
Research Article
A Machine Learning Workflow of Multiplexed
Immunofluorescence Images to Interrogate Activator and
Tolerogenic Profiles of Conventional Type 1 Dendritic Cells
Infiltrating Melanomas of Disease-Free and Metastatic Patients
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4UMAE Hospital de Pediatŕıa, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social,
Unidad de Investigación Médica en Inmunoloǵıa, Mexico City, Mexico
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Melanoma is the deadliest form of skin cancer. Due to its highmutation rates, melanoma is a convenient model to study antitumor
immune responses. Dendritic cells (DCs) play a key role in activating cytotoxic CD8+ T lymphocytes and directing them to kill
tumor cells. Although there is evidence that DCs infiltrate melanomas, information about the profile of these cells, their activity
states, and potential antitumor function remains unclear, particularly for conventional DCs type 1 (cDC1). Approaches to
profiling tumor-infiltrating DCs are hindered by their diversity and the high number of signals that can affect their state of
activation. Multiplexed immunofluorescence (mIF) allows the simultaneous analysis of multiple markers, but image-based
analysis is time-consuming and often inconsistent among analysts. In this work, we evaluated several machine learning (ML)
algorithms and established a workflow of nine-parameter image analysis that allowed us to study cDC1s in a reproducible and
accessible manner. Using this workflow, we compared melanoma samples between disease-free and metastatic patients at di-
agnosis. We observed that cDC1s are more abundant in the tumor infiltrate of the former. Furthermore, cDC1s in disease-free
patients exhibit an expression profile more congruent with an activator function: CD40highPD-L1low CD86+IL-12+. Although
disease-free patients were also enriched with CD40−PD-L1+ cDC1s, these cells were also more compatible with an activator
phenotype. 1e opposite was true for metastatic patients at diagnosis who were enriched for cDC1s with a more tolerogenic
phenotype (CD40lowPD-L1highCD86−IL-12−IDO+). ML-based workflows like the one developed here can be used to analyze
complex phenotypes of other immune cells and can be brought to laboratories with standard expertise and computer capacity.
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1. Introduction

Cancer is one of the most complex diseases that humanity has
faced. 1is has led to the search for more powerful approaches
to understand its biology in greater detail. 1e analysis of the
role of the immune system has gained prominence due to the
control it exerts over the disease. Of particular importance is
the identity and functionality of those cells that infiltrate the
tumor microenvironment (TME) [1]. Melanoma is considered
the human tumor with the highest number of genetic muta-
tions, making it a highly immunogenic cancer [2]. Despite this,
melanoma is one of the deadliest cancers. Even though mel-
anoma is more common in Caucasian populations, it is one of
the fastest-growing malignancies in Mexico, with an increased
incidence of 500% in recent years [3, 4]. 1e World Health
Organization (WHO) also reports an increase of 115% in
mortality, highlighting the need to study melanoma in the
Mexican population [5, 6].

Because of its tumor mutational burden, melanoma is an
ideal model for in-depth studies of the immune composition of
the TME and its relationship with prognosis [2]. Dendritic cells
(DCs) are the cells in charge of shaping the response of CD8+ T
lymphocytes, which have been extensively studied in mela-
noma and other cancers as key effectors of the antitumor
response [7]. DCs are the most important antigen-presenting
cells (APC), and, as such, DCs coordinate antigen presentation
to CD4+ T or CD8+ T lymphocytes on Major Histocompati-
bility Complex (MHC) II or I, respectively [8]. Moreover, the
resulting activity of the Tcell depends on the capacity of theDC
to provide costimulatory or coinhibitory signals, such as those
mediated by cytokines, CD40, CD80/CD86, PD-L1, or the
enzyme indolamine dioxygenase (IDO) [9]. Classical dendritic
cells type 1 (cDC1s) are the least proteolytic of all APCs. 1is
makes cDC1s very efficient at delivering antigens to the lymph
nodes, having the greatest capacity to undergo MHCI antigen
cross-presentation to efficiently activate CD8+ T cytotoxic
responses [10–12]. cDC1s are distinguished by the expressions
of CD11c, HLA-DR, and BDCA-3 [8, 9].

For many years, DCs have been considered to function as
activators or inhibitors of the immune response in a mutually
exclusive manner [13]. More recent studies support the notion
of different states of activation of DCs based on the coex-
pression of activating or inhibitory molecules. 1ese studies
have challenged the concept of opposing roles for DCs as
strictly immunogenic or tolerogenic [14, 15]. For instance,
recent data support that there are specific cDC2s subtypes
expressing activator and inhibitor molecules associated with an
extended overall survival of patients with head and neck
squamous cell carcinomas [16]. Less clear is whether there are
also different subtypes of cDC1s, as well as their possible re-
lationship with disease control. Transcriptomic studies confirm
that a cDC1 signature is associated with improved patient
survival in melanoma and other cancers [17, 18]. However,
most of our knowledge comes from peripheral blood cells or
transcriptomic studies, and we still lack information about the
cDC1 subtypes present in the TME based on proteomics
approaches [8, 19].

A comprehensive examination of the TME requires
multiparametric approaches to assess the presence of specific
immune cells, as well as markers of performance, particularly
those associated with tumor control. Multiplexed immuno-
fluorescence (mIF) involves the analysis of several markers
within a single sample, providing information-rich images that
report the presence of different immune cells coexisting in the
TME, as well as their spatial relationship to each other and with
tumor cells, ultimately providing a snapshot of the biological
architecture of the tissue [20]. Manual analysis of a set of mIF
images, in which each image may contain hundreds to
thousands of cells with multiple markers, is a time-consuming
and error-prone process that involves compromises, such as
minimizing the number of regions analyzed, with the risk of
introducing subjective biases in their selection [21].

Artificial intelligence (AI) is a field of data science fo-
cused on programming a machine to perform multiple tasks
like a human. Machine learning (ML) is an application of AI
in which algorithms read, analyze, and learn from input
datasets to subsequently make informed decisions. Deep
learning (DL) is a subset of ML techniques, whereby algo-
rithms are structured into layers that form an artificial neural
network, enabling computers to effectively represent data
with multiple levels of abstraction to progressively extract
higher level features [22]. DL has proven particularly
powerful in clinical image analysis over recent years, for
instance, in disease diagnosis [23]. 1ere are several ad-
vantages to using DL over a manual image-based diagnostic,
for instance, improved accuracy [24, 25], greatly improved
throughput, lack of subjective bias, and increased
reproducibility [21].

