
Academic Editor: Claudio Savaglio

Received: 3 April 2025

Revised: 12 May 2025

Accepted: 13 May 2025

Published: 15 May 2025

Citation: Tong, T.; He, Q.; Nie, X.;

Zhao, Y. Design of Low-Cost and

Highly Energy-Efficient Convolutional

Neural Networks Based on

Deterministic Encoding. Sensors 2025,

25, 3127. https://doi.org/

10.3390/s25103127

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Design of Low-Cost and Highly Energy-Efficient Convolutional
Neural Networks Based on Deterministic Encoding
Tiance Tong, Qiang He , Xiaofei Nie and Yudi Zhao *

School of Information & Communication Engineering, Beijing Information Science and Technology University,
Beijing 102206, China; 2022020500@bistu.edu.cn (T.T.); qiang.he@bistu.edu.cn (Q.H.);
2023020521@bistu.edu.cn (X.N.)
* Correspondence: zhaoyd@bistu.edu.cn

Abstract: Stochastic Computing has attracted extensive attention in the deployment of
neural networks at the edge due to its low hardware cost and high fault tolerance. However,
traditional stochastic computing requires a long random bit stream to achieve sufficient
numerical precision. The long bit stream, in turn, increases the network inference time,
hardware cost, and power consumption, which limits its application in executing tasks such
as handwritten recognition, speech recognition, image processing, and image classification
at the near-sensor end. To realize high-energy-efficiency and low-cost hardware neural
networks at the near-sensor end, a hardware optimization design of convolutional neural
networks based on the hybrid encoding of deterministic encoding and binary encoding is
proposed. By transforming the output signals from the sensor into deterministic encoding
and co-optimizing the network training process, a low-cost and high-energy-efficiency
convolution operation network is achieved with a shorter bit stream input. This network
can achieve good recognition performance with an extremely short bit stream, signifi-
cantly reducing the system’s latency and energy consumption. Compared with traditional
stochastic computing networks, this network shortens the bit stream length by 64 times
without affecting the recognition rate, achieving a recognition rate of 99% with a 2-bit input.
Compared with the traditional 2-bit stochastic computing scheme, the area is reduced by
44.98%, the power consumption is reduced by 60.47%, and the energy efficiency is increased
by 12 times. Compared with the traditional 256-bit stochastic computing scheme, the area is
reduced by 82.87%, and the energy efficiency is increased by 1947 times. These comparative
results demonstrate that this work has significant advantages in executing tasks such as
image classification at the near-sensor end and edge devices.

Keywords: stochastic computing; deterministic encoding; neural networks; image
recognition

1. Introduction
With the rapid development of technologies such as the Internet of Things (IoT)

and autonomous driving, the number of sensors used to capture images, audio, and
other information has increased dramatically. The vast amounts of raw data collected by
these sensors contain a significant amount of unstructured and redundant information,
leading to severe challenges in energy consumption, response time, data storage, and
communication bandwidth during subsequent information processing [1]. To alleviate the
data transmission burden on sensor nodes, deploying certain image processing tasks at
the near-sensor edge can significantly reduce latency and redundant data storage in the
sensing-to-computation process, thereby improving system real-time performance and
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energy efficiency [2]. Meanwhile, convolutional neural networks (CNNs) have been widely
applied in critical fields such as indoor positioning [3], intrusion detection [4], malware
identification [5], edge computing, and artificial intelligence [6]. These application scenarios
impose stringent requirements on computational efficiency and hardware costs, particularly
when deployed on resource-constrained edge devices. However, neural networks typically
require complex circuit structures to perform a large number of multiplication and addition
operations, which demand extensive logic gates and hardware resources in traditional
binary computing paradigms [7]. Consequently, executing neural networks using binary
computing results in high power consumption, posing a significant challenge for mobile
and edge computing devices.

To address the performance and energy efficiency challenges of neural network compu-
tation architectures, it is essential to explore new information processing paradigms beyond
traditional high-precision digital computing. Stochastic Computing (SC) is a fault-tolerant
computing paradigm that utilizes a Stochastic Number Generator (SNG) to produce bit
streams encoded in a stochastic manner. Using simple logic gates, SC performs operations
such as multiplication and summation, with precision improving as the bit stream length
increases [8]. Stochastic bit streams are sequences where each bit carries equal weight,
and binary numbers can be mapped to stochastic bit streams using either unipolar or
bipolar encoding methods [9], as shown in Figure 1a. In the unipolar encoding scheme,
the probability of each bit being set to “1” is proportional to the represented value a. In
the bipolar scheme, the bit stream represents values within the range [−1,1], where the
probability of each bit being set to “1” is proportional to (a + 1)/2. A bit stream of length
n contains several “1”s ranging from [0,n], allowing it to represent n + 1 different values.
Since the bipolar scheme enables the representation of both positive and negative values, it
is more suitable for neural networks.
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Figure 1. Schematic Diagram of Stochastic Computing.

Compared to binary computing, stochastic computing offers the following advantages
in neural network applications:

(1) Stochastic computing performs complex arithmetic operations using simple logic
gates, reducing the required number of logic components, thereby simplifying hardware
design and lowering computational power consumption and hardware costs [10]. For
example, multiplication, which is a complex operation in traditional binary computing,
can be implemented with a single AND gate in stochastic computing, while addition can
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be represented using a multiplexer (MUX), as shown in Figure 1b. Simple circuits are
particularly important for battery-powered mobile and edge computing devices.

(2) Since each bit in a stochastic bit stream has the same weight, it has high fault
tolerance, and single-bit errors do not significantly impact the overall result as in binary
computing [11].

