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Abstract

Small molecules are central to all biological processes and metabolomics becoming an increasingly important discovery
tool. Robust, accurate and efficient experimental approaches are critical to supporting and validating predictions from post-
genomic studies. To accurately predict metabolic changes and dynamics, experimental design requires multiple biological
replicates and usually multiple treatments. Mass spectra from each run are processed and metabolite features are extracted.
Because of machine resolution and variation in replicates, one metabolite may have different implementations (values) of
retention time and mass in different spectra. A major impediment to effectively utilizing untargeted metabolomics data is
ensuring accurate spectral alignment, enabling precise recognition of features (metabolites) across spectra. Existing
alignment algorithms use either a global merge strategy or a local merge strategy. The former delivers an accurate
alignment, but lacks efficiency. The latter is fast, but often inaccurate. Here we document a new algorithm employing a
technique known as quicksort. The results on both simulated data and real data show that this algorithm provides a
dramatic increase in alignment speed and also improves alignment accuracy.
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Received April 4, 2012; Accepted May 21, 2012; Published June 20, 2012

Copyright: � 2012 Yang, Grant. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Data set 2 was generated from British Biotechnology and Science Research Council funding (Grants BB/C514115/1, BB/E010334/1 and BB/F005903/1).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: z.r.yang@ex.ac.uk

Introduction

Small molecules are the fundamental components of life,

comprising the constituents of all biological material. Knowledge

about the function, distribution and abundance of metabolites is

fundamental to a comprehensive systems level understanding of an

organism. Furthermore, soluble and volatile metabolites are

central players in influencing interactions at a higher ecosystem

level through their role in sensing, perception and elaborating

biotic and abiotic stress responses. In post-genomic systems level

research, the metabolome (all metabolites) of an organism is

examined for various pattern analysis purposes [1] which will

inform biological knowledge such as response to a particular stress

or identification of molecular markers for medicinal or agricultural

purposes. Multivariate analysis can be done using principal

component analysis [2,3], cluster analysis [4,5], and discriminant

analysis [6,7] or for differential metabolite identification [7]. As a

finger-printing technique, metabolomics can support the explora-

tion of the relationship between metabolites and interactions

influencing phenotypes, driving studies on metabolite network re-

construction [8]. To ensure that these analyses are accurate and

unbiased, it is necessary to make as precise a prediction of the mass

and retention time of a unknown metabolite as possible. This is

essential to i) the accuracy of compound recognition; ii) the

accurate calculation of chemical composition of a metabolite [9];

and iii) the prediction of the function of unknown genes through

metabolomics [8,10,11,12,13,14].

Fundamental to any biological research, dynamic behaviour of

biological molecules, be they proteins, mRNA or metabolites,

needs to be determined through highly replicated experimenta-

tion. Metabolite features need to be first extracted from multiple

mass spectra prior to any pattern analysis. Due to machine

resolution and sample variation, one metabolite will have different

implementations in different spectra, i.e. non-identical retention

time and mass values. This means that the exact retention time

and mass values of a real, but unknown metabolites may not be

seen in collected spectra. Most metabolites are unknown therefore

to accurately recognize metabolites, precise alignment of features

across spectra is the first critical task in analyzing metabolomic

datasets based upon accurate statistical estimations.

As described recently [15], three conditions must be satisfied for

aligning features. First, features must fall within defined resolutions

of retention time and mass to be considered for alignment. Second,

no more than two features from the same spectra can be aligned to

one consensus, i.e. the collision condition (Duran, 2003). The

collision problem has been long been recognised and the

resolution is normally equipment-dependent [16,17,18]. Third,

mass shift cannot be ignored during alignment although we

commonly ignore retention time shift, which is relatively small. All

are critical to a reliable prediction (alignment) for multivariate

analysis [15].

There are generally two types of alignment algorithms, i.e. a

local merge strategy and a global merge strategy. The former

commonly employs three techniques, warping

[19,20,21,22,23,24], nearest neighbour [25,26] and clustering

[19,27,28]. These are generally computationally efficient, but

typically scan spectra one by one to generate consensuses, which

cannot be updated or revised. Consequently the first scans may

generate a false consensus based on an incorrect feature set which

cannot subsequently be revised when ‘‘correct’’ features are

scanned later [15,28]. Many alignment tools, both commercial

ones and freeware, belong to this type e.g. MetAlign [29],

MSFACTs [26], OPenMS [30]. Binbase [31], MathDAMP [32],
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ChromA [24], LC-MSsim [33], XCMS [16], SpecAlign [34],

MET-IDEA [35].

In order to increase alignment accuracy we recently developed

PAD (Peak Alignment via Density maximisation), which adopted a

global merge strategy [15] using a concept called the Map

Coverage Maximization (MCM), where a `map’ refers to a

spectrum. It implements a novel alignment principle, i.e. density

maximisation. Among various overlapping candidate consensuses,

a consensus with the highest density is selected as the prediction. A

consensus refers to the prediction of a true, but unknown

metabolite. However PAD is comparatively much slower than a

local merge algorithm such as implemented by SIMA [28], which

is typical to a global merge algorithm.