In mIF image analysis, it is critical to accurately dis-
criminate individual cells and profile those cells according to
the expression of specific markers. Several DL models have
been developed to automatically segment nuclei [26–28],
and ML algorithms to speed up the classification process.
1e combination of mIF and ML powerfully improves the
accuracy, throughput, and rigor of the characterization of
the TME [29, 30]. In this study, we were able to establish
a workflow for the analysis of cDC1s in melanoma based on
the evaluation of mIF images using DL and ML strategies.
1is workflow allowed us to identify and profile cDC1s in
the TME and evaluate their phenotypes associated with the
control of the disease. To the best of our knowledge, this
study is the first that combines the use of mIF and AI to
profile the expression of nine parameters of identity and
performance of TME-infiltrating cDC1s in clinical samples.
1is workflow can be adapted to assess immune and non-
immune cells in a variety of tissue samples.

2. Materials and Methods

2.1. Samples and Images Acquisition

2.1.1. Melanoma Samples. Of 36 samples available, we se-
lected seventeen paraffin blocks from tissue resections of
patients with diagnosed melanoma. 1ese samples were
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obtained from the Pathology Department of the Hospital de
Oncologı́a, Centro Médico Nacional Siglo XXI, Mexico City,
Mexico, with the approval of the scientific and ethics
committees (protocol R-2019-785-05). In the study cohort,
we included patients whose melanomas were metastatic at
diagnosis (n� 6), along with samples derived from patients
who did not have metastases and remained disease-free after
two years of follow-up (n� 11). 1is sample selection
strategy was chosen to have greater certainty of exploring
both a TME infiltrated with cells related to disease control
and cells present in a progressivemelanoma (clinical data are
depicted in Table 1). Of this group of patients, a represen-
tative group was selected for mIF staining and multiplexed
imaging including five metastatic and five disease-free pa-
tients. Additionally, five resection products of skin were
obtained from individuals without cancer and included as
controls for nontumor skin.

2.1.2. Immunofluorescence (IF) Staining. Tissue sections of
15 μm were mounted on glass slides (Superfrost Plus Green).
Slides were placed for 45min into an oven (70°C) to remove
excess paraffin. Tissues were rehydrated with a Xylol/ethanol
train of solvents. Antigen retrieval was performed using
citrate buffer pH 6.0 (sodium citrate 10 μM) at 90°C for
20min. 1en, samples were permeabilized with a solution of
10mg/mL bovine serum albumin, 5% horse serum, 0.02%
sodium azide, and 0.3% Triton for 2 h. Following per-
meabilization, samples were incubated with different primary
antibodies: rabbit anti-human CD11c (ab52632, Abcam), rat
anti-human HLA-DR (YD1/63.4.10, Invitrogen), mouse anti-
human BDCA-3 (ab6980, Abcam), rat anti-human CD40
(ab22469, Abcam), and rabbit anti-human IDO (ab122402,
Abcam). Primary antibodies were revealed with secondary
conjugated antibodies: anti-rabbit Alexa Fluor 488 (711-547-
003, Jackson ImmunoResearch), anti-rat Alexa Fluor 594
(712-585-153, Jackson ImmunoResearch), and anti-mouse
Alexa Fluor 647 (715-605-151, Jackson ImmunoResearch).
After that, nuclei were stained with Hoechst (Invitrogen) for
10min. Sections were mounted with 10% glycerol in PBS.
Images were acquired after this step of staining and used for
analysis. To perform the second round of staining, coverslips
were removed by soaking the slides in 1X PBS, and samples
were processed as described below.

2.1.3. Multiplexed Immunofluorescence (mIF). mIF is based
on a technique of tissue cyclic immunofluorescence (t-
CyCIF) [11]. After the first step of immune labeling de-
scribed above, tissues were incubated with a solution con-
taining 2% hydrogen peroxide and 4.5 μM sodium
hydroxide at the presence of white light for 1 h, according to
the original protocol, followed by 10min of UV light irra-
diation to remove any signal that could remain from the first
step of staining. 1en, slides were incubated overnight with
anti-human antibodies: FITC-conjugatedanti-CD40
(555588, BD Biosciences) or anti-CD11c (301604, BioL-
egend), APC-conjugatedanti-PDL1 (329708, BioLegend) or
anti-IL-12 (p40/p70) (554576, BD Biosciences), PE-
conjugated anti-HLA-DR (307606, BioLegend), anti-CD86

(305438, BioLegend), or APC-anti HMB45. Nuclei were
stained with Hoechst (Invitrogen) for 10min. Images were
acquired from the same field after each staining step (see
Table 2). Patients selected for each staining are described in
each figure.

2.1.4. Confocal Microscopy. Micrographs were obtained on
a Nikon Ti Eclipse inverted confocal microscope (Nikon
Corporation) using NIS Elements v.4.50. Imaging was
performed using a 20x (dry, NA 0.8) objective lens. Addi-
tional magnification (3.4x) was attained through Nyquist’s
sampling during image acquisition. 1ree areas of high level
of immune infiltrate from each group of patients and
controls were taken to quantify the density of cDC1s. Images
were preprocessed using FIJI ImageJ Software [31] to adjust
the brightness and contrast, assign consistent look-up tables,
and set the channels order prior to their alignment.

2.1.5. Whole Slide Scanning. 1e slide scanner APERIO FL
(Leica Biosystems) was used to obtain images of the com-
plete melanoma specimen, with a 20x objective and defining
the adequate time to exposure per channel with eSlide Scan
Scope v12.3.3. Analysis of images was processed using FIJI
software. To identify cDC1 in the whole slide scan,
a mathematical treatment was given in order to amplify the
signal.

2.1.6. Channel Alignment. mIF images were obtained from
the same samples labeled for two different sets of markers
imaged on consecutive days. On the second day, the same
fields of view were first localized by eye, and images were
captured and then aligned using nuclei as reference on both
staining steps. For this purpose, the ImageJ plugin
descriptor-based registration (2d/3d) was employed [28]. To
use this tool, we selected interactive brightness detections
and a 2d rigid transformation model considering approxi-
mate prealignment. Image registration is achieved through
correlated descriptors in nuclei-stain channels.

2.2. Cell Nuclei Segmentation and Training of Different Deep
Learning Architectures

2.2.1. Manual Annotation. 1ere are several cell nuclei
segmentation algorithms based on DL with pretrained
models described in the literature (see below). 1e pre-
trained models have good performance when they are used
to test images with similar characteristics (similar noise,
nuclei shapes and sizes, intensity decay profiles, etc.) to those
images used during training [33]. When this is not the case,
erroneous results or artifacts can be generated [34, 35]. Some
DL models can be more efficient at producing better results
than others, and it is important to compare them. Hence, it is
usually recommended to retrain the DL algorithms with
manually annotated (ground-truth) images from the ex-
perimental model and a dataset of current interest to adjust
the weights of the models and optimize the segmentation
output.
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In our case, we selected 12 representatives IF images
from the total pool of 66 images available across the 3
categories of patients tested. We manually annotated the
nuclei of each cell in these images, obtaining a total of 19,280
nuclei that constituted our own ground-truth image dataset
which was used to train and compare different DL models.
Manual annotation was carried out using the ImageJ plugin
Annotater, as well as a tablet and a stylus pen to delineate
and define each nucleus.1e stylus pen is a more precise and
sensitive tool than a computer mouse, and the tablet was
synchronized with the computer interface using the
SuperDisplay software.