(3) When using bipolar encoding, the input and output values of stochastic computing
are both within the range [−1, 1], avoiding the need for additional normalization operations.

However, traditional stochastic computing-based neural networks have certain limi-
tations. First, stochastic computing requires long bit streams to maintain computational
accuracy, resulting in prolonged computational delays. Second, most existing stochastic
computing methods rely on a large number of pseudo-random number generators to pro-
duce stochastic bit streams, which severely restricts circuit area and energy efficiency [12].
Additionally, when using bipolar encoding, traditional stochastic computing exhibits low
multiplication accuracy for near-zero data, which contradicts the sparsity characteristic of
neural networks [13]. Furthermore, neural networks frequently use Accumulative Parallel
Counters (APC) for stochastic addition, as shown in Figure 2 [14]. APC is an electronic
counter used for counting and accumulating the number of occurrences of events. Based
on the principle of parallel counting, it can process multiple input signals simultaneously,
enabling efficient and rapid accumulation. In stochastic addition, APC obtains the sum of
the k-th bit from n m-bit stochastic bit streams using a parallel counter, stores the result
in a register, and ultimately accumulates all bits from the n m-bit stochastic bit streams
to produce a binary-form sum. However, using APC for addition introduces additional
stochastic computing and binary conversion circuitry, significantly increasing circuit area.
Finally, due to the distribution characteristics of convolutional kernels in neural networks,
representing them with short-bit streams remains challenging.
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To address these issues, this paper proposes a convolutional neural network hard-
ware optimization design based on deterministic encoding. By converting image sensor
output signals into deterministically encoded bit streams, the first convolutional layer of
the network achieves low-cost and high-energy-efficiency multiply–accumulate operations
with shorter bit streams. Additionally, a co-optimization of the network training process
is conducted for the hybrid convolutional neural network combining deterministic and
binary encoding. The optimized network achieves superior image classification perfor-
mance even with extremely short bit streams, significantly reducing system latency and
energy consumption.

This paper proposes a hardware optimization design for convolutional neural net-
works that leverages a hybrid deterministic and binary encoding scheme, achieving high
energy efficiency and low cost through the use of an extremely short bitstream. Addition-
ally, a co-optimization training algorithm for the first convolutional layer is developed,
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which supports 2-bit deterministic encoding while maintaining a recognition accuracy
of 99%.

The remainder of this paper is organized as follows: Section 2 provides a review of
related work on stochastic computing and its applications in neural networks. Section 3
describes the proposed method in detail, including the near-sensor deterministic encoding
approach and the hybrid encoding neural network design. Section 4 presents the experi-
mental results and analysis, demonstrating the effectiveness of the proposed method in
terms of hardware efficiency and fault tolerance. Finally, Section 5 concludes the paper and
outlines future research directions.

2. Related Work
Stochastic computing, due to its neuron-like information encoding method, can signif-

icantly reduce hardware requirements and energy consumption in neural network systems.
Currently, stochastic computing has been successfully applied to various neural networks,
achieving progress in multiple aspects. Zhe Li et al. [15] proposed a joint optimization
method for components in deep stochastic convolutional neural networks to ensure high
computational accuracy. By modifying the original network structure to simplify stochastic
computing hardware design, the optimized feature extraction block improved computation
accuracy by 42.22% compared to the non-optimized version, and the network’s test error
rate was reduced to 3.48% from 27.83%. Mohamad Hasani Sadi et al. [16] introduced
an efficient deep convolutional neural network inference framework based on stochastic
computing. They designed a novel approximate parallel counter using multiplexers (MUX)
to reduce input data and improved the stochastic Rectified Linear Unit (ReLU) activation
function, making it more closely resemble the actual ReLU function while being compatible
with APC-based adders. Additionally, they proposed a new method to implement the
Softmax function in the stochastic domain with minimal resources, reducing hardware area,
delay, and power consumption. These optimizations reduced hardware area overhead
by approximately 17% and path delay by about 18% when implementing the LeNet-5
network. Sunny Bodiwala et al. [17] proposed an efficient deep neural network accelerator
based on stochastic computing, optimizing its activation function. This work developed an
improved stochastic computing neuron architecture for deep neural network training and
implementation. By integrating stochastic computing, the method significantly reduced
hardware occupation while maintaining high scalability. Experimental results showed
that this approach improved classification accuracy on the Modified National Institute of
Standards and Technology database (MNIST) by 9.47% compared to traditional binary
computing methods. This research provides an effective solution for deploying complex
deep-learning models on resource-constrained devices. M. Nobari et al. [18] proposed an
efficient Field-Programmable Gate Array (FPGA)-based implementation of deep neural
networks using stochastic computing, addressing the slow convergence speed and high
hardware resource consumption of traditional SC methods. By limiting stochastic bit
stream length and establishing precise synchronization among processing units, conver-
gence time was significantly reduced. Additionally, the study proposed a novel probability
estimator architecture that eliminated feedback loops in traditional probability estimators,
improving convergence speed and accuracy. Implemented on the Xilinx FPGA Virtex-7
chip using Verilog hardware description language, experimental results demonstrated
that this method reduced hardware resource utilization by over 82%, lowered power con-
sumption, and increased deep neural network accuracy by 2%. This research provides an
effective solution for implementing efficient deep-learning models on resource-constrained
hardware platforms. Junxiu Liu et al. [19] proposed a stochastic computing-based hard-
ware spiking neural network system for implementing pairwise spike-timing-dependent
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plasticity. By leveraging stochastic computing technology, the study simplified multipliers,
adders, and subtractors in traditional hardware spiking neural networks, significantly
reducing hardware resource consumption. Experimental results showed that, compared to
existing technologies, this system reduced hardware resource consumption by 58.0%, with
register usage decreasing by 65.6%. Tianmu Li et al. [20] introduced a new method called
range-extended stochastic computing to improve the accuracy and efficiency of stochas-
tic computing in neural network accelerators. By enhancing OR-gate-based stochastic
computing accumulation functions, this method increased computational precision while
maintaining performance advantages, achieving a 2-fold reduction in bit stream length
at the same precision and improving energy efficiency by 3.6 times compared to tradi-
tional binary addition. Furthermore, the study proposed an optimized training method
that incorporated bit stream computation simulation, activation calibration, and error
injection, accelerating the training speed of range-extended stochastic computing neural
networks by 22 times, making training on large datasets such as ImageNet feasible. Huiyi
Gu et al. [21] proposed a novel computing-in-memory architecture based on magnetic
random-access memory for Bayesian neural networks using stochastic computing. This
architecture aimed to address the high computational complexity and extensive sampling
operations required for deploying traditional Bayesian neural networks on edge devices.
By performing computations directly within memory and leveraging the unique properties
of magnetic random-access memory, an efficient computing-in-memory approach was real-
ized. Neural network parameters were represented as bit streams, and by redesigning the
computing-in-memory architecture, reliance on complex peripheral circuits was reduced.
Additionally, a real-time Gaussian random number generator was designed using the ran-
dom switching properties of magnetic random-access memory, further improving energy
efficiency. Evaluations using Cadence Virtuoso Analog Design Environment showed that,
while maintaining accuracy, this architecture reduced energy consumption by over 93.6%
compared to traditional FPGA-based von Neumann architectures. This work offers an
effective solution for deploying Bayesian neural networks on resource-constrained edge
devices. K. Chen et al. [22] proposed a stochastic computing-based artificial neural network
architecture design incorporating a novel unscaled adder and input data preprocessing
method to enhance hardware reliability and computational accuracy. The adder combined
a T-Flipflop adder and a finite-state machine linear gain unit, eliminating scaling effects
in stochastic computing and generating accurate sums. Experimental results indicated
that compared to traditional neural network designs, this architecture reduced power
consumption and area costs by 48–81% and 51–92%, respectively. This research provides
an effective solution for achieving high-reliability, high-accuracy neural networks in edge
computing scenarios with resource constraints.

