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ABSTRACT

Motivation: Automated fluorescence microscopes produce massive

amounts of images observing cells, often in four dimensions of space

and time. This study addresses two tasks of time-lapse imaging ana-

lyses; detection and tracking of the many imaged cells, and it is es-

pecially intended for 4D live-cell imaging of neuronal nuclei of

Caenorhabditis elegans. The cells of interest appear as slightly de-

formed ellipsoidal forms. They are densely distributed, and move rap-

idly in a series of 3D images. Thus, existing tracking methods often fail

because more than one tracker will follow the same target or a tracker

transits from one to other of different targets during rapid moves.

Results: The present method begins by performing the kernel density

estimation in order to convert each 3D image into a smooth, continu-

ous function. The cell bodies in the image are assumed to lie in the

regions near the multiple local maxima of the density function. The

tasks of detecting and tracking the cells are then addressed with two

hill-climbing algorithms. The positions of the trackers are initialized by

applying the cell-detection method to an image in the first frame. The

tracking method keeps attacking them to near the local maxima in

each subsequent image. To prevent the tracker from following multiple

cells, we use a Markov random field (MRF) to model the spatial and

temporal covariation of the cells and to maximize the image forces and

the MRF-induced constraint on the trackers. The tracking procedure

is demonstrated with dynamic 3D images that each contain 4100

neurons of C.elegans.
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1 INTRODUCTION

Fluorescence microscopy imaging of live cells has been a power-

ful tool for studying cellular and molecular dynamics in many

applications (Peng, 2008; Swedlow et al., 2009). Automated

microscopes generate vast numbers of images of the observed

cells, and the images are often in four dimensions of space and

time. The cells in these images are densely distributed, move

rapidly and are often similar in appearance. It is thus impossible

in practice to manually track hundreds of such cells as their

movement is captured in a sequence of images. This has led to
growing interest in computational methods that can automatic-

ally detect and track multiple moving cells (Altinok et al., 2006,
2007; Gerlich et al., 2003; Hadjidemetriou et al., 2004; Jaqaman

et al., 2008; Meijering et al., 2006; Shen et al., 2010; Smal et al.,
2008a, b; Thomann et al., 2002).

The appearance of imaged cells can vary from globular to
more complicated forms. They move independently, or some-

times their movement is coordinated. Cell tracking methods
have been developed for particular cases of interest [see

Meijering et al. (2012) for a comprehensive survey]. In general,
tracking procedures consist of two steps: (i) relevant objects are

segmented from the background in each frame by using, for ex-
ample, the watershed algorithm (Grau et al., 2004; Malpica et al.,

1997; Vincent and Soille, 1991), and (ii) each of the segmented

objects is then linked to the nearest object in the subsequent
frame (Hadjidemetriou et al., 2004; Meijering et al., 2006). To

reduce the number of failures in the process of matching nearest
neighbors, closeness is defined not only on the spatial distance

between the objects, but also on other available information,
such as variations in volume, morphology, intensity and other

features (Meijering et al., 2012). The integration of such infor-
mation is essential when the imaged cells move in a complex

manner. However, in several studies, such information is limited
or even unavailable. For instance, when fluorescent cells are

much smaller than the optical resolution of microscopes, it is
difficult to evaluate morphological features because most objects

have similar appearances. This is especially true when the objects
have inherently similar shapes, are closely spaced, and are barely

distinguishable from the background. In such cases, tracking

must be done using only the central coordinates of the cells.
This study tackles the problem of tracking many cells while

relying only on the central coordinates. The cells of interest

appear as slightly deformed ellipsoidal forms. In addition,
they move rapidly in coordination with one another. Widely

used tracking methods, such as nearest matching methods

(Hadjidemetriou et al., 2004; Meijering et al., 2006), particle fil-
ters (Doucet et al., 2001; Khan et al., 2004; Smal et al., 2008a, b;

Shen et al., 2010) and graph-based optimization (Jaqaman et al.,
2008), often fail because trackers change from the followed target

to a different one (turnover) or because two or more trackers
coalesce on the same target during rapid moves. One way to

overcome such difficulties is to utilize a spatiotemporal pattern*To whom correspondence should be addressed.
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of covariation for the moving cells. In conventional methods, in

which the trackers follow each object individually, many such

turnovers and coalescences occur in the transition of objects.

In particular, when using nearest neighbor matching of seg-

mented objects, the occurrence of only a few turnovers can trig-

ger a series of many tracking failures. However, when cells are

known to move in a coordinated way and the transition pattern

is modeled, such errors can be corrected by successful trackers,

which can return the failed trackers to their correct positions. In

other words, unlike the independent tracking of multiple cells,

the performance is enhanced by allowing the trackers to interact

cooperatively by sharing the direction and distance of the moves.
The present method aims to improve the tracking performance

by utilizing the spatiotemporal covariation of the moving cells.