2.2.2. Deep Learning Models for Cell Nuclei Segmentation.
1e obtained images of nuclei (channel 1 using Hoechst)
with their manual annotations (nuclei masks) were used to
train and compare four different DL approaches for nuclei
segmentation: U-Net3-class [36], Stardist [28], SplineDist
[27], and Cellpose [26]. All these algorithms are based on the
same underlying U-Net architecture [37], with the main
difference between them being the output of the U-Net. Each
algorithm has a methodology to identify individual nuclei
from the output of the U-Net.

1e U-Net architecture consists of two parts: the first
encodes information by employing convolutional and
downsampling layers, and the second decodes the in-
formation to the desired output by using convolution and
upsampling layers. 1e output of the basic U-Net is a binary
mask, where pixel values of 1 correspond to nuclei and pixel
values of 0 correspond to background. 1e U-Net can
generate good segmentation results; however, it cannot
identify individual cells, as it merges overlapping or
touching cells [37]. 1e U-Net3-class is an extension of the
basic U-Net [36]. It returns two images as output, a binary
mask with the nuclei segmented and a probability map
corresponding to the boundary for each individual nucleus.
1is architecture was proposed to handle overlapping and
touching cells [36].

Stardist is robust at detecting overlapping and touching
cells, as well as generating a unique identifier for each
nucleus, taking the prior knowledge that cells form a convex
shape [28]. 1e Stardist network predicts N radial distances
for pixels inside a nucleus to their nucleus boundary, as well
as a probability map with high values assigned to pixels near
to the cell nuclei center. 1e pixels with high cell nucleus
probability are considered candidates to represent the center
of a nucleus (the N radial distances are used to obtain its

boundary). Because there can be more than one candidate
per individual nucleus, Nonmaximum Suppression (NMS)
is used to identify a single candidate per cell [34]. 1e
limitations of Stardist include the requirement of a star-
convex polygon representation for the object to be seg-
mented (convex shape) and many radial distances (usually
N� 32), which are used to generate a good approximation to
the boundary of the object (relatively large objects may
require extra radial distances).

SplineDist is an extension of Stardist which overcomes
its main limitation of requiring the object to be convex [27].
SplineDist uses control points and spline models instead of
radial distances. 1e output of the U-Net architecture in
SplineDist is 2∗N + 1 images which correspond toN angles,
N distances associated with each angle, which are used to
obtain N (two-dimensional) control points, and the cell
nucleus probability. Similar to Stardist, SplineDist selects
pixels with high nucleus probability as candidates for rep-
resenting the nucleus boundary. NMS is used to identify
a single pixel candidate per cell. 1e selected pixel for each
nucleus allows obtaining N control points, which are used to
delineate the cell nucleus boundary (splines-fit).

Cellpose is another approach that predicts three images
corresponding to the horizontal and vertical gradient of
a heat diffusion simulation (the heat diffusion simulation is
computed only during training of the model) and the nu-
cleus probability [26]. 1e nucleus probability corresponds
to the output of the basic U-Net, that is, a binary mask
corresponding to the segmented nuclei. 1e predicted
gradients are used to postprocess the binary mask to assign
(by gradient flow tracking) each pixel to a unique cell, hence
segmenting individual cells.

2.2.3. Training the Deep Learning Models. Training a DL
architecture is usually a difficult task requiring programming
skills (e.g., Python, TensorFlow, PyTorch, etc.) and access to
high computational resources (a GPU with at least 12GB
GPU being recommended). ZeroCostDL4Mic is a toolbox
providing Jupyter Notebooks to be used in the Google Colab
environment for training DL models in the cloud [29]. 1e
ZeroCostDL4Mic platforms are attractive as researchers no
longer require programming skills to do the training nor
local access to a powerful computer workstation.

ZeroCostDL4Mic includes Jupyter Notebooks, which are
used to train various DL architectures and, most relevant for
this study, to train and export Stardist, SplineDist, and
Cellpose models. Although Google Colab allows free GPU

Table 2: Panels of cDC1 markers stained during the establishment of the workflow and the final analysis.

Immunofluorescence images shown in Figures 1–4
CD11c revealed with AF488 HLA-DR revealed with AF694 BDCA-3 revealed with AF647

Immunofluorescence images shown in Figure 5
Base staining CD11c revealed with AF488 HLA-DR revealed with AF694 BDCA-3 revealed with AF647
First cycle Anti-CD40PE-conjugated Anti-PD-L1 APC-conjugated
Immunofluorescence images shown in Figure 6
Base staining IDO revealed with AF488 CD40 revealed with AF494 BDCA-3 revealed with AF647
First cycle Anti-CD11cFITC-conjugated Anti-HLA-DR PE-conjugated Anti-PDL1APC-conjugated
Second cycle Anti-CD86PE-conjugated Anti-IL12APC-conjugated
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Figure 1: Continued.
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access (usually 12GB), it limits such sessions to 12 h, and the
session can be prematurely finished if there are periods of
inactivity (idle time); hence, the training can be lost and
must be reinitiated. 1erefore, we modified the Jupyter
Notebooks from ZeroCostDL4Mic to run them in a local
environment (Nvidia GeForce RTX 2080 Ti GPU 11GB).
1e U-Net (3-class) network was also run in the same local
environment and accessed through the Jupyter Notebook
from the GitHub repository [35].

Evaluating the performance of a DL algorithm requires
three sets of images for training, validation, and testing. 1e
training set allows training the DL algorithm from scratch by
learning the weights of the deep learning model, such that
the nucleus images in the training set are mapped to the
corresponding manually annotated images. 1e validation
set was used during the training of the model, to ensure that
the mapping is accurate for images (of nuclei) which were
not included in the training set. Finally, the test set was used
to measure the performance of the model after completing
the training for the task of nucleus segmentation. Each of
these sets should contain pairs of images composed of a cell
nucleus image and its corresponding manually annotated,
ground-truth nuclei mask image. 1e 12 image pairs, rep-
resenting a total of 19,280 cells, were distributed randomly
between training (8 images), validation (2 images), and
testing (2 images) sets. A training set with few images may

have difficulties to create a suitable learning model. If this is
the case, it is recommended to increase the number of
training images by a process called data augmentation. Data
augmentation consists of slight modifications to the original
images to increase the diversity of the training set. 1ese
transformations include random image rotation, flips of the
axes (x-axis and y-axis), and changes of the intensity values.
Automated data augmentation was employed in the training
of all models.