Table 1 presents the main contributions and data comparisons of the aforemen-
tioned references.

In summary, a series of studies have demonstrated that the stochastic computing
paradigm can significantly reduce the hardware requirements and energy consumption
of neural network systems, presenting broad development prospects. However, all the
aforementioned studies face a common challenge: achieving high computational accuracy
with stochastic computing typically requires long bit streams. This means that complex
computations involve processing a large volume of bit stream data, leading to increased
computational latency and resource consumption. Additionally, stochastic computing relies
on a substantial number of random number generators to produce stochastic bit streams,
which occupy extra hardware resources and increase circuit area and complexity.
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Table 1. Comparison of Contributions and Data from Selected Related Works.

Reference Main Contributions Performance Improvements

[15] Joint optimization method for deep stochastic
convolutional neural networks 42.22% improvement in computation accuracy

[16]
Efficient deep convolutional neural network

inference framework based on
stochastic computing

17% reduction in hardware area, 18% reduction in
path delay

[17] Efficient deep neural network accelerator based on
stochastic computing

9.47% improvement in classification accuracy on
MNIST dataset

[18] Efficient FPGA-based implementation of deep
neural networks using stochastic computing

82% reduction in hardware resource utilization, 2%
increase in accuracy

[19]
Hardware spiking neural network system for

pairwise spike-timing-dependent plasticity using
stochastic computing

58.0% reduction in hardware
resource consumption

[20] Range-extended stochastic computing for neural
network accelerators

2-fold reduction in bit stream length, 3.6 times
improvement in energy efficiency

[21] Computing-in-memory architecture for Bayesian
neural networks using stochastic computing 93.6% reduction in energy consumption

[22] Stochastic computing-based artificial neural
network architecture with novel unscaled adder

48% to 81% reduction in power consumption, 51%
to 92% reduction in area costs

To verify the relationship between the accuracy of stochastic computing multiplications
and additions and the length of the bit stream, Figure 3 presents a 5 × 5 convolution kernel
using both unipolar and bipolar encoding methods for multiplication, with accumulation
performed via APC adder circuits. The results are compared with the binary results (all
binary values used in this paper are full-precision binary). As shown in the figure, the
accuracy of multiplication–accumulation computations depends on the length of the input
stochastic bit stream—longer bit streams yield more accurate results. Under the same bit
stream length, unipolar stochastic computing exhibits a lower standard deviation from
binary computation results than bipolar stochastic computing. This is because bipolar
stochastic computing represents values in the range of [−1, 1], doubling the range of
unipolar stochastic computing [0, 1], but at the cost of reduced resolution, leading to lower
accuracy compared to unipolar encoding of the same length.
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While increasing the bit stream length improves computational accuracy, it also in-
troduces significant computational latency and energy consumption issues. To address
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bit stream correlation problems, J. Alspector et al. [23] attempted to generate uncorrelated
bit streams using multiple pseudo-random sources, but their approach still required sub-
stantial hardware resources. Gschwind, Michael et al. [24] reduced the number of required
random sources by encoding one of the stochastic bit streams deterministically during
multiplication; however, their method still consumed considerable hardware resources.
Therefore, how to leverage the advantages of low-cost stochastic computing circuits in hard-
ware neural networks while reducing the cost and energy consumption of input bit stream
generation and achieving high computational accuracy with shorter input bit streams are
the key to the edge-side high-efficiency neural network circuit design in this paper.