In this paper we present a novel feature alignment algorithm

based upon the quicksort technique [36] used in computer

sciences. The alignment run comprises four steps. The first

converts features to a string list, which is then sorted. The second,

similar to PAD, constructs candidate consensuses and detects their

density. The third examines and filters the candidate consensuses

to generate predictions. In the fourth step, features which fail to be

aligned are put back to the string list and rerun. Here we evaluate

this algorithm using both simulated data and real data. We

conclude that this new algorithm is superior to currently available

feature alignment algorithms in both alignment speed and

alignment accuracy.

Results

Simulated Data – Toy A
Description of toy A is given in METHODS. Table 1 shows the

comparison of sensitivity (see METHODS for the definition) analysis

for Toy A data at noise levels 60%, 80% and 100%. For

simulations with the noise levels below 60%, the sensitivity of all

three algorithms is 100%. No data for specificity (see METHODS for

the definition) analysis is shown here because the specificity of all

algorithms is 100%. From Table 1, we can see that at increasing

noise levels (even within the allowed resolution), the sensitivity of

SIMA consistently drops, from 97% to 72%, while both PAD and

PASS maintains sensitivity at 100%.

Simulated Data – Toy B
Description of toy B is seen in METHODS. No error (MH and

FP - see METHODS for the definitions) was observed for PAD and

PASS for all six data sets. By contrast, when the noise level was

increased from 0% to 100%, the prediction error in SIMA with

the mass resolution (see METHODS for the definition) 0.0071

Daltons got larger (Figure 1), leading to significantly increased

singletons – see the trend of the first bars in Figure 1. Figure S1

shows the prediction error of SIMA with the mass resolution

0.00001 Daltons where we can see that the error is much more

amplified.

Real Data
A description of the real data is given in METHODS. Table 2

shows the comparison of the CPU performance of the three

algorithms using real data. CPU was measured in seconds. The

first column indicates the alignments, for instance ‘‘Col.sid.60

means aligning features of six maps for Col-0 and sid2 at 6 hpi.

The second column indicates the number of maps used for each

alignment. The third column indicates the number of raw features

in each alignment. The remaining three columns represent the

CPU time in seconds for the three algorithms to complete the

different alignments. The final column indicates the number of

features reported in SIMA (mass resolution 0.0071 Daltons)

outputs. The mass resolution used for running SIMA was 0.0071

Daltons. It can be seen that PASS is much faster than PAD (32

times faster) and also faster than SIMA (four times faster). It is

important to note that features in original spectra files should not

be duplicated nor omitted. PAD and PASS have generated

alignments without these errors, however, SIMA generated

alignments with duplicated and missing features. The last column

of Table 2 contains the number of features reported in the SIMA

output files. In theory, these numbers should concord with the

numbers in column 3 of Table 2. However, 30% of raw features

were missing when aligning the spectra of Col-0 and sid2 at 6 hpi

(hours post inoculation). Six duplicated features were found when

aligning the spectra of Col-0 and sid2 at 10 hpi. Six duplicated

features were found when aligning the spectra of Col-0 and sid2 at

16 hpi. Overall, 27% of features were missing when aligning 12

spectra of Col-0 at all three time points, 43% of features were

missing when aligning 12 spectra of sid2 at all three time points

and the alignment of all 24 spectra delivered 17% duplicated

features.

In addition, many SIMA consensuses violated the collision

condition, i.e. many Type-I errors were found in SIMA

alignments, e.g. containing more than one feature from the same

map (spectra). Figure 2 shows the distribution of the number of

duplicated maps in one consensus when aligning all 24 maps. It

can be seen that the largest duplicated map number was 12,

representing half of the total number of maps. Overall ,10% of

consensuses predicted by SIMA (mass resolution 0.0071 Daltons)

contained duplications as denoted by the first bar in Figure 2.

When using a mass resolution of 0.00001 Daltons for running

SIMA, no such error was observed, but other types of error were

amplified - see the discussion below.

As illustrated in Figure 3, the CAM (see METHODS for the

definition) curves of PASS are always the lowest and the CAM

curves of SIMA (mass resolution 0.0071 Daltons) are always the

Table 1. Sensitivity analysis of three sets (noise levels 60%, 80% and 100%) for Toy A.

60% 80% 100%

SIMA PAD PASS SIMA PAD PASS SIMA PAD PASS

97.20% 100% 100% 86.14% 100% 100% 72.89% 100% 100%

96.17% 100% 100% 84.75% 100% 100% 73.61% 100% 100%

96.95% 100% 100% 86.70% 100% 100% 76.93% 100% 100%

96.61% 100% 100% 86.95% 100% 100% 73.98% 100% 100%

97.25% 100% 100% 84.75% 100% 100% 72.11% 100% 100%

doi:10.1371/journal.pone.0039158.t001
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highest. Notably four plots of SIMA show flat sections at the top,

meaning that for these alignments, no large consensuses were

generated, which was defined as the pattern IV (the biased H-

pattern) in METHODS. Figure S2 shows a comparison when

running SIMA based on the mass resolution 0.00001 Daltons,

where we can see that all CAM curves of SIMA are similar to the

poorest performance, which was defined as the pattern I (the

disastrous pattern) in METHODS.