The proposed method relies on the kernel density estimation

(KDE) (Silverman, 1986; Wand and Jones, 1986) and several

optimization modules. It begins by using KDE to convert each

image to a smooth, continuous density function in 3D space. The

cells in the image are assumed to appear as slightly deformed

ellipsoidal forms and to lie in the regions around the local

maxima of the density functions. The tasks of detecting and track-

ing the cells are addressed by using hill-climbing algorithms for

the continuous functions. For detecting the cells, we introduce a

new optimization method, the repulsive parallel hill-climbing

(RPHC) algorithm, which detects all of the existing local

maxima and thus reduces the chances of failing to detect the

darker and smaller objects. The trackers are initialized at the de-

tected positions in the first frame. The tracking algorithm keeps

them near the local maxima, which change with time. To prevent

the trackers from turnovers and coalescences, we used a Markov

random field (MRF) prior to model the spatial and temporal

covariation of the moving cells. By using the MRF-induced co-

operation, the present method tries to keep the trackers near to

the varying local maxima of the density functions by optimizing

the image forces under a constraint on the covariation of the

objects. The present method is an extension of Smal et al.

(2008b) and Khan et al. (2004), which proposed similar tracking

methods based on the particle filter andMRF priors. They aimed

to track the movements of several tens of targets interacting with

each other. This study differs from their works in the prior con-

struction as shown in later. In addition, this study is conducted

for a much larger number of targets, e.g. several hundreds of cells,

while the motions of targets are more strongly correlated than

those considered by the previous studies. The tracking procedure

will be demonstrated below with data that we acquired from live

imaging of neuronal nuclei of Caenorhabditis elegans.

2 METHODS

2.1 Data

With confocal laser microscopy, live-cell imaging experiments were car-

ried out to identify simultaneously multiple neurons of adult C.elegans.

The neuronal nuclei of C.elegans were labeled with mCherry, a well-

known red fluorescent protein (Shaner et al., 2004), which was fused to

four nuclear localization signals and was expressed specifically in

neurons. The microscope measured the intensities of this tracer in order

to follow the positions and movements of the imaged objects. In this

study, the following two types of data were analyzed.

� DATA1. A set of static 3D gray-scale images was used to test the

cell detection algorithm. Each image stack contained 148–200

neurons whose positions were identified manually by human obser-

vers in order to define the ground truth. Figure 1 shows a 3D

image which consists of a 203 slice stack of 512� 256 images.

The voxel-specific intensities wi were defined over a set of n

voxels, fxi 2 R
3
+ji=1; . . . ; ng; where the total number of voxels

was n=512� 256� 203 (x, y, z). According to the spatial distribu-

tion of the fluorescent protein within a nucleus, the appearance of

each neuron can vary slightly in size and shape, and can be either

ellipsoidal or somewhat more complicated. We obtained 10 datasets

of this type.

� DATA2. We obtained a time series of 512� 256� 20 images for

each time frame t 2 f1; . . . ;Tg; where T=500. The data were

used to assess the performance of the cell-tracking algorithm. At

each frame t, the voxel-specific intensities wi;t were measured over

n voxels fxi 2 R
3
+ji=1; . . . ; ng ðn=512� 256� 20Þ: We obtained

three different datasets of this type. For each dataset, the total ob-

servational time was �3.25 min with 2.56 frames per second. In the

series of experiments, a worm’s body was inserted and fixed to a

polydimethylsiloxane-based microfluidic device tube attached to

the microscope (Chronis et al., 2007), and there was no stimulation.

Although sufficiently immobilized and attached to the device, the

worm can slightly change its body posture in the field of view. As

seen from Figure 2 and the video in Supplementary Material 1, the

shift of the imaged neurons tends to be almost in parallel, retaining

their relative positions, but some groups of neurons often move to-

gether in a direction that is slightly different from that of the others.

These groups often exhibit significantly greater mobility than aver-

age. These dynamic properties are modeled and are automatically

explored by using the MRFs. It is noted that there are no cell div-

isions during the experiments, and thus the present method is de-

signed to have a fixed number of trackers.

2.2 Outline of the method

The automated tracking procedure that we propose consists of four

internal processing steps (see Figure 3 for a schematic view):

(a) For each time frame t, use KDE to transform the 3D image to a

continuous density function.

(b) At the initial frame t=1, detect all of the local maxima of the

density function by using a hill-climbing algorithm. Identify the

number g and the central coordinates �t=ð t;1; . . . ;  t;gÞ of the
imaged cell. The g trackers are initialized at those positions.