3. Method
3.1. Near-Sensor Deterministic Encoding

For tasks such as image classification, pixel information must first be acquired at the
image sensor before being processed by a neural network. A complementary metal-oxide-
semiconductor (CMOS) image sensor converts the perceived light intensity into an electrical
signal proportional to the light intensity through photodiodes in its pixels. These electrons
are collected, integrated, amplified, and read out as an analog voltage at the end of the
exposure process. Finally, an analog-to-digital converter (ADC) converts the voltage into a
digital signal [25]. In this process, conventional binary-encoded neural networks require an
ADC circuit, which entails significant hardware overhead to convert light intensity into
digital signals. Traditional stochastic-encoded neural networks further require the digital
signals to be transformed into stochastic bit streams via a stochastic number generator
(SNG) [26]. To avoid the substantial resource consumption and delay associated with
converting data from the analog to the digital domain, the proposed approach directly
converts the analog voltage data obtained by the sensor into a time-domain data encoding
format for the neural network input layer, thereby eliminating the need for additional ADC
and SNG circuits. Figure 4 illustrates the process of converting the analog voltage signals
acquired by the image sensor into time-domain signals. The circuit consists of a ramp
generator and an analog-domain comparator. By comparing the analog voltage signal with
a triangular wave using the analog-domain comparator, a pulse width modulation (PWM)
signal is generated [27]. Through this process, pixel value information is encoded as the
fraction of time the signal remains high (ON) relative to the low (OFF) state in each cycle.
The duty cycle of the PWM signal corresponds to the analog voltage level output by the
sensor: a higher voltage level results in a wider PWM pulse, representing a larger pixel
value. The voltage range of the triangular wave is determined by the range of the analog
voltage signal. For instance, if the analog voltage falls between the minimum and maximum
values of the triangular wave, the circuit produces a PWM signal with a 50% duty cycle,
corresponding to 0.5 in unipolar bit streams and 0 in bipolar bit streams. Thus, PWM
signals with different duty cycles can serve as inputs to stochastic computing circuits.
However, since “1”s and “0”s in PWM signals appear in clusters rather than randomly,
these inputs no longer constitute stochastic bit streams but instead form deterministic bit
streams [28]. A PWM-based deterministic bit stream of length n contains between 0 and n
occurrences of “1”, allowing it to represent n + 1 distinct values.

To align with the PWM-type pixel value input and improve the computational accuracy
of deterministic random computation, the weight values of the neural network will adopt
a shift-uniform deterministic encoding scheme [29], further reducing the use of SNG. By
decomposing the binary weights into a polynomial form, each term’s coefficient is encoded
as a bit stream with a uniform distribution of 0s and 1s, followed by the corresponding
shifts. Finally, the pre-generated encodings are summed. The specific method is as follows:
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In the deterministic bit stream, the “1” of the input 1 is placed at the front of the bit
stream, as shown in Equation (1):

AL(t) =

{
1, t = 1, 2, 3, . . . , A
0, t = A + 1, . . . , L

(1)

where A is the number of “1”s in the bit stream, and L is the total length of the bit stream.
For another input 2, the positions of the “1”s are given as shown in Equation (2):

CL(t) =

{
1, t = round((L/C) · m) + 1

0, others
(2)

where C is the number of “1”s in the bit stream, L is the total length of the bit stream, m = 0,
1, 2, . . ., C − 1, which is used to denote the periodicity, and round denotes rounding.

Thus, the binary number C can be expressed as shown in Equation (3):

C = ck−1s
(

2k−1
)
+ ck−2s

(
2k−2

)
+ ... + c0s

(
20
)

(3)

The part 2i in the formula can be expressed as Equation (4):

CL
2i (t) =

{
1, t = m · 2k−i + 1 → t mod 2 = 1

0, others
(4)
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Thus, the bit stream CL can be expressed as the sum of CL
20 to CL

2k−1 , which is repre-
sented by Equation (5):

ck−1s
(

2k−1
)

10101010101010101010... × ck−1

+ +

ck−1s
(

2k−2
)

10001000100010001000... × ck−2

+ +

ck−3s
(

2k−3
)

10001000100010001000... × ck−3

+ +
...

...
+ +

c0s
(
20) 10000000000000000000... × c0

↓ ↓
C CL

(5)

To merge all substreams into a single bit stream, we right-shift each substream by T
bits, where T = 2k−i−1 − 1.

Equation (6) demonstrates an example of deterministic encoding with a bit stream
length of 16 bits:

C23 ≫ 0 1010101010101010 × c3

C23 ≫ 1 0100010001000100 × c2

C23 ≫ 3 0001000000010000 × c1

C23 ≫ 7 0000000100000000 × c0

C c3c2c3c1c3c2c3c0c3c2c3c1c3c2c30

(6)

As shown in Figure 5, K represents the number of ones in the bit stream when deter-
ministically encoding numbers within the range of [−1, 1], with c0, c1, c2, and c3 being
the binary digits of K. Since the bit stream length in Equation (6) is 16 bits, the range of
K is [0, 15], and the number of binary digits is 4. These binary digits are multiplied by
the corresponding shift-uniform deterministic bit stream signals, and the multiple input
signals are added together and output as a composite signal using an in-phase adder. In
this encoding method, the number of ones in a bit stream of length n ranges from [0, n − 1],
and a total of n distinct values can be represented.
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3.2. Hybrid Encoding Neural Network Design

Convolutional Neural Networks (CNNs) are a type of deep learning model particularly
suited for processing grid-structured data, such as images. By mimicking the working
principles of the human visual system, CNNs can automatically and hierarchically extract
image features [30]. LeNet-5 is a classic convolutional neural network (CNN) [31] with a
simple yet effective structure. It consists of an input layer, two convolutional layers, two
pooling layers, and fully connected layers (including the output layer), as shown in Figure 6.
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This study builds upon LeNet-5 architecture, employing the network structure illustrated
in Figure 6, and it utilizes the MNIST dataset [31] to validate the proposed methodology.
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Figure 6. Schematic Diagram of Convolutional Neural Networks Combining Stochastic Computing
and Binary Computation.