The objective of improving alignment quality is to improve the

quality of subsequent multivariate analysis. Accompanying this

new alignment algorithm, we also introduce a novel significance

analysis. Three widely used significance analysis algorithms;

SAM [37], eBayes [38], and Cyber-T [39] were employed. The

R program for detecting significantly differential metabolites is

included in http://ecsb.ex.ac.uk/PASS. The prediction of

significantly differential metabolites (between the Arabidopsis

Col-0 wild type plant and salicylic acid deficient sid2 mutant in

this paper) was done via the consensus among the three

algorithms. Figure 4 shows the distribution of significantly

differential metabolites at 6 hpi, 10 hpi and 16 hpi. The use of

this consensus approach can minimize the chance of a false

prediction of differential metabolites because the three tests often

disagree in terms of tail probabilities – small p values. Figure S3

illustrates such an example. With a simple consensus approach,

we select predictions agreed by all three algorithms under a given

significance level. In this study the significance level was set at

0.001 (this can be varied by the user when using our R code)

leading to 11, 14 and 2 significantly differential metabolites for

these three aligned data. They were shown as vertical lines in

Figure 4. It should be noted that a metabolite with the largest

mean differential abundance is not necessarily guaranteed to be

predicted as being significantly differential. This is because the

prediction does not only rely on the mean differential

abundance, but also the variance. Here a differential abundance

is the difference between the abundances of two treatments for a

metabolite.

The accompanying R program also supports locating signifi-

cantly differential metabolites in a R-M (Retention time – Mass)

density surface, i.e. where we can visualize the relationship

between detected significantly differential metabolites and reten-

tion-time mass density. Figure 5 shows three plots for this

visualization function.

Figure S4 illustrates the usage of the PASS program.

Figure 1. The distribution of prediction errors for Toy B data using SIMA (mass resolution 0.0071 Daltons). The horizontal axis
represents the noise rate added to features in Toy B. The vertical axis represents either missing hypothesis (MH) or false prediction (FP). Each
histogram group comprises ten bars representing ten types of consensuses (ten different number of features). The first bar represents the error
between the number of expected singletons and the number of predicted singletons. The last bar represents the error between the number of true
consensuses of size ten and the number of predicted consensuses of size ten. When FP occurs, we see a positive bar. When MH occurs, we observe a
negative value.
doi:10.1371/journal.pone.0039158.g001

Table 2. Comparison of CPU times for the three algorithms to generate six alignments of the real data representing metabolite
changes in Arabidopsis thaliana leaves infected with virulent Pseudomonas syringae.

Alignment # maps # features SIMA CPU PAD CPU PASS CPU SIMA prediction

Col.sid.6 6 54330 51 81 8 37767

Col.sid.10 6 56117 56 87 9 56123

Col.sid.16 6 66285 76 124 18 66291

Col 12 109369 244 1150 53 79301

Sid 12 119866 262 1544 57 68865

All 24 229235 1541 11598 360 267811

doi:10.1371/journal.pone.0039158.t002
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Discussion

This paper has presented a new metabolite prediction (mass

feature alignment) algorithm based on a widely used concept in

computer sciences, the quicksort technique. The objective was to

maintain the alignment accuracy based on the map coverage

maximization principle, as recently described by Perera et al. in

PAD (Perera et al. 2011), and to speed up alignment. PAD adopts

a global merge strategy in contrast to many local merge

algorithms, giving an improved alignment accuracy. Because a

local merge algorithm has no regression process, its alignment is

often problematic leading to poor alignment quality, which has

two consequences, i.e. duplication and unreliable alignment. This

was demonstrated here using SIMA, a typical local merge strategy

algorithm. While a local merge algorithm is computationally fast,

PAD, a typical global merge algorithm is not. We therefore

implemented a quicksort approach, which is used in many

programming languages, to speed up the global merge algorithm.

