates a melting temperature of 6100 K 
at 330 GPa21. The newly measured melting line of Fe extrapolated to 330 GPa reveals a temperature of about 
6230 ±​ 500 K14. Most of the ab initio estimations provide higher melting temperatures of Fe at 330 GPa compared 
with our data: 6700 ±​ 600 K87, 6370 ±​ 100 K88, 6900 ±​ 400 K89, 7100–7200 K90, 6325 K91, and 6345 K92.

Our thermodynamic calculations indicate a melting temperature of hcp-Fe at 5882 K at 328.9 GPa, and it is in 
a good agreement with the estimated melting temperature T =​ 5800 ±​ 500 K obtained from the shock wave data93 
and extrapolation from the experiments14, which is T =​ 6230 ±​ 500 K. Figures 2 and 3 show the fcc–liquid melt-
ing curve and its extrapolation to high pressures. The melting curve was found to be very close to the hcp–liquid 
curve. At the conditions near the fcc–hcp–liquid triple point the Clapeyron slope of the fcc–liquid curve is dT/

Figure 3.  Calculated phase diagram of iron at pressures up to 350 GPa (red solid lines) in comparison with 
reference data14,19,20,21,90,91,93,94,98,99. Curves fcc–liq and bcc–hcp are extrapolated.
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dP =​ 12.8 K/GPa while the slope of the hcp–liquid curve is higher (dT/dP =​ 13.7 K/GPa). Therefore, the hcp–liq-
uid curve overlaps the metastable fcc–liquid curve at a pressure of ≈​160 GPa. At higher pressures, the fcc phase is 
in the stability field of the liquid. These transitions can also be confirmed by the temperature dependence of the 
Gibbs energy of the fcc, hcp, and liquid iron at 125 GPa (Fig. 4). At 125 GPa the fcc-Fe melts at 4019 K, however, 
this point is in the stability field of the hcp-Fe. The hcp-Fe melts at 4033 K and at higher temperatures the liquid 
is the only stable phase.

Meanwhile, this assumption is made based on the equilibrium thermodynamics, the shock data93 on the iron 
shows two phase transitions on the Hugoniot curve at pressures from 77 to 400 GPa. A discontinuity in sound 
velocities of iron at 200 GPa may mark the transition of hcp-iron to fcc iron. The authors described the second 
discontinuity at 243 GPa as melting of the fcc-Fe. The study94 based on new measurements of sound velocity 
and reassessment of previously obtained shock data established the melting temperature of the iron between 
5100 ±​ 500 K at P =​ 225 ±​ 3 GPa and 6100 ±​ 500 K and P =​ 260 ±​ 3 GPa on the Hugoniot curve. According to the 
small temperature difference between the melting lines of hcp–liquid and fcc–liquid, there might be a possible 
fcc–hcp transition in a very narrow temperature range. The following transition can be caused by the kinetics of 
the transition process or the effect of fcc-Fe and hcp-Fe magnetic moment.

Magnetism and melting of iron.  The magnetic moment of the hcp-Fe is В0 =​ 0.28 at ambient conditions10. 
At high pressure and temperature, iron was found to be paramagnetic47. However, under the Earth’s core condi-
tions (P ≈​ 360 GPa, T ≈​ 6000 K) Fe acquires a substantial local magnetic moment47, up to 1.3 μ​B. The authors used 
a microscopic phenomenological model for longitudinal spin fluctuations (LSFs) based on density functional 
theory calculations. In our model (eq. 19) it means that B0 =​ 0.3 and this value seems to be too high for the EoS 
of hcp-Fe. If B0 =​ 0.14, then melting of the hcp-Fe is observed at 7150 K and 328.9 GPa and is in agreement with 
the computer calculations90. Whereas the melting curve goes 500 K higher than the experimentally determined 
one14 at 100–200 GPa. The lower value of the hcp-Fe magnetic moment seems to be more realistic. If the magnetic 
moment for hcp-Fe is В0 =​ 0.04 and TN =​ 67 K (see eqs 19–21), then the hcp–liquid curve shifts to higher temper-
atures (red squares on Fig. 3) and crosses the melting curve of fcc-Fe at a temperature of ≈​5300 K and pressure of 
≈​230 GPa. This result is consistent with the data from the shock wave experiments93,94. The metastable line bcc–
hcp-iron was also calculated at high pressures. The extrapolation of this line from the low-pressure data (Fig. 1) is 
presented in Fig. 3. The bcc–hcp line is located in the stability field of either the fcc-Fe or liquid at high pressures. 
Thus, the bcc-Fe could not be stable at high pressures based on our thermodynamic model.