In this network, the multiplication operations across all layers were replaced with
both conventional stochastic computing and deterministic stochastic computing, respec-
tively. Addition was performed using an Accumulation Parallel Counter (APC), and the
resulting binary values were converted back into stochastic bit streams for computation
in the subsequent layer. A comparison was made between the recognition rates of con-
ventional stochastic computing networks with different bit stream lengths, deterministic
stochastic computing networks, and binary computing networks. The results are presented
in Figure 7. When the bit stream length is less than 32 bits, the resolution of stochastic
computing is too low, leading to poor performance for both conventional and deterministic
stochastic computing. Additionally, because deterministic stochastic computing can rep-
resent one fewer number than conventional stochastic computing for the same bit stream
length, its resolution is even lower, resulting in inferior accuracy compared to conven-
tional stochastic computing. The smaller the bit stream length, the more pronounced this
resolution-induced difference becomes. However, when the bit stream length is at least
32 bits, the resolution-induced error gradually diminishes. At this point, deterministic
stochastic computing achieves a significant accuracy improvement compared to conven-
tional stochastic computing of the same bit stream length. When the stochastic bit stream
length reaches 2048 or 4096 bits, the recognition rate of deterministic stochastic computing
becomes nearly indistinguishable from that of binary computation.
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3.3. Co-Optimization Method for Network Training Process
3.3.1. Impact of Different Network Layers on Recognition Rate

The findings in Section 3.2 indicate that deterministic stochastic computing achieves a
recognition rate comparable to binary computation when the bit stream length is sufficiently
large. However, in practical applications, not all layers of a convolutional neural network re-
quire long stochastic bit streams. Dynamically adjusting the bit stream length based on the
computational demands and precision requirements of each layer provides a more flexible
and efficient approach. For example, hidden layers responsible for complex feature extrac-
tion and requiring high computational precision can utilize longer bit streams to enhance
data accuracy, thereby capturing and representing feature information more precisely to
establish a solid foundation for subsequent computations. Conversely, layers that prioritize
computational speed and primarily perform simple feature mapping or rapid data transmis-
sion can use shorter bit streams. This approach effectively reduces computational latency,
accelerates data processing, and enhances the overall operational efficiency of the network.
This method of dynamically adjusting stochastic bit stream length fully leverages the advan-
tages of stochastic computing in neural networks. It is particularly well-suited for parallel
computing scenarios, as bit streams of varying lengths can be processed in parallel, maximiz-
ing hardware utilization and improving computational parallelism. In terms of reliability
computing, the bit stream length can be dynamically adjusted based on the importance
of different layers to ensure the computational reliability of critical layers. Additionally,
in computationally intensive applications where extreme precision is not essential—such
as stochastic encoding in communications and image processing—appropriately tuning
the bit stream length can significantly improve computational efficiency while maintaining
acceptable accuracy, thereby meeting practical application requirements. In summary, the
application of stochastic computing in neural networks—especially the use of different bit
stream lengths across different layers—provides an effective strategy to balance hardware
efficiency and computational performance.

In neural networks, the layers closer to the input layer have a greater impact on the
overall accuracy of the network compared to those near the output layer [32]. This is
because the layers near the input layer are primarily responsible for extracting raw features,
which serve as the foundation for all subsequent layers to perform complex computations
and feature fusion. If the features captured near the input layer are inaccurate, the resulting
errors will propagate through all subsequent layers, leading to deviations in the network’s
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feature representation and ultimately affecting the final output. In contrast, the layers
near the output layer primarily handle the final classification or regression operations
on features that have already been extracted and fused through multiple layers. Their
function is more focused on summarizing and consolidating existing information. As a
result, even if errors occur near the output layer, their impact is relatively limited to the
final few layers. Unlike errors near the input layer, which can cause a cascading effect and
lead to a global decline in accuracy, errors near the output layer do not significantly affect
the overall network performance. This study investigates the impact of using different
stochastic bit stream lengths at various layers of the network on the overall recognition
rate, as illustrated in Figure 8. Figure 8a shows the effect of the bit stream length in the
first convolutional layer on the recognition rate. In this case, multiplication is performed
using a bipolar stochastic computing format, and the resulting values are summed using
an APC to obtain binary values, while the subsequent parts of the network operate using
binary computation. Figure 8b illustrates the effect of the bit stream length in the output
layer (Fully Connected Layer 2) on the recognition rate. Here, only the multiplications in
the final fully connected layer are performed using a bipolar stochastic computing format,
and the results are summed using an APC to obtain binary values. The rest of the network
operates entirely using binary computation.
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The results show that when the stochastic bit stream at the output end is reduced to
4 bits, the entire network still achieves a recognition rate of over 97%, regardless of whether
traditional stochastic computing encoding or deterministic stochastic computing encoding
is used. However, under the deterministic stochastic computing encoding method, the bit
stream length at the input end can only be reduced to a minimum of 64 bits, whereas under
the traditional stochastic computing encoding method, the minimum allowable bit stream
length at the input end is 128 bits. Reducing it further would significantly degrade the
network’s recognition rate.