Here we have built alternately M-clusters and R-clusters based on

sorted mass and retention time values. Prior to building these two

types of clusters, we converted all the numerical data including

mass, retention time, metabolite abundance and spectra index to

strings and organized them into a string list with recognizable

labels to discriminate them. Applying the quicksort technique

based on mass or retention time will not affect other domains of

data and maintains a feature’s spectra index and abundance value

during sorting. We additionally proposed a new technique for

quantifying the quality of an alignment, i.e. Characteristic

Alignment Map (CAM). Using CAM analysis, the alignment

quality can be easily visualized qualitatively between different

alignments. We have compared this new algorithm against PAD

and SIMA using toy data sets and demonstrated that this new

algorithm has improved alignment accuracy. Furthermore, we

have shown using a real dataset that this algorithm has

significantly improved alignment quality compared with SIMA

and also has a better performance than PAD. Importantly, this

new algorithm is 32 times faster than PAD and SIMA. The speed

improvement has also been demonstrated theoretically in

REMARK 3. The most important concept for a global optimization

process for peak alignment is consensus generation. Based on this

study and our earlier work on PAD, it can be seen that a consensus

must be a cluster of peaks with similar mass values and retention

times which satisfy the resolution condition as well as the collision

condition. Local optimization, as we have shown, will not be able

to find all these peaks for one consensus. However comparing all

peaks one by one is a typical NP (non-deterministic polynomial-

time) - hard problem [43] as we saw in PAD. This is why the

quicksort technique can significantly reduce the complexity

leading to successful global optimization. Accompanying this

alignment algorithm, we also introduced a novel approach for

detecting significantly differential metabolites using a simple

consensus principle to minimize the chance of delivering falsely

predicted differential metabolites and visualizing the detected

significantly differential metabolites.

Figure 2. The distribution of duplicated maps in SIMA (mass resolution 0.0071 Daltons) consensuses alignment based on all 24
maps. The horizontal axis represents the number of Type-I errors in the generated consensuses. These range from one to 12. The vertical axis
represents the frequency.
doi:10.1371/journal.pone.0039158.g002
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Methods

Algorithm
The notations used by the algorithm are as follows: A data set is

denoted by X, which is composed of N discrete features of K maps.

Each map refers to a mass spectrum. Each feature xi[X is a vector

of four values, i.e. retention time ri, mass mi, map index wi and

feature intensity (abundance) zi. Retention time and mass reflect

the chemical property of a metabolite and are used for predicting

the chemical composition of a compound. The feature intensity is

the reflection of the abundance of a metabolite and is the main

parameter used in multivariate analysis, most notably differential

metabolite predictions. The map index is only used to classify

features, i.e. indicating from which spectrum a feature is collected.

In addition to feature intensity, both ri and mi contain variation

arising from both experimental and mass spectral resolution

variation. The extent of variation is usually known.

It is also assumed that the observed features are random samples

of a true, but unknown metabolite. This means that the following

condition should be satisfied for an alignment of each feature

Figure 3. Characteristic alignment map (CAM) curves. The CAM was generated for MCM analysis of six alignments on the real data of
pathogen infected plant leaves. The horizontal axes represent the maps used for each alignment, i.e. from six to 24. The vertical axes represent the
cumulative sum of aligned features or the size of consensuses. The open dots represent CAM curves of PAD. Dashed lines represent CAM curves of
PASS and dotted lines represent CAM curves of SIMA (mass resolution 0.0071).
doi:10.1371/journal.pone.0039158.g003
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D~xxi{uk Dƒek ð1Þ

where ~xxi~(ri,mi) is the retention time - mass pair of a feature,

which is an observed metabolite in a spectrum, uk~(�rrk, �mmk) is the

retention time - mass pair of a true metabolite, and ek~(er,e
k
m) is

the pre-defined resolution set (retention resolution and mass

resolution). Here er is commonly a constant (0.3 in this paper

according to our mass spectrometer resolution) and ek
m is variable,

i.e. ek
m~e0

m|�mmk. e0
m is a constant (10 ppm (its corresponding mass

resolution is 0.00001 Daltons) in this paper as constrained by our

mass spectrometer resolution), and �mmk is the kth true mass under

estimation. As each map may contain tens of thousands features,

aligning features from many spectra becomes problematic in terms

of speed - see Table 2.

Here we adopt a different strategy to speed up an alignment

process dramatically while maintaining the alignment accuracy. In

this algorithm, we still follow the resolution condition described in

equation (1) and the collision condition. Following [15], we assume

that the mass shift is linearly proportional to the true mass, i.e.

Dmi{�mmkDƒem~e0
m|�mmk ð2Þ

In theory, �rrk and �mmk may not be exactly estimated. We

therefore use their estimations, i.e. r̂rk and m̂mk, in an alignment

process. A consensus is then expressed by (̂rrk, m̂mk).

The quicksort technique, a well known algorithm in computer

sciences and implemented as a basic function in various

programming languages, such as C, is used here to implement

our algorithm. It sorts strings in a lexicographical order, i.e. the

difference at an earlier position of strings has a priority compared

with differences occurring at a latter position of strings. For

instance, three strings AATT, ABAA and AAAA will be sorted to

an order such as AAAA, AATT and ABAA. If strings represent

numerical data, the order reflects the numeric accuracy of

similarity, e.g. 130.034, 130.411, 130.410, 130.029, 130.411,

130.409, and 130.035 leads to 130.029, 130.034, 130.035,

130.409, 130.410, 130.411, and 130.411. At a mass resolution of

0.001, we can easily identify two clusters; (i) 130.033, 130.034, and

130.035 with the centre as 130.034 and (ii) 130.409, 130.411 and

130.410 with the centre as 130.410. The algorithm presented here

was motivated by this observation. We note that this has been

previously applied to proteomics studies [40,41], where a single

peptide mass was used for a targeted search within a data set of

masses.