(c) For each of the adjacent frames ðt� 1; tÞ for t 2 f2; . . . ;Tg; track
the centers of the cells by shifting the g trackers from �t�1 to �t

near the local maxima of the density function of the current frame

t. This is done by maximizing the objective function that consists of

the image force induced by the density function and the constraint

on the transitions of the g trackers.

(d) For each t, segment a region of each cell for which neighboring

voxels will be allocated to the tracked cell center.

2.3 KDE

KDE converts each digital image to a continuous density function. This

aims to reduce image noises instead of using existing image blur filters,

and to use optimization techniques designed for continuous objective

functions in the subsequent processes.
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For each t, the image It is converted to the density function p(x) as

p xð Þ=
Xn
i=1

wikh x� xið Þ

with kh x� xið Þ / exp � 1

2h
x� xið ÞT��1 x� xið Þ

� �
:

ð1Þ

For notational simplicity, the frame index t is omitted here. This is a

mixture of the n Gaussian distributions, khðx� xiÞ; with each centered

at a voxel position xi. The normalized voxel intensities wi comprise the

mixing rates, which should sum to one. The function is continuous on

x 2 R
3
+: Hence, hill-climbing algorithms for continuous functions can be

used, and by repeating them many times with different initial values, the

local maxima fxj@ log pðxÞ=@x=0; j@2 log pðxÞ=@x@xTj50g can be dis-

covered. With this conversion, we can compute the gradient and the

Hessian matrix at any x 2 R
3; and thus can identify the local maximum

achieving the exact zero gradient while it is difficult to define accurately

the local maximum for usual peak detection methods that rely on raw

digital images.

To reduce the noise and artifacts in the images, it is important to

control the covariance parameters of the kernel densities that comprise

the bandwidth h 2 R
1
+ and the coordinate-specific dispersions in

�=diagð�x; �y; �zÞ: The density function becomes either over- or

under-smoothed as the covariance components vary from larger to smal-

ler values. Hence, the choice of these parameters has a strong influence on

the ability to find the local maxima. In this study, we tuned the covariance

parameters so that they were specifically optimized for analyzing the live-

cell-imaging data that we measured. The coordinate-specific dispersions

were fixed at ð�x; �y; �zÞ=ð10; 10; 10Þ and ð�x; �y; �zÞ=ð5:06; 5:06; 1:00Þ
for DATA1 and DATA2, respectively. We chose these values in the fol-

lowing way; relatively smaller objects had been previously segmented

from several images using the k-means clustering method as shown in

Appendix B, and observed scale ratios in the three directions (x, y, z) were

referred to determine these values. To determine the global scale h, we

first isolated subimages that included tightly clustered cells from some of

the target datasets, as shown in Figure 4. Here, the number of cells in

each subimage was determined by expert human observers. By perform-

ing KDE with each subimage and using the cell-detection method

described in the next subsection, we counted the number of local

maxima that appeared in each grid point of width h (Figure 4). We

then selected the value of h that yielded an appropriate number of local

maxima; this was 0.52 and 0.97 for DATA1 and DATA2, respectively.

These parameter values were applied to all the data of the same type.

In statistics, various methods for selecting the bandwidth have been

established for multivariate cases, including the minimum-risk procedure

based on the integrated mean square error and the cross-validation

method [refer to Silverman (1986) and Wand and Jones (1986) for re-

views]. These are still useful for image processing, given trivial modifica-

tions (conventional procedures presume equal mixing rates, wi=1=n, and

hence it is necessary to derive variants for unequal mixing rates when

using the existing techniques). However, we decided not to use any of the

existing procedures because numerical tests showed they have a tendency

of yielding over- or under-estimates.

In subsequent steps, it is necessary to compute the kernel density many

times. This becomes a computational bottleneck due to the large number

of basis functions, e.g. n=2, 621, 440 for DATA2. Therefore, for each

3D image, we reduced n by conducting a threshold operation in which

voxel intensities55% upper quantile were set to zero. To control the

threshold level, many other techniques can be applied, for example,

Fig. 2. Examples of dynamic image frames ð512� 256� 20Þ: The top

and bottom panels show the images at t=30 and t=34, respectively.