3.3.2. Training Optimization for 2-Bit Deterministic Encoding

As discussed in Section 3.3.1, the length of the stochastic bitstream in layers closer
to the input layer has a significantly greater impact on the overall recognition rate of the
network compared to layers closer to the output layer. Therefore, to further reduce the
power consumption and cost of stochastic computing while improving computational
accuracy, this study optimizes and improves the training process of the first convolutional
layer in the convolutional neural network.

Since a shifted deterministic bitstream of length n can represent n values, and a
PWM-type deterministic bitstream of length n can represent n + 1 values, convolution
multiplication can be achieved with only 2-bit deterministic stochastic computing encoding
if the values that need to be represented in the network input and the first-layer convolution
kernel weights are limited to only two. Table 2 presents the multiplication operations in
the first convolutional layer of the network and the corresponding 2-bit deterministic
stochastic computing encoding. Following the deterministic encoding method described in
Section 3.1, the values are encoded as follows: 1 is represented as 11, −1 as 00, and 0 as 10,
enabling convolution multiplication.

Table 2. 2-bit deterministic stochastic computing multiplication.

Multiplication Deterministic Stochastic Computing Results

0 × 1 10 × 11 10 01
0 × −1 10 × 00 01 10
1 × 1 11 × 11 11

1 × −1 11 × 00 00

To achieve precise multiplication using 2-bit deterministic stochastic computing en-
coding as shown in Table 2, an additional weight adjustment operation step [33,34] must
first be incorporated into the standard training process of the binary network. The objective
of this step is to modify the weights so that they approximate a binary distribution upon
completion of training. This adaptation enables the replacement of the first convolutional
layer with low bit stream length (2-bit) deterministic stochastic computing, with the specific
procedure detailed in Algorithm 1. In this algorithm, data represents the input data. n_max
denotes the maximum value of the weight scaling factor, which is used to control the range
of the scaling factor. N represents the number of training epochs, indicating the number
of training iterations for each scaling factor. conv1_weights denotes the weights of the
first convolutional layer. Loss represents the loss value, indicating the difference between
the model’s predicted output and the actual label target. Min_loss represents the current
minimum test loss and is used to record the best model performance. Optimizer refers to
the optimizer used to update the model weights. F.nll_loss is the negative log-likelihood
loss function, used to calculate the loss between the model output and the target labels.
test_loss represents the test loss, indicating the average loss value of the model on the
test dataset.
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Algorithm 1 Network Optimization Training Process

Variables: model instance “model”, weight scaling factor “n”, “train_loader”, test set
“test_loader”
Input: Model with initial weights
Output: Model after co-training
FOR n = 1.0 TO n_max
FOR epoch = 1 TO N:
Set model to training mode
model.train()
Scale the convolution kernel of the first convolutional layer
conv1_weights = model.conv1.weight.data * n
Restrict the weights to [−1, 1]
conv1_weights = Clamp(conv1_weights, −1, 1)
model.conv1.weight.data = conv1_weights
Training and weight update
FOR train_data in train_loader:

data, target = train_data [0], train_data[1]
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
Set model to evaluation mode and evaluate on the test set
model.eval()
test_loss = evaluation(model, test_loader)
Save the model with the best effect of the current scaling factor
IF test_loss < Min_loss:
Save(Model, n)
test_loss = Min_loss

Algorithm 1 presents a multi-stage network optimization training process that dynam-
ically adjusts the scaling factor (n) for the first convolutional layer’s kernels to co-optimize
model performance. During each epoch, the algorithm first scales and clips the conv1
weights to the [−1, 1] range before performing standard forward propagation, negative
log-likelihood loss computation, and backpropagation. After completing training at each
scaling factor stage (from 1.0 to n_max), the model is evaluated on the test set, with only
the best-performing version (achieving minimal test loss) being preserved. This design
achieves coordinated optimization between constrained convolutional kernel weight ad-
justment and global model training, ultimately outputting the model trained with the
optimal scaling factor configuration.

For the target network, after completing the training process, the following two key
conditions should be met: First, after training, the distribution of the convolution kernel
weights should align with the expected binary distribution pattern to ensure the network
has the specific feature representation and computation characteristics. Second, at the
end of the training process, the loss function must converge to a stable state, indicating
that the network has found a relatively optimal set of parameters during the optimization
process, thereby ensuring the network’s prediction accuracy and stability for input data.
Figure 9 compares the number of epochs required to achieve the binary convolution kernel
distribution and the number of epochs required for the loss function to converge for
different scaling factors, n.
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Figure 9. The Number of Epochs Required to Satisfy the Distribution of Binary Convolutional
Ker-nels and the Number of Epochs Required for Loss Function Convergence with Different Scaling
Factors n.

From the figure, it can be seen that when n = 1.6, the number of epochs required to
satisfy both conditions is the smallest, requiring only 16 epochs. Therefore, the final value
of n is set to 1.6. Figure 10 shows the comparison of the network’s first convolutional kernel
distribution during the training process when the scaling factor is 1.6.