Mass spectral feature alignment is conducted in a two-

dimensional space, reporting retention time and mass. We first

designed a novel data structure to convert X to a string list S in

which each feature is expressed using a string

si~mi$ri$wi$zi ð3Þ

where si[S. Using this notation, the dollar mark is used to separate

four data domains. The use of the dollar mark will not affect a

Figure 4. Significantly differential metabolites identified between Col-0 and sid2 leaves responding to infection with P. syringae at
6 hpi, 10 hpi and 16 hpi. The horizontal axes represent the mean distance between Col-0 abundance and sid2 abundance. The vertical axes
represent p values. Each dot represents one metabolite. Each vertical line represents a significantly differential metabolite. (a) - top: Significantly
differential metabolites between Col-0 and sid2 at 6 hpi. (b) - middle: Significantly differential metabolites between Col-0 and sid2 at 10 hpi. (c) -
bottom: Significantly differential metabolites between Col-0 and sid2 at 16 hpi.
doi:10.1371/journal.pone.0039158.g004

Figure 5. The location of significantly differential metabolites in R-M density surface. The significantly differential metabolites were
shown using dots on the surfaces. (a) - left: for significantly differential metabolites between Col-0 and sid2 at 6 hpi. (b) - middle: for significantly
differential metabolites between Col-0 and sid2 at 10 hpi. (c) - right: for significantly differential metabolites between Col-0 and sid2 at 16 hpi.
doi:10.1371/journal.pone.0039158.g005
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sorting process based on mass, which is at the first domain in the

string list.

In order to guarantee an accurate sorting of data, all numerical

data must be of the same length. If a feature’s retention time (or

mass) has lower than the maximal number of digits (decimals) then

’0’ is introduced to enable the sorting to function appropriately

(e.g. 1.5 becomes 001.5000 if the maximum number of digits is

three and the maximum number of decimals is four). We refer to

such a numerical value (say 001.5000) as a digit-aligned-value

(DAV).

The alignment is run in two stages. In the first stage, we

construct so-called mass clusters or M-clusters. Each M-cluster is

composed of a number of features, which satisfy the enlarged mass

resolution,

Dmi{mj Dƒ2|ei
m ð4Þ

where ei
m~e0

m|mi. Figure 6 illustrates how a mass cluster is

constructed, where retention time, map index and feature intensity

are masked, hence not being used for the construction of this M-

cluster.

An M-cluster is constructed by sequentially scanning the string

list S till equation (4) is violated. For Figure 6, the scan was

terminated or the M-cluster is constructed between ith feature and

the jth feature if

Dmi{mjz1Dw2|ei
m ð5Þ

The resolution is doubled in equation (5) because mi and mj can

be just on the two extreme boundaries of a consensus, i.e.

Dmi{m̂mk D~ek
m Dmj{m̂mk D~ek

m ð6Þ

where m̂mk is the median mass of the kth consensus. Remark 1

below shows that this strategy is safe to construct an M-cluster as

well as an R-cluster later. In addition, together with equation (7)

given below, we call this strategy greedy scanning. Remark 2

below shows that this strategy almost guarantees the formation of

an unbiased consensus. Staring from the j +1th string in S, the next

M-cluster can be constructed. For each M-cluster, which is

denoted by h~(si, � � � ,sj)5S, the second stage of this algorithm is

to examine the retention time of the strings in h to construct

retention time clusters or R-clusters. Note that there might be a

number of R-clusters in one M-cluster because different consen-

suses may share very similar retention times as discussed in [15].

Prior to constructing R-clusters within one M-cluster, we have to

move into another string structure to enable sorting retention time.

In order to avoid any incorrect manipulation of the string list, we

have to target this M-cluster locally. In practice, we simply copy

the M-cluster to another string list shown in Figure 7, where we

insert one more column (‘‘o’’) to remember where each feature

(string) is copied from the S list. This reduced list is called a h-list.

After sorting the retention time in the h-list, the original order of

strings in the h-list will be changed. The use of the "o" column in

this reordered h-list (Figure 8) will save the information of the

indexes to the S list, which is critical for later manipulations. As all

the data including mass, map index, and feature intensity of a

string (feature) are unchanged, these will shift concomitantly as

string positions are resorted.

We next focus on forming R-clusters in the sorted h-list. Starting

from the first string in a sorted h-list, we scan features one by one

to examine if the condition described below is satisfied

Dri{rjz1Dw2|er ð7Þ

We similarly double the retention time resolution as above because

ri and rj can reside on the two extreme boundaries of a consensus,

i.e.