2.2.4. Evaluation Metrics. We use standard metrics (Pre-
cision, Recall, Average Precision, and F1-Score) to measure
the performance of the DL models for the task of nuclei
segmentation.1ese metrics require counting the number of
cells correctly detected by the DL model (True Positive
(TP)), incorrectly detected (False Positive (FP)), and not
detected (False Negative (FN)). TP corresponds to the
number of manually delineated cells correctly identified by
the DL model, FP are cells detected by the DL model but
absent in manually annotated images, and FN are cells
manually annotated but not identified by the DL model. 1e
evaluation metric Intersection over Union (IoU) is used to
count these values; it measures the area of overlap between
the ground-truth and generated masks (segmentations) and
has values in the interval [0, 1], where a value of zero
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Figure 1: Overview of the workflow used to compare the performance of deep learning models and establish a pipeline to analyze the
presence of cDC1s in immunofluorescence images of melanoma. (a) Schematic representation of the patient’s cohort and description of all
the conventional immunofluorescence (IF) and multiplexed IF (mIF) images analyzed. (b) Generation of the trained models for nuclei
segmentation. Twelve random representative images with a total of 19,280 nuclei were used and divided in three sets: eight images were used
during training, two for validation, and two for testing. Input images from the first set were annotatedmanually to obtain the training dataset
(ground-truth). 1ese data were used to train different Convolutional Neural Networks based on U-Net architecture and compare them to
select the best workflow of analysis. (c) Comparison of Annotater and QuPath algorithms for training of marker classifiers. 1e training
algorithms with the best and worst performance in nuclei segmentation were tested with the marker classifiers to evaluate the impact of
selection in quantitative results and establish the best workflow. (d)With the establishedmethodology, mIF images were used to evaluate the
phenotype of melanoma-infiltrating cDC1s and correlate them with disease evolution.
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indicates no overlap between the two masks and a value of 1
indicates that the two masks overlap perfectly. Given any
individual nuclei mask predicted by a deep learning model
(IP) and an individual mask in the manual annotation (IGT),
IoU is defined as

IoU �
IP ∩ IGT

IP ∪ IGT

. (1)

If there is an individual mask in the manual annotation,
such that IoU is greater than a fixed threshold T, then the
individual mask IP is counted as correctly detected (TP);
otherwise, it is counted as incorrectly detected (FP). Amask IGT
in the manual annotation is counted as FN if IoU is lower than
T for all the individual masks predicted by the DL model (IP).
1e values TP, FP, and FN are used to compute the metrics
Precision, Recall, Average Precision, and F1-Score as follows:

2500

StarDist
StarDist pre-trained model
SplineDist
Cell_pose
Unet_3_class

2000

1500

1000

500
0.1 0.2 0.3 0.4 0.5 0.6 0.7

�reshold

Fa
lse

 p
os

iti
ve

(a)

4500

4000

3500

3000

2500

0.1 0.2 0.3 0.4 0.5 0.6 0.7
�reshold

Tr
ue

 p
os

iti
ve

(b)

0.9

0.8

0.7

0.6

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
�reshold

Pr
ec
isi
on

(c)

0.9

0.8

0.7

0.6

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
�reshold

Re
ca
ll

(d)

0.9

0.8

0.7

0.6

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7
�reshold

F1
 S

co
re

(e)

0.8

0.7

0.6

0.5

0.4

0.3
0.1 0.2 0.3 0.4 0.5 0.6 0.7

�reshold

Av
er

ag
e P

re
ci

sio
n

(f)

Figure 2: Comparing several deep learning models for nuclei segmentation. ((a)–(f )) Graphs depicting the performance of Stardist, Stardist
pretrainedmodel, SplineDist, Cellpose, and U-Net3-class on two test images using themetrics False Positive, True Positive, Precision, Recall,
F1-Score, and Average Precision. 1e x-axis of each graph corresponds to different threshold values used to evaluate the metric IoU
necessary to compute the metrics (see Section 2.2.4), with higher values corresponding to a higher overlap between the manual annotation
and the predicted nuclei by the models. Lower values of False Positives (graph a) correspond to better models, while higher values of the
other metrics correspond to better models.
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Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

Average Precision �
TP

TP + FN + FP
,

F1 � 2
Precision · Recall
Precision + Recall

.

(2)

Precision is a metric to measure the performance of the
model at predicting, while Recall is a measure of themodel at
producing erroneous detection. Average Precision considers
the three values (TP, FP, and FN). 1e metrics are nor-
malized in the range [0, 1] with lower values indicating a bad
performance. F1-Score is a measure that combines Precision
and Recall, giving an overall measure of the performance of
the model.

2.3.MarkerClassificationandEvaluationof theDeepLearning
Models. For marker classification and identification of
cDC1 cells, two open-source software programs were tested,
Annotater and QuPath, using the IF images that correspond
to the 12 manually annotated nucleus images employed to
generate the DL models. 1e IF images used for training
were excluded from the final analysis, for which the
remaining 54 images were used.

Annotater is an ImageJ plugin [26] to manually an-
notate objects of interest in the images. Additionally,
given an image with the individual nuclei annotated
(manually or by a ML/DL algorithm), it has the capability
to identify if a nucleus is positive for a given marker.
Annotater has three options to identify markers and

assign them to individual nuclei: (i) manual annotation,
where the user selects all nuclei in the image that are
positive for a given marker; (ii) a thresholding approach,
where a nucleus is identified as positive for a marker if
a defined percentage of the pixels in or close to the nucleus
have intensity value higher than a threshold; and (iii) ML
annotation, for which the user identifies and selects a few
nuclei positive for the markers (typically 5–10 nuclei) and
a similar number of negative control nuclei (without
marker), from which a logistical regression algorithm is
trained to automatically classify the remaining nuclei into
these two classes. 1e user has the option to revise the
result of the model and refine the ML model and/or the
results directly. 1e trained ML marker model is then
applied to automatically classify cells in the remainder of
the total image cohort. We employed the third modality in
this study.

QuPath is an image analysis software designed as a user-
friendly, extensible, open-source solution for digital pa-
thology and whole slide image analysis [25]. Similar to
Annotater, QuPath can generate ML models to classify cells
according to their associated marker expression. 1e main
difference to Annotater is having random tree, artificial
neuronal networks, and k-nearest neighbor as the ML al-
gorithms for classifications instead of logistic regression.
Two scripts were implemented to execute measurements and
import the binary mask from segmentation models. 1e
training was performed based on their object classifier
random trees algorithm and artificial neural network (a
multilayer perceptron).