As shown in Figure 10, during the network training process, the distribution of the
first layer convolutional kernel weights changed: the weights near 1 and −1 increased
continuously, while the weights near 0 decreased. After several rounds of convolutional
kernel scaling, the first layer of convolutional kernel weights eventually contained only
two values: 1 and −1. The input to the network is the normalized MNIST dataset, which
can be considered as containing only two values, 0 and 1. During deterministic encoding,
values greater than 0.5 are encoded as 11, while values less than 0.5 are encoded as 10.
Since both the input and the weights have only two possible values, the multiplication
in the convolution process can be performed using 2-bit deterministic encoding, greatly
simplifying the computation while ensuring calculation accuracy.
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It should be noted that the proposed method still has limitations in achieving real-time
CNN training, making it more suitable for pre-trained model applications rather than
meeting the requirements of dynamic learning systems.

4. Experiment and Analysis
4.1. Comparison of Hardware Consumption and Fault Tolerance Rate

To verify the effectiveness of the proposed near–sensing neural network design
method, this section provides a detailed comparison with binary network architectures
and traditional stochastic computing methods. The designed convolutional neural network
architectures were applied to the first convolutional layer of LeNet-5 and synthesized under
a 130 nm process, with an operating frequency set at 100 MHz.

Both the binary and proposed methods were designed as 5 × 5 × 1 convolutional
layers for comprehensive evaluation, completing multiply–accumulate operations within
a single clock cycle without ping-pong operations. The binary network design was also
quantized to 2 bits, using a 2-bit signed multiplier for multiplication. The traditional
stochastic computing method employed a linear feedback shift register (LFSR) as the
SNG and used XNOR and APC for multiplication and addition, respectively. Since APC
was used for accumulation, the summation of multiplication results was independent of
correlation. However, the accuracy of XNOR multiplication was correlation-dependent.
Thus, in the network structure designed using traditional stochastic computing, an SNG-
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sharing scheme was adopted, requiring only two SNGs for a 5×5 convolutional window.
The traditional stochastic computing scheme implemented designs with 2-bit and 256-bit
lengths, with the main difference being the bit width of the SNG and the accumulator.
The proposed method follows a design similar to traditional stochastic computing but
eliminates the SNG component, thereby reducing SNG-related resource consumption.

Table 3 presents data on area, delay, power consumption, and area-delay product
(ADP) for these neural network hardware designs. The delay is calculated as the product
of the critical path delay (CPD) and the computation cycle. ADP is a performance and
efficiency evaluation metric for circuit design, providing a comprehensive measure of
trade-offs between area and speed. A lower ADP value indicates better overall circuit
performance and higher efficiency. In Table 3, the binary method is a parallel approach that
completes computations in a single clock cycle, so its CPD is equal to the delay. Traditional
stochastic computing and the proposed network design operate in serial mode, meaning
their computation cycles depend on the length of the stochastic bitstream used. The length
of the stochastic bitstream corresponds to the computation cycle.

From Table 3, it can be seen that compared to traditional stochastic computing schemes,
the proposed network design significantly improves in terms of area, delay, and energy
efficiency. Compared to the traditional 2-bit stochastic computing scheme, the proposed
method reduces area by 44.98%, power consumption by 60.47%, ADP by 44.93%, and
increases energy efficiency by 12 times. Compared to the traditional 256-bit stochastic
computing scheme, the proposed method reduces area by 82.87% and improves energy
efficiency by 1947 times. Compared to the conventional binary design, the proposed
method reduces area by 73.56%, power consumption by 57.38%, ADP by 62.87%, and
increases energy efficiency by 3.7 times. During the design evaluation, the proposed
method eliminates the need for a ramp generator and analog comparator, while both
the binary and traditional stochastic computing schemes omit the ADC. Najafi et al. [35]
conducted a detailed evaluation of the hardware cost associated with ADCs and PWM
wave generation. The area and power consumption required for ADCs are significantly
higher than those of ramp generators and analog comparators. Therefore, in practical
applications, the energy efficiency improvement achieved by the proposed method maybe
even better than the values shown in Table 2. To quantify potential overheads (such as
deterministic stochastic computing-to-binary conversion circuits) and evaluate true system-
level efficiency, this paper employs Vivado synthesis tools to implement circuit synthesis of
the hybrid-encoded neural network using 2-bit deterministic encoding. A comprehensive
hardware resource comparison was conducted between conventional binary networks and
our proposed hybrid-encoded neural network, with the synthesis results shown in the
accompanying Figure 11.

Table 3. Comparison of experimental results.

Area (µm²) Delay (ns) Total Power
(µW) Energy (fJ)

Area-Delay
Product (µm² ×

ms)

Energy
Efficiency
(TOPs/W)

Binary 4481.12 3.33 116.67 388.52 14.92 40.70
Proposed Structure 1167.95 4.74 34.94 165.59 5.54 150.97

Traditional SC (2-bit) 2122.59 4.74 88.38 418.94 10.06 12.59
Traditional SC (256-bit) 6820.10 1218.56 264.64 322485.49 8310.7 0.08
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Table 4 compares the fault tolerance results of different network structures under
varying bit flip rates, including the binary-form network, as well as networks optimized
with traditional 2-bit stochastic computing and deterministic stochastic computing in the
first convolutional layer.

Table 4. The Impact of Different Input Bit Flip Rates on Recognition Results.

1% Bit Flip Rate 5% Bit Flip Rate 10% Bit Flip Rate

Binary 97.69% 52.04% 20.87%
Network Optimization +

Traditional 2-bit SC 98.01% 70.48% 41.26%

Network Optimization +
2-bit Deterministic SC 98.43% 72.43% 42.75%

Table 5 compares the noise resistance of different network architectures after adding
independent and identically distributed Gaussian white noise to the normalized pixel
values, where σ is the standard deviation of the Gaussian noise.

Table 5. The Impact of Different Input Noise Intensities σ on Network Recognition Results.