Dri{r̂rk D~er Drj{r̂rk D~er ð8Þ

where r̂rk is the median retention time of the kth consensus. Staring

from the j +1th string in a sorted h-list, a next R-cluster will be

considered. For each R-cluster denoted by p~(si, � � � ,sj)5h, a

consensus is constructed. For all features in p, we calculate its

median mass and median retention time using the following

definition

Figure 6. An illustration of constructing a M-cluster. The title line
indicates the four fields of the string list; "m" stands for mass, "r" stands
for retention time, "w" stands for map index, and "z" stands for feature
intensity. The M-cluster starts from the ith string (row) and ends at the
jth string (row). The dashed box indicates that the features (strings)
within it form the M-cluster.
doi:10.1371/journal.pone.0039158.g006

Figure 7. R-cluster formation in an h-list. The first column stores
retention time values of all features in the h-list. In addition to four
columns, we have introduced the ‘‘o’’ column for indexing the S list.
doi:10.1371/journal.pone.0039158.g007

Figure 8. The h-list after sorting based on retention time.
doi:10.1371/journal.pone.0039158.g008
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r̂rk~
1

2
(r{

i zrz
i ), Vsi[p

m̂mk~
1

2
(m{

i zmz
i ), Vsi[p

ð9Þ

where r{
i and rz

i are the minimum and maximum retention times

among all features in the current R-cluster (p). m{
i and mz

i are the

minimum and maximum masses among all features in p. Deriving

median mass and median retention time this way is designed to

avoid possible bias [15].

To save computing time, we always remove all the aligned

features from the S list every time prior to running quicksort. To

do so, we simply ‘‘whiten’’ all the strings corresponding to the

aligned features by replacing the mass by the letter ‘‘w’’. As the

‘‘o’’ column in the h-list records the original positive in the S list, it

is very easy to trace them back to the S list to whiten the

corresponding strings. After using the quicksort technique, all the

strings of the aligned features (hence whitened ones) will be moved

to the bottom of the S list automatically and will not be visited in

subsequent scans (Figure 9).

When constructing a consensus, we need to mitigate two types

of errors. A type-I error occurs when two features satisfy the

resolution defined in equation (1) but are in the same spectra

(map). A type-II error refers to the situation when a feature in a

cluster does not satisfy the resolution defined in equation (1).

In order to follow the Map Coverage Maximization (MCM)

principle [15], we first construct consensuses which cover all maps.

When no further consensus can be constructed, we then look for

consensuses, which cover n - 1 maps. This is repeated till one map

is left. For instance, we will start finding consensuses of size ten if

the total number of spectra is ten. If no consensus of size ten can

be found, we search for consensuses of size nine, etc. In this way,

we can ensure that the MCM principle is followed to generate

reliable alignments.

The algorithm is implemented in C based on a linux computer

with 3GB memory of 2.6 Ghz. The executable code is available at

http://ecsb.ex.ac.uk/PASS.

Remark 1
‘ DAVs in a sorted list corresponding to ‘ numerical values

fzig‘i~1 always follow a sequence of z(1)ƒz(2)ƒ � � �ƒz(‘), where

z(i) is the ith DAV in the sorted list.

Proof: We use the reductio ad absurdum approach for this proof.

Suppose z(i)wz(j), but z(i)5z(j). Here we use 5 to denote an

ascending order or lexicographical order, i.e. z(i) precedes to z(j) in

a DAV list. For simplicity, we assume all values in a DAV list are

integers. Generalizing the proof for values with decimals is

straightforward. Suppose k[½1,D� with D as the length of all DAVs

is the first digit makes z(i) and z(j) different. For instance, if two

DAVs are 01312 and 01322, k = 3 and D = 4. We denote the two

letters of these two DAVs at this position as z(i),k and z(j),k. If

z(i)wz(j), it is almost certain that z(i),k4z(j),k. This means that

z(i)5z(j) is not possible.

Remark 2
The greedy scanning guarantees the formation of a consensus of

all its features for a sorted list of mass and retention time values.

Proof: Again, we use the reductio ad absurdum approach for this

proof. Suppose a feature list s~(z1,z2, � � � ,z‘) forms a consensus

(‘ƒLƒK - K is the number of maps) and a sorted DAV list of it is

expressed as ~ss~(z(1),z(2), � � � ,z(‘)), where z(i) is the ith DAV in the

sorted list. Based on the assumption that s forms a consensus,

Dz(1){z(‘)Dƒ2e and Dzi{zj Dƒ2|e, Vzi,zj[s, where e~em or e~er.

If one feature (denoted by zs[s) is beyond the cluster, it means that

zs5z(1) or zs4z(‘). In other words, Dzs{ min (s)Dw2|e or

Dzs{ max (s)Dw2|e. This is contrary to the assumption.

Remark 3
The average time complexity of PASS follows

O(PASS)!N log N [42].