Helmholtz free energy, Gibbs energy, and thermodynamics of iron.  Recently, thermodynamic 
functions for fcc, hcp, and liquid iron were tabulated20. It is important to compare the thermodynamics of these 
phases calculated by different methods. The thermodynamic formalism in ref. 18 and 20 is based on the Gibbs 
free energy calculations depending on temperature and pressure. First, two partial derivatives of the Gibbs energy 
allow calculation of the entropy = − ∂ ∂S G T( / )P  and volume = − ∂ ∂V G P( / )T . The Helmholtz free energy 
depends on temperature and volume; thus, its derivatives yield entropy = − ∂ ∂S F T( / )V  and pressure 
= − ∂ ∂P F V( / )T. Figures S9–S11 show comparisons of the thermodynamic functions calculated by these two 

methods for fcc, hcp, and liquid iron. These figures show that the entropy and molar volume of fcc- and hcp-Fe 
are consistent, especially at the conditions of their stability field. At the same time, our EoSs cannot be extrapo-
lated to very high temperature at 0.1 MPa. At moderate and high pressures, such extrapolation provides reliable 
results with a close agreement with reference data20. At 0.1 MPa the calculated entropy20 of solid phases of Fe 
decreases much faster than in our EoSs. The volumes for liquid iron from our EoS and that from ref. 20 are very 
consistent; however, entropy is consistent only at temperatures close to the melting line (Supplementary  
Figure S11).

Supplementary Figure S12 shows isochores of liquid Fe calculated from our EoS and plotted in comparison 
with P–V–T data calculated by ab initio molecular dynamics simulations95,96. The comparison with earlier ab initio 
calculations can be found in the cited papers.

Figure 4.  Calculated Gibbs energy of hcp-, fcc-, and liquid Fe at different temperatures at pressure 
P = 125 GPa. 
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Comparisons of other thermodynamic functions, which are second derivatives of the Gibbs energy or the 
Helmholtz free energy, are not necessary. The values of these functions can be found in Tables S1–S4. If entropy 
and molar volume (pressure) are comparable in different EoSs, then the Gibbs energy will be similar and devia-
tions in calculated lines in equilibrium phase diagram would be negligible. The differences would be defined by 
reference points chosen by different authors.

Comparison of properties of the Earth’s core from PREM with iron.  Density (ρ at given P and T), 
adiabatic bulk modulus (KS) and the P-wave velocity (vP =​ (KS/ρ​)1/2) of the liquid iron estimated by our formal-
ism can be compared with the values of PREM72. The following comparison has also been assessed by previous  
studies84,95 on temperature calculations of liquid iron in the Earth’s core at isentropic conditions and various pres-
sures. The initial temperature in our model is 5882 K at the inner core boundary (ICB) (328.9 GPa) (Fig. 3). At 
these conditions, the entropy for liquid iron, S =​ 114.15 J mol−1 K−1 and hcp-Fe, S =​ 107.2 J mol−1 K−1, were deter-
mined from eqs 7 and 17. Under isentropic conditions, the entropy at the pressures of the mantle–core boundary 
(MCB, 135.8 GPa) is equal to the entropy at the ICB. Figure 5a shows the calculated isentropic temperature profile 
started from ICB conditions for liquid iron. The calculated isentropic temperature profile for hcp-iron and liquid 
iron started from 6000 K based on the reference data95 are also presented in Fig. 5a. The Clapeyron slope (∂​T/∂​P)S 
for hcp-Fe differs significantly for both the liquid Fe and the calculated model95. This inconsistency is probably 
due to the differences in the EoSs.