The full movie is available in Supplementary Material 1

Fig. 1. Static 3D image of 157 neurons ð512� 256� 203Þ: The white

circles indicate the positions of the neurons, which were detected by

expert human observers. Imaged cells appear as slightly deformed ellips-

oids, as seen in the enlargement

Fig. 3. Outline of the proposed method. For each time frame, the 3D

image is transformed to the continuous density function by using the

KDE technique. Using the image at t=1, a hill-climbing method for

continuous functions is used to initialize the trackers’ positions at the

local maxima of the density function. The tracking method then tries

to keep the trackers near to the local maxima as they change with time

in the subsequent images
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Otsu’s algorithm for binarization of gray-scale images (Otsu, 1979). See

Sezgin and Sankur (2004) for a survey of threshold algorithms. In add-

ition, Chapter 4 of Silverman (1986) provides some techniques that can be

implemented to reduce the computational cost of KDE.

2.4 Cell count and detection

Once a kernel density estimate has been obtained for the initial frame, an

exhaustive search is then conducted to find the local maxima. The

number and the positions of the local maxima can be used to estimate

the number of cells and their positions, respectively. Starting from an

arbitrary initial position  ð0Þ 2 R
3
+; the following recurrent formula pro-

duces a sequence f ðsÞjs=0; 1; . . .g that converges to a local maximum:

 s+1ð Þ=
Xn
i=1

ui  
sð Þ

� �
xi with ui  

sð Þ
� �

/ wikh  sð Þ � xi

� �
: ð2Þ

At step s, the position  ðsÞ is renewed to  ðs+1Þ by taking the weighted

average of xi, i=1; . . . ; n: Points xi that are closer (as determined by the

normalized weights uið ðsÞÞÞ to the current position  ðsÞ have a greater in-

fluence on the new position. In a way similar to the expectation-

maximization algorithm for a Gaussian finite mixture, it can be proved

that this hill-climbing procedure produces a non-decreasing sequence of

pð ðsÞÞ; s=0; 1; 2; . . . ; and converges to the nearest local maxima. In a

context of cluster analyses, a mode-finding method of this type was

described in Hinneburg and Gabriel (2007), which also provided some

techniques for speeding up the computation. Equation (2) can be derived

as a trivial variant of their algorithm.

Finding all of the local maxima requires repeating the search from

many different initial positions because many searches may converge to

the same local maximum that may correspond to a significantly bright and

large object. Figure 5 shows an experimental result in which 500 different

initial positions were generated uniformly over 3D space (DATA1), and

the 500 independent trials found 118 different local maxima. Among the

157 cells that were manually identified, 41 of the darker and smaller cells

rest undetected.

In order to improve the detection performance, the RPHC algorithm

was used. Given m initial seeds,  
ð0Þ
1 ; . . . ;  ð0Þm ; the method computes the

following recursive formula in parallel for j=1; . . . ;m;

 
s+1ð Þ
j =

Xn
i=1

ui  
sð Þ
j

� �
xi
Y
k:k6¼j

I xi =2Rv  
sð Þ
k

h i� �
Xn
i=1

ui  
sð Þ
j

� �Y
k:k 6¼j

I xi =2Rv  
sð Þ
k

h i� �

with ui  
sð Þ
j

� �
/ wikh  

sð Þ
j � xi

� �
;

ð3Þ

where Ið�Þ is an indicator function that takes the value one if the

argument is true and is zero otherwise. The set Rv½ ðsÞk � denotes a local

ellipsoidal region of volume v centered at  
ðsÞ
k ; which defines a neighbor-

ing area of the k-th object at step s. This equation differs from Equation

(2) in the weight components u�i / uið ðsÞj Þ
Q

k:k6¼j Iðxi =2Rv½ ðsÞk �Þ: The

voxel position xi and the corresponding kernel density are removed

from the operation of renewing the j-th position by assigning u�i =0 if

the voxel is already occupied by the neighboring areas Rv½ ðsÞk � of the
other positions  

ðsÞ
k ; k 6¼ j: Hence, the j-th process  

ðsÞ
j tends to deviate

from the others due to the repulsion acting on  
ðsÞ
1 ; . . . ;  ðsÞm (see Figure 6).

It is expected that the m search processes will tend to climb different hills,

and that with a single parallel run, they will therefore converge on dif-

ferent local modes.

In our implementation, the neighbor is given by the ellipsoidal region

Rvs ½ �=fxjðx�  Þ
TH�1ðx�  Þ 	 vsg; whose volume vs is reduced from

a positive value to zero in stages as the step s increases. The Hessian

matrix @2 log pðxÞ=@x@xTjx= is set to the covariance matrix H, which

approximates the local curvature in a neighborhood of  . A method for

computing the Hessian matrix is described in Appendix A. The volume

decreases linearly as vs=vs�1 � � with a small positive � until it con-

verges to zero. It should be noted that the iteration must converge to

zero volume in order to remove the bias caused by the repulsion of the

nonzero vs. The initial volume v0 and the rate of decrease � should be

determined by the cell volumes. Appendix B describes a procedure for

obtaining initial estimates of the cell volumes and setting the parameters

for the reduction process.