Proof: The time complexity of quicksort is N log N. As it is

difficult to estimate the metabolite distribution, we first assume that

the features are equally distributed for consensuses of different size,

i.e. the features are equally divided to form consensuses covering

different numbers of maps. Importantly; i) we whiten corresponding

strings in the S list whenever a consensus is formed; ii) quicksort is

only used when the S list is exhausted. This means that the number

of the strings in the S list when calling quicksort is decreased step by

step as shown below (a note to the following equation is seen "A

NOTE TO REMARK 3" in the supplementary document)

N log NzN
K{1

K
log N

K{1

K
z � � �zN

2

K
log N

2

K
z

N

K

XK

k~2

k

or

N log Nz
N

K

XK{1

i~2

i log N
i

K
z

N

K

XK

k~2

k

where the second component can be further re-written as

N

K

XK{1

i~2

i½log N{ log (i=K)�~ N

K

XK{1

i~2

i½log N{ log (i=K)�

vN log N{
XK{1

i~2

i log (i=K)

vN log N

Figure 9. Example of ‘‘whitening’’ strings corresponding to
aligned features. The rows with the ‘‘w’’ letter represent the strings of
aligned features. Following quicksort these rows will be at the bottom
of the S list and will not be re-visited in subsequent scans.
doi:10.1371/journal.pone.0039158.g009
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the last component of the above equation can be simplified as

NKvN log N - see REMARK S1 in the supplementary document.

We next assume that all features contribute to singletons. In this

case, only one quicksort is required and one scanning process of

the S list is required. It is not difficult to see that the time

complexity is N log NzN. We finally assume that all features

contribute to consensuses with full size, i.e. covering all maps.

Following the REMARK 2 discussed above, it can be seen that only

one call to quicksort can guarantee the formation of all

consensuses.

Simulated Data Preparation
In addition to the simulated data used in PAD [15] (Toy B), an

additional data set (Toy A) comprising two maps was used in this

paper. In this new data set, ‘‘true simulated metabolites’’ (TSMs)

were randomly generated using a retention time between 1 min

and 27 min as well as mass between 1 and 500 following [15].

Two categories of TSMs were designed, i.e. non-aligned or

aligned. Only two maps (spectra) were generated for analyzing

both prediction sensitivity and specificity. The sensitivity is the

percentage of aligned TSMs that are correctly aligned. The

specificity is the percentage of non-aligned TSMs that are not

aligned. For a non-aligned TSM, a feature was generated through

adding random noise to both retention time and mass. These noise

levels were sequentially 20%, 40%, 60%, 80% and 100% of the

given resolution [15]. A feature of a non-aligned TSM was

generated by

mi~�mmizU(l|e0
m|�mmi) ð10Þ

and

ri~�rrizU(l|er|�rri) ð11Þ

where U(l|er|�rri) is the uniform distribution function with the

interval defined as ½{l|er|�rri,l|er|�rri�, and

l[f0:2,0:4,0:6,0:8,1g represents the noise level. The feature

generated this way was then randomly distributed into one of

two maps. For an aligned TSM, which in this case contains two

features (because Toy A has two maps), each feature was

generated through adding random noise and was distributed into

one of two maps. Each feature was formed by both mass

mik~�mmizU(l|e0
m|�mmi) ð12Þ

and retention time

rik~�rrizU(l|er|�rri) ð13Þ

where l is as described above and k[f1,2g. Figure 10 shows the

distributions of features of one such data set, where 493 aligned

TSMs (comprising 986 features) and 504 non-aligned TSMs were

generated.

Real Data Preparation
The data from [15] was used in this study for the comparison.

The data is seen in ecsb.ex.ac.uk/PASS.

Comparison of Algorithms
We used SIMA [28] and PAD [15] to evaluate the new

algorithm as they represent the current benchmark for this type of

application. Following [15], two mass resolutions (0.0071 Daltons

and 0.00001 Daltons) were used to run SIMA for comparison one

mass resolution (0.00001 Daltons) was used to run PAD and

PASS. SIMA does not consider mass shift. We therefore follow

PAD to use two mass resolutions for comparison.

Sensitivity/specificity Analysis
To compare algorithms for these criteria we limited our analysis

to Toy A data. We used the following assumptions. Suppose the

number of non-aligned features is N and number of aligned

features is 2P, P being the number of TSMs. If the observed

number of singletons is N0 and the number of aligned consensuses

is C0, then specificity is defined as

SPE~100
N0

N
% ð14Þ

and the sensitivity is defined as

SEN~100
C0

P
% ð15Þ

Prediction Error – Missing Hypothesis (MH) and False
Prediction (FP)

An alignment may introduce two prediction errors; a missing

hypothesis (MH) or a false prediction (FP). A missing hypothesis

means that a consensus of a specific size is lost during alignment

(prediction). A false prediction means that an incorrect consensus

is introduced for a specific consensus size. For simulated data (Toy

B), we know in advance how many consensuses are expected. Post

alignment, we have a set of consensuses, each formed by different

Figure 10. Distributions of features and TSMs in Toy A data.
The circles represent TSMs and the dots represent the features in two
maps. The two axes represent retention time and logm/z (or mass). The
three lines of texts in the plots represent, in order; a) the number of
features (non-aligned TSMs), which should not be aligned; b) the
number of features (aligned TSMs), which should be aligned; c)
maximum allowed noise level. A value of "1" means that noise was
added to features at the maximum 100% of the pre-defined resolution,
i.e. 0.3 min for retention time and 10 ppm for mass.
doi:10.1371/journal.pone.0039158.g010
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numbers of features, corresponding to the consensus size. Suppose

we have K maps, we use the following notation to denote the

number of consensuses from 1 to K sizes, c~(c1,c2, � � � ,ci, � � � ,cK ),
where ci represents the number of consensuses of size i. In addition

to the c vector, we define another vector of TSMs,

t~(t1,t2, � � � ,ti, � � � ,tK ), where ti represents the number of TSM

of size i. MHs occur when

tiwci ð16Þ

and FPs occur when

tivci ð17Þ

Note that this measure only applies to a simulated data set where

the t vector is known.