2.4. Statistical Analysis. All data are presented as the
mean± SD (standard deviation). 1e following comparisons
were made with data derived from the immunofluorescence
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Figure 3: Performance evaluation of machine learning classifiers and nuclei segmentation algorithms: Annotater and Cellpose. (a) Ex-
amples of images of themarker prediction with the classifiers trained with logistic regression.1e images show the immunofluorescence (IF)
staining for cDC1 typical markers CD11c (green), HLA-DR (red), and BDCA-3 (cyan), each shown with the corresponding nuclei stain
(blue), plus a merged image of the four channels; below are the mask images of predicted positive cells per marker. (b) Violin graph showing
the distance of different ML classifiers to the ground-truth (percentage of cDC1 quantified manually considering the total number of cells in
the field). (c) Percentages of cDC1s from the total of nuclei in the three images of high immune infiltration obtained by different trained
models. Ground-truth represents the total of cDC1s identified manually in the training images. Visual scoring represents the classical way of
quantifying, considering only 100 cells per field. In (b), RT denotes random trees and NN denotes neural networks.
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Figure 4: Continued.
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images: cell percentages from controls, MT, and DF patients.
Statistical analyses were performed using One-Way
ANOVA with multiparametric comparison. In case of
mIF, comparisons were made between MT and DF
groups applying Student’s t-test. All statistical analyses were
performed using Prisma Software (GraphPad
8). Statistical significance was defined as
∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001.

3. Results and Discussion

3.1. Establishment of an Optimized Workflow to Compare
Different DL Algorithms. Although there is evidence in the
literature about the presence of cDC1s in melanoma [17, 18],
the expression of activation and inhibitory markers and their
relationship with the evolution of the disease remain un-
clear. We compared several DL and ML algorithms to es-
tablish a useful methodology to analyze IF and mIF images
to study the profile of TME-infiltrating cDC1s. To speed up
image analysis and reduce possible subjective operator bias,
we set out to explore the utility of generating DL models for
cell segmentation and ML approaches to assist cell classi-
fication. We also evaluated the performance and friendliness
of different DL and ML methodologies and platforms that
have been made available to the research community.

To systematize this characterization, a workflow was
established to evaluate and perform comparisons of the
advantages and disadvantages of the most common algo-
rithms. 17 patients diagnosed with melanoma were selected,
11 of whom were disease-free two years after diagnosis, and
six already had evidence of metastases at diagnosis. Skin
samples of five subjects with no evidence of cancer were also
included as nontumor controls. An initial conventional IF

staining of CD11c, HLA-DR, and BDCA-3 was used to
identify cDC1 cells, with Hoechst staining used to define the
position of nuclei (Figure 1(a)). With the IF images, two
critical stages were established: segmentation of nuclei and
the detection of positive and negative cells for the specific
markers.

For segmentation of nuclei, we selected 12 representative
images (of a total of 66) for manual annotation to establish
the ground-truth dataset (summing a total of 19,280 nuclei).
1is ground-truth dataset was used to train, validate, and
test models created on four separate DL architectures and to
compare metrics of their performance (Figure 1(b)). For the
second stage, we compared two software programs de-
veloped for annotation and training of marker classifiers,
Annotater and QuPath, assessing which one of them per-
formed better in identifying and assigning immune cell
marker profiles to individual cells segmented by the DL
models generated in the first stage (Figure 1(c)). Finally, with
all the data from the different comparisons, the final
workflow was established to analyze mIF images to obtain
information about the density of cDC1s in the TME of
melanoma (Figure 1(d)).

3.2. First Step: Generation of Our Own Deep Learning Models
for Nuclei Segmentation. 1e most direct route to imple-
menting DL-based segmentation in image analysis work-
flows is to use one of many pretrained models, some of
which are available as modules within popular image
analysis software, for example, Stardist default pretrained
models implemented in ImageJ or QuPath. For this, the
user’s images are processed with minimal parameter ad-
justments for optimization; however, performance may not
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Figure 4: Identification of classical dendritic cells 1 (cDC1s) as an important immune population for tumor control using deep
learning-based segmentation and machine learning classifiers. (a) Representative conventional IF images per group of study.1e right
column represents digital zooms. Percentage of CD11c+ HLA-DR+ BDCA-3+ cDC1s quantified by visual scoring (b), Annotater by
logistic regression and using object mask generated by Cellpose (c), Annotater by logistic regression and U-Net3-class (d), QuPath by
random trees and Cellpose (e), QuPath by random trees, U-Net3-class (f ), and QuPath by artificial neural network and Cellpose (g).
Percentages were estimated with respect to all the nucleated cells in the image. 1ese plots included the 54 images used for the final
analysis, plots show median ± standard deviation, and statistical data were pooled from patients with metastasis at diagnosis (MT,
n � 6), disease-free (DF, n � 11), and nontumor skin (NT, Ctrl, n � 5) using one-way ANOVA with multiparametric comparison.
∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001.
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Figure 5: Analysis of CD40 and PD-L1 expressions on cDC1s using the machine learning-based workflow. (a) Abundance of cDC1s in
image fields rich in immune infiltrate. (b) Representative multiplexed immunofluorescence micrographs for CD11c (green), HLA-DR (red),
BDCA-3 (yellow), CD40 (magenta), PD-L1 (gray), and nuclei (blue) in metastatic (MT, n� 5) and disease-free (DF, n� 5) patients.
(c) Abundance of different cDC1 (CD11c+ HLA-DR+ BDCA-3+) cells expressing CD40, PD-L1, or both markers. Percentages were es-
timated with respect to all the nucleated cells in the image including three fields per patient; boxes represent the median with the lowest and
highest quartiles, the whiskers, and the maximum and minimum values. (d) Pie charts of the cDC1 subpopulations based on expressions of
PD-L1 and CD40. ((e)–(h)) Normalized mean fluorescence intensity for CD40 ((e) and (g)) or PD-L1 ((f) and (h)) on double-positive ((e)-
(f )), CD40+ PD-L1− (g), and CD40− PD-L1+ (h) cDC1s. Arbitrary fluorescence units Log10 scale. Statistical data were pooled from patients
using Student’s t-test, ∗p< 0.05, ∗∗∗∗p< 0.001.
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Figure 6: cDC1s expression of IL-12, CD86, and IDO. (a) Representative multiplexed immunofluorescencemicrographs for CD11c (green),
HLA-DR (red), BDCA-3 (yellow hot), CD86 (orange), CD40 (magenta), IL-12 (yellow), PD-L1 (gray), IDO (cyan), and nuclei (blue) in
a disease-free patient. Percentages of cDC1s expressing the markers IL-12+ CD86+ IDO−, IL-12− CD86+ IDO+, and IL-12+ CD86+ IDO+; in
each comparison, 100% was the total of CD40+ PD-L1+ (b) or CD40− PD-L1+ (c) cDC1s. (d) Violin plot showing the percentages of IL-12+

CD86+ IDO− and IL-12− CD86− IDO+ cDC1s that are also CD40− PD-L1+ (as in (c)). Statistical data were pooled frommetastatic patients at
diagnosis (MT; n� 3) and disease-free patients (DF; n� 3) using Student’s t-test. ∗p< 0.05, ∗∗p< 0.01.
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be optimal if the user’s own images were obtained under
conditions that differ from those used in the training image
sets employed for the pretrained models. Higher perfor-
mance requires generating DL models with training data
derived from the user’s own dataset. A wide variety of DL
architectures are available to train nuclei segmentation
models, from complex models with special computational
requirements such as U-Net3-class to more accessible
coding-free architectures on open-access high computing
platforms, such as the already mentioned Stardist itself
(based on the U-Net architecture).