Figure 5b,с shows adiabatic bulk modulus and density for solid and liquid iron calculated from our EoSs 
in comparison with PREM72 and the calculated model95. The deviations from the PREM are presented as  
(KS PREM −​ KS cal)/KS PREM) ×​ 100. The adiabatic bulk modulus for liquid Fe is about 3.0–4.5% lower than the PREM 
and the calculated95 KS is 3.1–9.0% higher than the PREM (Fig. 5b). KS for hcp-Fe is almost identical to the PREM 
at the Earth’s inner core conditions. The calculated isentrope for liquid iron from 5000 K to 8000 K is presented 
in ref. 84. Based on these data, the adiabatic bulk modulus at the ICB conditions is consistent with isentropes of 
7000 K and at the ICB with isentropes of 5000 K (see Fig. 10 in ref. 84). The liquid iron density calculated in our 
study is 7.6–8.2% higher than PREM and the calculated one95 is 8.9–7.7% higher than PREM (Fig. 5c). Figure 5d 
shows that the calculated P-wave velocity for liquid iron is 5.4–5.7% lower than PREM and consistent with the 
calculated estimations84. The calculations95 indicate that the P-wave velocity is 2.5% lower than PREM at the ICB 
conditions and very close to PREM at the CMB.

Summary
The EoSs of the liquid and solid iron phases were constrained based on the Helmholtz free energy. The obtained 
EoSs allow calculation of P–V–T relations and thermodynamic properties of Fe at the Earth’s core conditions (up 
to 6000 K and 350 GPa). The calculated triple points have the following parameters: bcc–fcc–hcp is located at 

Figure 5.  Comparison of the physical properties of liquid and hcp-iron calculated along an isentropic 
temperature profile (TICB = 5882 K) with the PREM72 and reference data95 (TICB = 6000 K). (a) Calculated 
isentropic temperature profile started from 5882 K at 328.9 GPa for liquid and hcp-iron compared with the 
reference data95 (b) Calculated adiabatic bulk modulus along adiabats for solid and liquid iron. (c) Calculated 
density along the 5882 K isentrope. (d) Calculated P-wave velocity along the isentrope.



www.nature.com/scientificreports/

9Scientific Reports | 7:41863 | DOI: 10.1038/srep41863

7.3 GPa and 820 K, bcc–fcc–liquid at 5.2 GPa and 1998 K, and fcc–hcp–liquid at 106.5 GPa and 3787 K. The melt-
ing temperature is 5882 К at ICB pressure (328.9 GPa). An extrapolation to high-pressure conditions revealed the 
very close position of the melting curves of fcc- and hcp-Fe. If the magnetic moment for hcp-Fe is В0 =​ 0.04 and 
TN =​ 67 K (see eqs 19–21), the hcp–liquid curve shifts to higher temperatures and crosses the fcc–liquid curve at 
the temperature of ≈​5300 K and pressure of ≈​230 GPa. This estimation is consistent with the shock wave data93,94. 
At higher pressure conditions, the metastable bcc–hcp curve is in the fcc-Fe or liquid stability field. The iron den-
sity, adiabatic bulk modulus and P-wave velocity calculated up to 328.9 GPa at adiabatic temperature conditions 
started from 5882 K (outer/inner core boundary) were compared with the PREM and calculated model95. We 
determined the density deficit of hcp-Fe at the inner core boundary (T =​ 5882 K and P =​ 328.9 GPa) to be 4.4%.
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