Characteristic Alignment Map (CAM)
We introduced this for comparing algorithms on real data.

Based on the c vector, we calculated the cumulative sum of

features aligned to different consensus sizes. It was denoted by

a~(a1,a2, � � � ai, � � � aK ) and ai was defined by

ai~
Xi

j~1

j|cj ð18Þ

We used the map number as the horizontal axis and a as the

vertical axis to plot the data of a. We referred to a as the

characteristic set and referred to this plot as a Characteristic

Alignment Map (CAM) curve. In the worst case scenario, all

predicted consensuses are singletons, i.e. being composed of a

straight line in concord with the vertical axis first and a straight

line in concord with the horizontal axis next – Figure 11 (a). This

pattern is defined as Pattern I - disastrous pattern. A perfect

alignment should generate CAM a curve touching the bottom-

right corner, i.e. being composed of a straight line in concord with

the horizontal axis first and a straight line in concord with the

vertical axis next – Figure 11 (b). This pattern is defined as Pattern

II - perfect pattern. Because many consensuses don’t occupy all

maps, a CAM curve will stretch from the bottom-right corner

towards to the top-left corner, i.e. between the two extreme

curves - Figure 11 (c). This pattern is defined as Pattern III -

normal pattern. In comparison, an alignment with a lower CAM

curve is preferred compared with an alignment with a higher

CAM curve, for instance the lower CAM curve in Figure 11 (c) is

preferred. In Figure 11 (d), we show two biased alignments. They

are defined as Patterns IV - biased patterns. The higher CAM

curve shows the situation that the alignment losses consensuses

with large sizes - H-pattern. If the map number is M, the

alignment generates zero consensuses with sizes from M - H to M.

The lower CAM curve illustrates that the alignment has no

consensuses with small sizes - L-pattern. For map number M, the

alignment generates zero consensuses with sizes from one to L. In

theory, the total number of features before and after alignment

should be identical. As SIMA was not reliable in this respect, the

characteristic set (see METHODS for details) was normalized for

each algorithm in this paper for comparison, i.e.

~aai~
aiPK

j~1 aj

ð19Þ

where K refers to the number of maps (spectra). We then used
~aa~(~aa1,~aa2, � � � ~aai, � � � ~aaK ) to investigate which alignment best

follows the MCM rule [15].

Supporting Information

Figure S1 The distribution of prediction errors for Toy
B data using SIMA (mass resolution 0.00001 Daltons).
The horizontal axis represents the noise rate added to features in

Toy B. The vertical axis represents either missing hypothesis (MH)

or a false prediction (FP). Each histogram group comprises ten

bars representing ten types of consensuses, i.e. consensuses

containing ten different features. The first bar represents the

error between the number of expected singletons and the number

of predicted singletons. The last bar represents the error between

the number of true consensuses of size ten and the number of

predicted consensuses of size ten. When FP occurs, we will see a

positive bar (extending upwards from the horizontal axis). When

MH occurs, we observe a negative value (extending downwards

from the horizontal axis).

(TIFF)

Figure S2 Characteristic alignment map (CAM) curves.
The CAM was done for MCM analysis of six alignments on the

real data of pathogen infected plant leaves. The horizontal axes

represent the maps used for each alignment, i.e. from six to 24.

The vertical axes represent the cumulative sum of aligned features

or the size of consensuses. The open dots represent CAM curves of

Figure 11. Two extreme and common examples of CAM curves. (a) Pattern I (disastrous pattern): all predicted consensuses are singletons; (b)
Pattern II (perfect pattern): all predicted consensuses are of full size; (c) Pattern III (normal pattern): the comparison of two CAM curves for two
alignments; (d) Pattern IV (biased pattern): two biased alignments. The upper one is defined as the biased H-pattern and the lower one is defined as
the biased L-pattern. The horizontal axes represent the number of maps. The vertical axes represent the cumulative sum of features. (a) - panel 1:
Pattern I; (b) - panel 2: Pattern II; (c) - panel 3: Pattern III; (d) - panel 4: Pattern IV.
doi:10.1371/journal.pone.0039158.g011
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PAD. Dashed lines represent CAM curves of PASS and dotted

lines represent CAM curves of SIMA (mass resolution 0.00001

Daltons).

(TIFF)

Figure S3 p value distributions of three modified t tests.
Both horizontal and vertical axes represent p values ranging from

zero to one.

(TIFF)

Figure S4 Instructions for using PASS.
(TIF)

Remark S1

(DOC)
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