To determine which of these models was the most
suitable for our data, we first generated the “ground-truth”
or the standard data to compare. For this, 12 representative
images were selected from 66 images of metastatic, disease-
free, and control groups, delineating a total of 19,280 nuclei
to train the models (Figure 1(a)). In total, an average of 1600
nuclei per image were manually delimited over a total of
46 hours invested (Supplementary Table 1). 1en, manually
annotated images were used for training, validating, and
testing DL models prior to the evaluation of their perfor-
mance upon processing the complete image set
(Figure 1(b)).

3.3. Parameter Setting for Training Deep Learning Algorithms
for Nuclei Segmentation. 1e performance of the DL algo-
rithms was optimized using several combinations of pa-
rameters as follows: (i) three patch sizes were tested,
256× 256, 512× 512, and 1024×1024 (original image size
covering the whole sample); (ii) the number of iterations for
training (epoch) was varied until the performance of the
algorithm converged; (iii) data augmentation was set to 0, 2,
5, 10, and 40, where these numbers indicate the number of
times the original training set is increased (e.g., 5 increased
the training set to 40 images); (iv) the batch size was set as
large as possible to occupy all the available GPU RAM
memory; and (v) the learning rate was fixed to different
values (0.1, 0.01, 0.001, 0.0003, 0.0002, 0.0001, and 0.00001).
Table 3 summarizes the parameters selected for each of the
deep learning models. First, Stardist was trained using all the
above-mentioned parameters. Data augmentation signifi-
cantly increased the performance of the models, with 5 being
a good performer by using the metric F1-Score. Since data
augmentation comes at a significant cost in total training
time, the other DL architectures were subsequently tested
with data augmentation up to 5. SplineDist was the model
requiring the greatest amount of GPU memory, particularly
with the largest patch size. 1e time expended in training
SplineDist was relatively high, such that the Zer-
oCostDL4Mic platform proved unsuitable for training
SplineDist due to the time limits imposed for access to cloud
computing on Google Colab.

3.4. Performance of Each Deep Learning Algorithm Tested.
We used two images (that were not included during the
training step) to test the performance of each DL model at
segmenting individual nuclei. Each DL model with the best
performance metrics depicted in Table 3 was compared

against the manual annotation (ground-truth). Figure 2
depicts the performance for each model at different T
(threshold) values, ranging from 0.1 (low overlap between
the predicted nucleus and the manual annotation) to 0.7
(high overlap), for the evaluation metrics detailed in Ma-
terials and Methods. Overall, Cellpose was the best per-
former across different metrics, particularly at greater
thresholds (higher overlap stringencies). Stardist and Spli-
neDist had similar performances, which is not surprising,
since cell nuclei have a convex shape and SplineDist was
designed to outperform Stardist at predicting nonconvex
structures. 1e worst performer was U-Net3-class, lower
than even the default pretrained Stardist model. In cases
where training cannot be performed, the Stardist (pretrained
model) might give acceptable performance; however,
training a DL platform with manually annotated images,
particularly those specialized for nuclei segmentation, will
generate a model with improved performance (compare the
blue and red lines in Figure 2).

3.5. Comparison of Machine Learning Algorithms and Nuclei
Segmentation Models. After obtaining the cell nuclei seg-
mentation models and evaluating their performance, we
compared different ML algorithms for the task of cell
classification using the same cohort of training images used
to generate our own models of segmentation. Annotater, an
ImageJ plugin, was selected as the first marker annotation
tool. 1is plugin trains ML-based classifiers for each marker
using the logistic regression algorithm. We also used
QuPath, a software program used in pathology and image
analysis that offers a more fluid interface. Two ML algo-
rithms were implemented to perform measurements (arti-
ficial neural networks (ANN) and random trees (RT)).
Figure 3(a) shows representative images of cells positive for
cDC1markers and the predicted positivity obtained with the
trained classifiers using Annotater, showing at visual level
the performance of this tool. To evaluate the relative per-
formance of different ML models, we compared all the
predicted results of each model to the manually annotated
ground-truth and measured the distance or error to this
value (Figures 3(b) and 3(c)). Furthermore, the effect of the
quality of the segmentation model upon ML algorithm
performance was assessed by applying it to the Cellpose (best
quality) and U-Net3-class (worst quality) segmentation
model results. We found that cells segmented with Cellpose
followed by marker identification with logistic regression in
Annotater produced the lowest error (deviation from the
ground-truth), whereas, as expected, combining Annotater
with the cell segmentation results from the U-Net3-class DL
model was less successful. Compared to Annotater, the
performance of both the QuPath random trees and the ANN
ML models with both Cellpose and U-Net3-class segmented
images was less precise, obtaining in some cases almost the
same values as the classical visual scoring (which was the
method with the highest level of error). Although the use of
three fields per patient to evaluate cell counts on visual
scoring could reduce this high error rate, this result em-
phasizes the improvements that are achieved with AI
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techniques, as well as the importance of evaluating a number
of approaches to identify the optimal method for a given
dataset.

3.6. Evaluation of the Abundance of cDC1s in the Tumor
Microenvironment. We evaluated the cDC1 abundance in
the TME using different DL-MLmodels. For this, we used all
the IF images, excluding the training cohort (54 images
total). Each ML classifier (logistic regression in Annotater
and ANN and RT in QuPath) was evaluated using the best
(Cellpose) and worst (U-Net 3-class) performers of the DL
nuclei segmentation. Comparisons were made against the
data obtained with visual scoring. Figure 4(a) shows rep-
resentative IF images and Figures 4(b)–4(g) show quanti-
tative plots for the nontumor skin of control, metastatic, and
disease-free groups. We observed a significantly higher
abundance of cDC1s in biopsies of patients controlling the
disease than in those metastatic or nontumor biopsies at
visual level. 1is result was consistent between visual scoring
and any of the DL-ML models. Although all the strategies
reported similar results and suggested a positive correlation
between cDC1 abundance and disease control, Annotater
yielded results with lower dispersion and higher statistical
significance (Figure 4(d)). 1is confirmed the result ob-
tained in Figure 3, also highlighting the importance of
evaluation and selection of ML models with good perfor-
mance to directly assess the biological significance of an
immune population in cancer progression. 1e abundance
of cDC1s was based on the evaluation of areas of high levels
of infiltrating cells, but, in order to evaluate whether the
distribution was the same across the tumor, we scanned the
complete slide of IF staining, also including the tumoral
marker HMB45. We confirmed in representative patients
that metastatic samples have low density of cDC1 across the
tumor compared with disease-free samples (Supplementary
Figures 1(a) and 1(b)). 1is result supports the analysis of
particular melanoma regions with a high immune in-
filtration and the association of cDC1s with disease control.