In Supplementary Material 2, we provide a demonstration movie that

shows the search process of the RPHC algorithm applied to synthetic

data in which 96 cells were allocated at equally spaced grid points. For

the purpose of demonstration, 120 initial positions were allocated within

a small region near a corner of the 3D space. For an initial period of time,

the 120 search processes repelled each other, and they gradually diffused

over the entire space due to the repulsion. At convergence, they had

determined all 96 local maxima. More detailed tests with real data will

be shown in Section 3.

2.5 Cell tracking

After applying the RPHC algorithm to the image in the first frame t=1,

the trackers were placed at the positions �1=ð 1;1; . . . ;  1;gÞ of the g

non-overlapping objects in which redundant positions were removed

Fig. 5. Result of 500 independent trials of the hill-climbing algorithm,

Equation (2), with different initial values. The red boxes indicate the 116

true positives (TPs) that were detected by both the hill-climbing method

and the human observers. The white boxes indicate the 41 false negatives

(FNs) that were overlooked by the hill-climbing method. The yellow

boxes indicate two false positives (FPs) that were detected by the hill-

climbing method

Fig. 4. Subimages containing several closely spaced cells were isolated

from the given data (DATA1). For each subimage, the number of cells

was identified by human observers. An appropriate value for the band-

width h was chosen so that the number of local maxima of the density

function was in agreement with the manually identified cell counts
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from the m points of convergence. The objective of multi-object tracking

is to keep the trackers targeting the local maxima, which change with

time. There are two kinds of tracking errors to be considered: (i) different

trackers merge to the same target, and (ii) a tracker switches to a different

target.

To prevent the trackers from merging and switching, we use the spa-

tiotemporal covariation of the movement of the cells. As a result, the j-th

tracker is encouraged to transit from  t�1;j to  t;j in conjunction with the

other trackers that belong to a set Cj, called the neighbor set of j. To be

specific, we build a transition model based on an MRF as

 t;j �  t�1;j=
X
k2Cj
ð t;k �  t�1;k+�j;kÞ; ð4Þ

where �j;k �Nð0; �j;k�Þ: The direction and distance of the move  t�1;j
!  t;j are correlated with those of  t�1;k !  t;k for the neighboring

trackers k 2 Cj: The degree of correlation is controlled by the magnitude

of the variance �j;k 2 R
1
+ of the Gaussian noise �j;k: As �j;k becomes

smaller, the higher correlations are induced to the transition of  t;j and

 t;k: The construction of Cj will be described below.

With the transition model of Equation (4) and the current guess �t�1;

the tracking method explores the new �t by finding the maximum of the

conditional density with respect to �t :

p �tj�t�1; Itð Þ /
Yg
j=1

exp
1

2�
log
Xn
i=1

wi;tkh  t;j � xi
� � !

�
Y
k2Cj

exp � 1

2�j;k
jj  t;j �  t�1;j
� �

�  t;k �  t�1;k
� �

jj2�
� �

;

ð5Þ

where jj � jj2� denotes the square of the Mahalanobis distance with the

covariance matrix �. The first component is the Gibbs distribution with

the temperature 2�; whose energy involves the logarithmic transform-

ation of the current kernel density. This yields an image force on the

tracker �t; which is then attracted to a high-probability region of the

KDE. The MRF model in Equation (4) defines the second component,

which enforces the spatiotemporal covariation and eliminates the over-

laps when renewing the trackers’ positions.

To seek the solution for max �t
pð�tj�t�1; ItÞ; we conduct the follow-

ing recursion for j=1; . . . ; g and s=0; 1; 2; . . . until convergence;

 
s+1ð Þ
t;j =�j;0

Xn
i=1

ui  
sð Þ
t;j

� �
xi+

X
k2Cj

�j;k  t�1;j+ 
sð Þ
t;k �  t�1;k

� �

with ui  
sð Þ
t;j

� �
/ wi;tkh  

sð Þ
t;j � xi

� �
;

ð6Þ

�j;0=
��1

��1+
X
k2Cj

��1j;k

and �j;k=
��1j;k

��1+
X
k2Cj

��1j;k

:

In the above, the jCjj+1 components are averaged with the assigned

weights f�j;0; �j;kjk 2 Cjg: The weighted average of the voxel coordinates

in the first term of Equation (6) arises from maximizing only the image

force, i.e. the Gibbs distribution in the first component of Equation (5).