σ = 0.1 σ = 0.3 σ = 0.5

Binary 97.21% 85.65% 62.91%
Network Optimization +

Traditional 2-bit SC 98.49% 92.59% 76.53%

Network Optimization +
2-bit Deterministic SC 98.51% 92.17% 78.44%

For the network recognition rate under varying lighting conditions, two parameters
are generally considered: global brightness and local shadow intensity. Among them, the
global brightness is represented by Equation (7):

Iout(x, y) = Iin(x, y) + ∆, ∆ ∼ U(a, b) (7)

where ∆ is the global brightness offsets, typically ranging from [−0.3, 0.3]. A value of
∆ = +0.3 corresponds to overexposure under strong light, while ∆ = −0.3 corresponds to un-
derexposure under weak light. Table 6 compares the recognition rates of different network
architectures when varying global brightness offsets are applied to the normalized inputs.
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Table 6. The Impact of Different Global Brightness Offsets on Network Recognition Results.

∆ = −0.3 ∆ = 0 ∆ = 0.3

Binary 73.56% 99.01% 70.38%
Network Optimization +

Traditional 2-bit SC 95.77% 98.92% 96.02%

Network Optimization + 2-bit
Deterministic SC 96.21% 99.01% 96.14%

The local shadow intensity is represented by Equation (8):

Iout = Iin•(1 − αM(x, y)) (8)

where M(x,y) is the gradient mask, which defines how the shadow intensity smoothly
transitions between different regions. The parameter α denotes the shadow opacity level,
and the range of α is [0.4, 0.8], corresponding to a transmittance of 60% to 20%.

Table 7 compares the recognition performance of different network architectures when
varying local shadow densities are applied to the normalized inputs.

Table 7. The Impact of Different Shadow Opacity Levels on Network Recognition Results.

α = 0.2 α = 0.5 α = 0.8

Binary 96.51% 82.68% 63.05%
Network Optimization +

Traditional 2-bit SC 97.82% 88.63% 80.94%

Network Optimization + 2-bit
Deterministic SC 98.33% 90.14% 79.31%

Based on the aforementioned experimental results, it can be concluded that when
employing our proposed network optimization method, both the deterministic stochastic
computing and conventional stochastic computing implementations demonstrate signifi-
cantly higher fault tolerance compared to binary computing.

4.2. Accuracy Evaluation

The structures implemented in Section 3.1 were applied to the first layer of LeNet-5,
and the effectiveness of each network design was tested using the MNIST handwritten
digit dataset. The binary network and the proposed design used collaboratively optimized
trained weights, whereas traditional stochastic computing used non-collaboratively trained
weights for testing. The test results are shown in Figure 12.

As seen in Figure 12, after co-training, the network using the proposed optimization
method combined with 2-bit deterministic stochastic computing achieved an accuracy of
99.01%, equivalent to that of the binary network. The network using the proposed optimiza-
tion method combined with traditional 2-bit stochastic computing achieved an accuracy of
98.92%. In contrast, traditional stochastic computing, when using non-collaboratively opti-
mized weights, could only achieve an accuracy of 98.16% even with a 256-bit stream length,
resulting in a 0.85% accuracy loss. When using a 2-bit stochastic bit stream length, the
accuracy loss was even more significant at 78.58%. This accuracy degradation in stochastic
computing is primarily due to the use of XNOR for multiplication, which can cause large
error fluctuations when both multiplicands approach zero. The proposed collaborative
optimization training method effectively mitigates such errors, enabling deterministic
stochastic computing to achieve accuracy equivalent to that of the binary network.
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5. Conclusions and Outlook
In summary, this study significantly enhances the efficiency of stochastic computing

in convolutional neural networks for image classification through an innovative encoding
approach, improved input data processing, and collaborative optimization of the network
training process. The proposed method enables low-cost, high-efficiency convolutional
operations under short bit stream inputs, achieving high recognition performance with
minimal bit stream length while significantly reducing system latency and power con-
sumption. Compared to traditional stochastic computing networks, the proposed design
shortens the bit stream length by 64 times without compromising recognition accuracy,
achieving a 99% recognition rate with a 2-bit input. Compared to the conventional 2-
bit stochastic computing approach, the proposed design reduces area by 44.98%, power
consumption by 60.47%, and improves energy efficiency by 12 times. Compared to the
traditional 256-bit stochastic computing scheme, the area is reduced by 82.87%, while
energy efficiency increases by 1947 times. Compared to conventional binary designs, the
proposed method reduces area by 73.56%, power consumption by 57.38%, and improves
energy efficiency by 3.7 times. These comparative results demonstrate that the proposed
design offers significant advantages for tasks such as image classification in near-sensor
and edge computing environments, providing an effective solution for high-efficiency,
low-cost hardware neural networks.

For future research, the applicability of this method could be further explored in
more complex scenarios: First, for large-scale datasets like ImageNet, the input RGB data
could be preprocessed into single-channel grayscale images and represented with extended
bitstream length. This adaptation would theoretically enable our co-optimization approach
to be applied to ImageNet-compatible architectures such as AlexNet. Second, in speech
recognition applications, the short-time Fourier transform (STFT) spectrum of speech
signals can be directly encoded into PWM-type deterministic bitstreams. Leveraging the
inherent sparsity of speech spectra, the weights of the first convolutional layer can be
constrained to binary values (−1/1) while appropriately increasing bitstream length to
achieve speech recognition functionality. Comprehensive evaluation of hardware costs and
reliability in practical deployments will facilitate the application of this method in broader
edge computing scenarios.
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