We concluded that Cellpose was the best DL model to
segment nuclei and that together with Annotater it can
efficiently identify immune cells in the TME of melanoma.
Coupled with this enhanced performance, these two models
have a greater user friendliness compared with QuPath and
only need basic programming skills (Supplementary Table 2
and Supplementary Video 1). We selected Cellpose and
Annotater for subsequent processing and analysis of mIF
images. Supplementary Figure 2 and Supplementary Table 2
summarize the workflow used to establish the optimized
image-based ML approach for inspection of the immune
infiltrate in tumors, taking into account the capabilities of
each laboratory.

3.7. cDC1s Show a Predominantly Activator Phenotype in
Disease-Free and Tolerogenic Profile in Metastatic Patients.
Our ML-based workflow allowed us to observe a signifi-
cantly enhanced infiltration of cDC1s in the TME of mel-
anoma patients that control the disease, supporting this
population as critical for the antitumor response. Indeed, we
observed that, on average, taking images of tumor fields with
an extensive infiltration of immune cells, of all nucleated
cells, about 17% are cDC1s in disease-free patients
(Figure 5(a)). We then tested the capacity of this ML-based
strategy to identify additional cDC1 markers related to
a potential activator or inhibitory phenotype on images
generated by mIF staining. Five metastatic patients at di-
agnosis and five disease-free patients were randomly selected
to evaluate the expression of the coactivator receptor CD40
and inhibitory receptor PD-L1 (30 images in total)
(Figure 5(b)). We found that both CD40+ and PD-L1+
cDC1s were increased in disease-free patients (Figures 5(c)
and 5(d)). Interestingly, we observed a cDC1 population that
coexpresses both markers, which is in agreement with
transcriptional studies indicating that in some DC subsets
both molecules are coexpressed [14–16]. 1is double-
positive cDC1 population was more abundant in disease-
free patients, suggesting a role in disease control despite the
expression of PD-L1. Also, cDC1s expressing PD-L1 but not
CD40 were more abundant in patients controlling mela-
noma (Figure 5(c)). We compared the abundance of each
cDC1 subset in the two groups of patients. Strikingly, we
found that the most substantial difference between patients
was the predominance of PD-L1+CD40− cDC1s in disease-
free patients (32.5% versus 16.7%, Figure 5(d)). We took
advantage of theML-based workflow to evaluate the levels of
expressions of CD40 and PD-L1 using the mean fluores-
cence intensity. We noticed that almost all double-positive
cells were CD40high in disease-free patients (Figure 5(e)),
while in metastatic patients they were CD40low. Also, the
PD-L1low subset of double-positive cDC1s was more
abundant in disease-free patients than in metastatic patients
(Figure 5(f )). No significant differences were observed in the
levels of expressions of CD40 and PD-L1 in the single
positive cDC1s (Figures 5(g) and 5(h)). Altogether these data
suggest an activator role for PD-L1lowCD40highdouble-
positive cDC1s in disease-free patients and a more tolero-
genic role for PD-L1highCD40lowdouble-positive cDC1s in
patients with metastases.

To further explore the activator or inhibitory cDC1
profile, we selected three disease-free and three metastatic
patients to extend the analysis (18 images in total). We
selected two markers of activation, IL-12 and CD86, and the
inhibitory molecule IDO, for a total of nine parameters in
the same mIF image (including nuclei, Figure 6(a)). We

Table 3: Optimal parameters settings by selecting the models with the highest F1-Score.

Model Patch size Epoch Batch size Augmentation Learning rate Training time
U-Net3-class 1024×1024 500 2 5 0.01 2 h 50min
Stardist 1024×1024 250 2 5 0.0003 1 h 44min
SplineDist 512× 512 200 4 5 0.0003 32 h 36min
Cellpose 1024×1024 20,000 2 5 0.0002 2 h 37min
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found that the ML-based workflow was suitable for the
analysis of these many markers. When we analyzed the
subsets of the CD40+ cDC1 cells, we observed an enhanced
proportion of cells expressing the activation markers CD86
and IL-12 in disease-free patients (Figure 6(b)). On the
contrary, the most abundant subset in metastatic patients
was the IL-12− CD86− IDO+ cDC1, although there was no
statistical significance perhaps because of the small number
of CD40+ PD-L1+ cDC1s (blue column of Figure 5(c)).
Strikingly, when we evaluated the CD40− PD-L1+ cDC1s, we
also observed a significant enrichment of subsets expressing
the activationmarkers without expression of IDO in disease-
free patients (Figures 6(c) and 6(d)), while the opposite was
observed in metastatic patients, in which the CD86− IL-12−

IDO+ cDC1 subset was enriched.
Altogether, these data favorably argue about the need to

incorporate ML-based tools for the analysis of multi-
parametric images. Our ML-based workflow allowed us to
analyze up to nine different parameters on a viable timescale,
also providing evidence that cDC1 cells are more abundant
in the TME infiltrate of melanoma patients that control
disease. Furthermore, the ML-based workflow also supports
that cDC1s in disease-free patients exhibit an expression
profile that is more congruent with an activator function:
CD40high PD-L1low CD86+ IL-12+. Although disease-free
patients were also enriched of CD40− PD-L1+ cDC1s,
these cells were also more compatible with an activator
phenotype. On the contrary, patients that were metastatic at
diagnosis were enriched for cDC1s with a more tolerogenic
phenotype (CD40low PD-L1high CD86− IL-12− IDO+).

We were surprised to observe a CD40− PD-L1+ subset of
cDC1 positively correlating with the control of disease.
1ese cells may represent an immature cDC1 or a skin cDC1
that has been activated but has yet to migrate to the lymph
nodes, where CD40 expression will be upregulated. Of note,
it was recently reported that signaling through an in-
tracellular domain of PD-L1 favors cDC1 migration from
the skin to lymph nodes [40], which could explain the high
abundance of this cDC1 subset in disease-free patients, also
supporting the idea that these cells are of recent activation.
In this scenario, CD86 and IL-12 may be better markers than
CD40 and PD-L1 to profile melanoma-infiltrating cDC1s
with antitumor activity. 1ese data also highlight the im-
portance of a multiparametric analysis, facilitated by the
increase in throughput afforded by the use of the most
appropriate ML-based model, to obtain a more complete
phenotypic profile of the immune cells that infiltrate mel-
anoma and perhaps many other tumors. A better un-
derstanding of immune populations that control disease will
help to provide the most suitable therapeutic
recommendations.