Maximizing the second component of Equation (5) derives the remaining

jCjj components that work to shift  
ðs+1Þ
t;j toward the same direction as the

other  t�1;k !  
ðsÞ
t;k for k 2 Cj:

To define the graphical structure, Cj; j=1; . . . ; g; we explore a min-

imum spanning tree of the g trackers. The �-scaled Mahalanobis dis-

tances between the previous positions  t�1;k; k=1; . . . ; g; are assigned

as the edge costs of the complete graph on the g vertices. For each

frame, Prim’s algorithm (Prim, 1957) is used to find the spanning tree

that has the lowest total cost. We then assign the inverse of each edge cost

to the noise variance as �j;k / 1=jj t�1;j �  t�1;kjj2�. Because �j;0 and �j;k;

k 2 Cj; are invariant under any multiplication of � and �j;k; k 2 Cj by an

arbitrary constant, it is enough to determine the ratio between � and

f�j;kjk 2 Cjg in order to compute Equation (6). We controlled the ratio

value manually while inspecting the tracking results.

Smal et al. (2008b) and Khan et al. (2004) proposed the similar ideas of

usingMRFpriors based on the particle filter in order to track themovement

of several tens of targets. Their MRF priors rely only on the current pos-

itions �t of objects; coalescence of trackers can be avoided by penalizing

tracked positions that are closely spaced. Instead, the present MRF prior

describes a different type of motion coherency, the direction and distance of

the transition �t�1 ! �t between two successive frames among neighbor-

ing objects. This model is designed specifically for our data.

2.6 Segmentation: Bayes’ allocation rule

We address the segmentation task as follows; the voxels that surround

each central coordinate were allocated to the tracked object successively.

For a given position  t;j at each time t, we define the region of interest

(ROI),Aj; as the collection of voxels lying in a high-probability region or

a cluster of the KDE. The following procedure explores the ROIs by

allocating each voxel to one of Aj; j=1; . . . ; g; based on Bayes’ rule.

(i) Round off to the nearest integer each of the tracked positions  t;j

within the 3D image space of interest.

(ii) Set a threshold level � 2 f0; 1g; which is used for the Bayes’

allocation rule.

(iii) Initialize the ROIs by Aj=f t;jg for j=1; . . . ; g:

(iv) Execute the following steps until convergence:

(a) For each voxel position, say xi, compute the probability of

allocating i to Aj 2 f1; . . . ; gg as

p i 2 Aj

� �
=

X
k2Aj

wk;tkh xi � xkð Þ

Xn
k=1

wk;tkh xi � xkð Þ
:

(b) The voxel i is allocated to Aj� if and only if j�=arg max j p

ði 2 AjÞ and pði 2 AjÞ4�.

(c) Return to step (a) until no further change is made in renew-

ing any Aj:

3 RESULTS AND DISCUSSION

3.1 Cell detection

The RPHC algorithm was applied to each of the 10 datasets

(DATA1) in which 148–200 manually identified cells were

imaged. For the hill-climbing, 500 initial values were allocated

uniformly over the entire 3D space. The results were compared

Fig. 6. Schematic view of the RPHC algorithm. (1) The two search pro-

cesses (A and B) are climbing the same local maximum. (2) When renew-

ing process A, the kernel densities within a neighboring area of process B

are removed, which changes the shape of the hill. Because of this, process

A will move toward a different hill
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to those of the hill-climbing without repulsion [500 independent

trials of Equation (2)] and the watershed segmentation (Grau

et al., 2004; Malpica et al., 1997; Vincent and Soille, 1991).

For the watershed segmentation, we used theMATLAB function

watershed after performing a noise-reduction process (smooth3 in

MATLAB). We then computed the center of each segmented

region to define a point estimate of the cell position. For each

method, a detected position was called a true positive if it was

within a radius of 5 pixels of a manually identified cell position;

otherwise, it was called a false positive. A manually identified

position that was overlooked by a computational method was

called a false negative. The detection performances for the 10

datasets are summarized in Table 1. On average, the inclusion

of the repulsive force in the parallel hill-climbing process

increased the rate of true positives by410%, with only a slight

increase in the rate of false positives (see the results of the inde-

pendent hill-climbing and RPHC algorithm in Table 1). Figure 7

shows the 151 positions detected by the RPHC algorithm, and

Figure 8 shows the ROIs resulting from the Bayes’ voxel alloca-

tion rule. For this dataset, the RPHC algorithm resulted in 138

true positives, 13 false positives and 19 false negatives, whereas

those of the independent hill-climbing algorithm were 116 true

positives, 2 false positives and 41 false negatives.
The hill-climbing algorithm is ensured theoretically to con-

verge to a local maximum in spite of the presence or absence

of repulsion. In this task, it is important to discover all existing

local maxima, and the decision whether or not each identified

position is a false positive or true positive is to be left up to expert

knowledge or an additional post-processing step. Indeed, some

positions called the false positives were identified as cells the

human observers failed to find. In this regard, the RPHC algo-

rithm that identified much larger numbers of local maxima out-

performed the independent search. It should be remarked that

the independent search even with 1000 initial seeds only identi-

fied �73% of the manually identified positions on average

(Table 1), and thus showed no significant improvements while

the computation time was doubled.
On the other hand, as indicated by many previous studies,

the watershed segmentation exhibited obvious oversegmentation,

as shown in Table 1. For example, for the dataset shown in

Figure 9, the watershed segmentation resulted in 245 detected

Table 1. Comparison of the cell-detection performances

Independent_500 Independent_1000 RPHC Watershed

False positive rate 0 (0) 0 (0) 0.0301 (0.0305) 0.3453 (0.1182)

True positive rate 0.7190 (0.0257) 0.7383 (0.0287) 0.8041 (0.0362) 0.8021 (0.0381)

The columns indicate the independent hill-climbing algorithm with 500 and 1000 initial positions (Independent_500 and Independent_1000), the

RPHC algorithm (RPHC) and the watershed segmentation (Watershed). Rates of false positives and true positives were averaged over the 10 datasets

(DATA1). The values in parentheses indicate the standard deviations.

Fig. 9. Centers of ROIs (245) obtained by the watershed segmentation on

DATA1. The red, white and yellow boxes indicate TPs (122), FNs (35)

and FPs (123), respectively (the definitions of TP, FN and FP are given in

the caption of Figure 5)

Fig. 7. Result of the RPHC algorithm on DATA1. The red, white and

yellow boxes indicate TPs (138), FNs (19) and FPs (13), respectively (the

definitions of TP, FN and FP are given in the caption of Figure 5)

Fig. 8. ROIs (151) obtained by performing the Bayes’ allocation rule on

DATA1
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objects, whereas the number of cells estimated by human obser-

vers was 157 and that by the RPHC algorithm was 151.

Figure 8 shows the ROIs resulting from the Bayes’ voxel allo-

cation rule. It is apparent that most of the ROIs were segmented

successfully, while some cells were segmented at unnatural

boundaries. In the segmentation method, the boundary of each

segment resulted from the positional relationship of the cells,

since any overlap was not permitted in the segmentation rule.

Thus some ROIs were separated by the unnatural boundary

when the cells are located closely. This drawback is yet to be

addressed.

3.2 Cell tracking

The tracking algorithm is first illustrated with one of the three

dataset in DATA2. For the initial frame, the trackers were initi-

alized at the positions of 111 objects that had been detected by

the RPHC algorithm. The tracking algorithm was then run for

500 frames. As shown in the full movie of the tracking process

(Supplementary Material 3), in all frames, the trackers’ positions

can be seen to be attracted to neighboring areas of the local

modes of the KDEs. In particular, turnover and coalescence of

the tracked positions occurred rarely, other than for a fraction of

the 111 trackers. The tracking process indicates that it is reason-

able to represent the adjacency relationship of cells by a tree.

Also, the minimum spanning tree (MST) varied in structure

only slightly throughout the tracking process.

To assess the performance on the three datasets in a quanti-

tative way, we defined the ground truth in the following way:

each original image sequence fI1; . . . ; ITg was joined to the time-

reversal set, and thus we have fI1; . . . ; IT; IT�1; . . . ; I1g of the

length 2T� 1: The performance was evaluated on the number

of trackers that returned to the initial positions at the final frame

I1. A tracker was called a success if it was in a radius of 5 pixels of

the initial position in the final frame. As an additional criterion,

we used the number of merges in trackers in the final frame. We

conclude upon the results summarized in Table 2 that the present

method could track 70–91% of the moving objects.
One major difficulty arose during a phase in which the cells

exhibited large mobility. In such a case, methods that rely only

on the nearest-neighbor matching are prone to serious tracking

errors. Figures 10 and 11 show the transitions of 111 individual

trackers at a phase of the tracking processes of the proposed

method and the particle filter algorithm (Jaqaman et al., 2008;

Smal et al., 2008b; Shen et al., 2010). Our own program for the

particle filter was developed with reference to Arulampalam et al.

(2002), which is substantially based upon the principle of nearest

neighbor matching. Figure 11 and the full movie in

Supplementary Material 4 illustrate the tracking failure of the

particle filter. As shown in Figure 11, many trackers failed to

follow the targets when many of the cells underwent significantly

large moves. In addition, the full movie shows that the errors

accumulated with time due to the absence of error-correction

functionality.