3.8. Study Limitations. Implementation of an ML-based
workflow allowed us to identify a particular cDC1 profile
enriched in disease-free melanoma patients. Despite this,
further validation needs to be performed, including larger
numbers of patients, samples, and images to refine the
analysis and strengthen the workflow. Although this work

focuses on evaluating the profile of cDC1, in the future, the
relationship of tolerogenic or activating cDC1s with T cells
should be assessed. Moreover, it will be relevant to evaluate
whether the profiles of cDC1s depend on their localization
and distribution in the melanoma tissue, considering that
not only the abundance of these cells is important, but also
the availability of antigens and their ability to present them
to T lymphocytes to promote an effective antitumor re-
sponse [41, 42]. In this scenario, the spatial distribution of
specific cDC1s should also impact on local or distant me-
tastasis, as well as the organs targeted for metastases.

4. Conclusions

1e analysis of mIF images by ML models amiable to use in
a normal laboratory allowed us to find that cDC1s were
enriched in melanoma patients that control the disease. Al-
though cDC1s in the melanoma TME exhibited a complex
phenotype in which activator and inhibitory molecules were
often coexpressed, an activator profile was more consistently
observed in disease-free patients, as well as a tolerogenic
profile in those that have metastasis. 1is complex phenotype
is in tune with the complexity of signals that immune cells
encounter in the TME. To the best of our knowledge, this
study is the first that explores different DL-ML tools and
combines the use of mIF and AI to profile the expression of
ninemarkers of identity and performance to describe in depth
the activator or inhibitory profile of TME-infiltrating cDC1s
in clinical samples. 1e ML-based workflow established in
this study allowed us to evaluate a large number of cells in
a short period of time and reduce possible subjective operator
bias.1e use of AI-based automated and semiautomated tools
for rapid analysis of large datasets promises to transform the
accuracy and speed of identifying cell populations that can
provide useful information in a clinical setting.
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[18] J. P. Böttcher, E. Bonavita, P. Chakravarty et al., “NK cells
stimulate recruitment of cDC1 into the tumor microenvi-
ronment promoting cancer immune control,” Cell, vol. 172,
no. 5, pp. 1022–1037, 2018.

[19] Y. S. Lee, L. J. O’Brien, C. M. Walpole et al., “Human
CD141 + dendritic cells (cDC1) are impaired in patients with
advancedmelanoma but can be targeted to enhance anti-PD-1
in a humanized mouse model,” Journal for Immunotherapy of
Cancer, vol. 9, no. 3, Article ID e001963, 2021.

[20] J. R. Lin, B. Izar, S. Wang et al., “Highly multiplexed im-
munofluorescence imaging of human tissues and tumors
using t-CyCIF and conventional optical microscopes,” Elife,
vol. 7, 2018.

[21] D. Komura and S. Ishikawa, “Machine learning methods for
histopathological image analysis,” Computational and
Structural Biotechnology Journal, vol. 16, pp. 34–42, 2018.

[22] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang,
and J. P. Campbell, “Introduction to machine learning, neural
networks, and deep learning,” Translational Vision Science &
Technology, vol. 9, no. 2, pp. 14–12, 2020.

[23] F. Piccialli, V. D. Somma, F. Giampaolo, S. Cuomo, and
G. Fortino, “A survey on deep learning in medicine: why, how
and when?” Information Fusion, vol. 66, pp. 111–137, 2021.

[24] T. J. Brinker, A. Hekler, A. H. Enk et al., “Deep learning
outperformed 136 of 157 dermatologists in a head-to-head
dermoscopic melanoma image classification task,” European
Journal of Cancer, vol. 113, pp. 47–54, 2019.

[25] N. Rank, B. Pfahringer, J. Kempfert et al., “Deep-learning-
basedreal-time prediction of acute kidney injury outperforms
human predictive performance,” NPJ Digital Medicine, vol. 3,
no. 1, p. 139, 2020.

Journal of Oncology 19

https://downloads.hindawi.com/journals/jo/2022/9775736.f1.pdf


[26] C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu,
“Cellpose: a generalist algorithm for cellular segmentation,”
Nature Methods, vol. 18, no. 1, pp. 100–106, 2021.

[27] S. Mandal and V. Uhlmann, “Splinedist: automated cell
segmentation with spline curves,” in Proceedings of the 2021
IEEE 18th International Symposium on Biomedical Imaging
(ISBI), pp. 1082–1086, Nice, France, April 2021.

[28] U. Schmidt, M. Weigert, C. Broaddus, and G. Myers, “Cell
detection with star-convex polygons BT-medical image
computing and computer assisted intervention–MICCAI
2018,” 2018, https://arxiv.org/abs/1806.03535.

[29] P. Bankhead, M. B. Loughrey, J. A. Fernandez et al., “QuPath:
open source software for digital pathology image analysis,”
Scientific Reports, vol. 7, no. 1, p. 16878, 2017.

[30] P. 1ierry, Deep learning tools and modeling to estimate the
temporal expression of E2Fs over the cell cycle from 2D still
images, 2021.

[31] National Institutes of Health, Image J Software, https://
rsbweb.nih.gov/ij/.

[32] S. Preibisch, “Descriptor-based registration (2d/3d),” 2022,
https://imagej.net/plugins/descriptor-based-registration-2d-
3d.

[33] L. von Chamier, R. F. Laine, J. Jukkala et al., “Democratising
deep learning for microscopy with ZeroCostDL4Mic,” Nature
Communication, vol. 12, no. 1, p. 2276, 2021.

[34] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen,
“On instabilities of deep learning in image reconstruction and
the potential costs of AI,” in Proceedings of the National
Academy of Sciences, vol. 117, no. 48, pp. 30088–30095, 2020.

[35] C. Belthangady and L. A. Royer, “Applications, promises, and
pitfalls of deep learning for fluorescence image re-
construction,” Nature Methods, vol. 16, no. 12, pp. 1215–1225,
2019.

[36] G. Colab, J. Notebook, and S. Fig, “Step to segment images
with Unet 3-classes step 1: predict probability maps for
images,”.

[37] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation
BT-medical image computing and computer-assisted inter-
vention–MICCAI 2015,” 2015, https://arxiv.org/pdf/1505.
04597.pdf.

[38] A. Neubeck and L. Van Gool, “Efficient non-maximum
suppression,” 18th International Conference on Pattern Rec-
ognition (ICPR’06), vol. 3, pp. 850–855, 2006.
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