4 CONCLUDING REMARKS

This article presented a series of image processing steps for track-

ing many moving cells in a series of 3D images. The appearance

of the cells was almost homogeneous deformed ellipsoids. The

method relied only on the central coordinates of the objects,

since any other features such as morphology, volume or intensity

were very limited. The basis of the method was KDE. By using

KDE to transform the images, the tasks of cell detection and

tracking could be addressed in a unified manner that involved

the two hill-climbing methods designed for continuous probabil-

ity density functions. In particular, we presented two novel tech-

niques; the RPHC algorithm for cell detection, and multi-cell

tracking based on the MRF. The former initialized trackers in

Fig. 10. Results of the proposed tracking method. The left and right figures show the results obtained at t=30 and t=34, respectively. The white boxes

indicate the tracked positions. The white lines indicate the minimum spanning tree. The full movie of this tracking process is available at Supplementary

Material 3

Table 2. Performances of the tracking method on the three datasets

(D1–D3) in DATA2

Number of trackers Return rate Non-overlaping rate

D1 111 0.9136 0.9454

D2 121 0.7520 0.9504

D3 113 0.7011 0.8230

The columns indicate the number of trackers and the two performance measures:

(i) the rate of trackers that returned to the correct positions (return rate) and

(ii) the rate of non-overlapping trackers that successfully avoided coalescence

(non-overlaping rate).
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the first frame at the coordinates of the detected cells, and the

latter maintained them in mutually exclusive positions at the

bright areas of images that evolved with time. In live-cell imaging

experiments, cells often move relative to one another. The use of

MRFs might enhance the tracking performance, since successful

trackers bring erroneous trackers back to their correct positions.

The present method relies on this key idea.
This article concludes with some remarks on the practical use

of the current method and limitations yet to be overcome.

� All the steps in the present method rely on the local maxima

of the KDE. An obvious drawback arises from the fact that

unwanted local maxima are present due to noise introduced

into the image processing. Therefore, it is considerably im-

portant to conduct pre- and post-processing in order to

reduce such artifacts. In the application of this method to

our data, we found that it would have been useful to remove

some of the very small segmented objects. Other ways to

avoid detection of unwanted local maxima include the re-

moval of closely paired or extremely dark objects.

� In this article, our interest was limited to cases where there

are no cell divisions, and thus the present method was de-

signed to have fixed number of trackers. However, it is im-

portant to extend the current method to account for merges

and splits of cells as many previous studies have been

motivated.

� In statistics, many methods exist for the selection of band-

width, for example, Silverman’s rule of thumb and several

cross-validation methods [see Silverman (1986) for a review].

We used Silverman’s rule of thumb, in which a multivariate

normal distribution was used for the reference density

(Scott, 1992), and the leave-one-out cross validation based

on the log-likelihood risk (Silverman, 1986), and although

the results are not shown here, these caused significant

under- and overestimates, respectively.

� The underlying assumption behind the tracking method is

that the movements of most of the cells are highly correlated

according to shifts in the worm’s body. However, the track-

ing method would still be applicable when the positions of

the cells change smoothly over time, since the graphical

structure of the MRF is reconstructed sequentially at each

time frame.
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APPENDIX A GRADIENT AND HESSIAN OF KDE

The exact formulae for the gradient and the Hessian matrix can
be derived by noting the analogy of Equation (1) to the conven-

tional Gaussian finite mixture:

Gradient : g xð Þ :=
@ log p xð Þ

@x
=�

Xn
i=1

ui xð Þ �hð Þ�1 x� xið Þ;

Hessian : H xð Þ :=
@2 log p xð Þ
@x@xT

=� g xð Þg xð ÞT+ h�ð Þ�1

+
Xn
i=1

ui xð Þ �hð Þ�2 x� xið Þ x� xið ÞT:

As a reference for the derivation, see, for example, Carreira-

Perpinan (2000).

APPENDIX B PRIMARY ESTIMATE OF CELL
VOLUME AND DESIGN OF VOLUME
REDUCTION PROCESS

First, a sample fx1; . . . ; xn�g of size n� is resampled from the n

voxels, with probabilities w1; . . . ;wn: Suppose that we have a

primary guess g� on the number of cells present in an image.

Performing the k-means algorithm on the sample brings a seg-

mentation of the n� voxels into g� non-overlapping clusters.

A cluster of voxels can be an estimate for a cell-embedded

region. Principal component analysis was applied to the

within-cluster voxels, and the product of the resulting three

eigenvalues, �1; �2; �3; gives an estimate for the cell volume.

Finally, the 5% upper-quantile of the estimated g� volume

was set to v0. The rate of the volume reduction was chosen

as �=v0=500 so that the volume converges to zero at the end

of 500 iterations.
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