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Pseudogenes are indicating more and more functional potentials recently, though

historically were regarded as relics of evolution. Computational methods for predicting

pseudogene functions on Gene Ontology is important for directing experimental

discovery. However, no pseudogene-specific computational methods have been

proposed to directly predict their Gene Ontology (GO) terms. The biggest challenge

for pseudogene function prediction is the lack of enough features and functional

annotations, making training a predictive model difficult. Considering the close functional

similarity between pseudogenes and their parent coding genes that share great

amount of DNA sequence, as well as that coding genes have rich annotations, we

aim to predict pseudogene functions by borrowing information from coding genes

in a graph-based way. Here we propose Pseudo2GO, a graph-based deep learning

semi-supervised model for pseudogene function prediction. A sequence similarity graph

is first constructed to connect pseudogenes and coding genes. Multiple features are

incorporated into the model as the node attributes to enable the graph an attributed

graph, including expression profiles, interactions with microRNAs, protein-protein

interactions (PPIs), and genetic interactions. Graph convolutional networks are used to

propagate node attributes across the graph to make classifications on pseudogenes.

Comparing Pseudo2GO with other frameworks adapted from popular protein function

prediction methods, we demonstrated that our method has achieved state-of-the-art

performance, significantly outperforming other methods in terms of the M-AUPR metric.

Keywords: pseudogene, function prediction, graph neural networks, deep learning, gene ontology, feature

propagation, semi-supervised learning

1. INTRODUCTION

Pseudogenes were historically thought as unimportant DNA relics, since they have no
protein-coding ability due to inactivating genemutations during evolution (Vanin, 1985). However,
more and more pseudogenes have been discovered to play important roles in gene regulation (Pink
et al., 2011; An et al., 2017), especially in cancers (Xiao-Jie et al., 2015; Chan and Tay, 2018). One
notable example is the transcriptional regulation of PTEN by pseudogene PTENP1 under several
cancer conditions (Poliseno et al., 2010), indicating functional potentials of pseudogenes. With
the accumulation of evidences showing the importance of pseudogenes, there has been renewed
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interest in the discovery of functional pseudogenes. Considering
the huge amounts of existing pseudogenes, experimental
validation of all their functions are time-consuming and
expensive. Therefore, reliable computational methods to infer
functions of pseudogenes are in great demand, which can be used
to direct targeted experimental validation.

Several efforts have been made to study pseudogenes in
a computational manner. Pseudofam is a large database of
pseudogene families based on Pfam database, which can be
used to analyze the family structure of pseudogenes (Lam et al.,
2008). Han et al. (2014) proposed a supervised classification
model to predict subtypes of endometrial cancer based on
expression profiles of pseudogenes and highlights the prognostic
power of pseudogenes. Johnson et al. (2018) adopted a novel
graph-based approach to evaluate the relationship between
pseudogenes and their parent genes. Pseudogene-gene (PGG)
families are constructed based on sequence alignment and
functional enrichment analysis can be performed in these
families to infer functional impact of pseudogenes. PseudoFuN
is a comprehensive PGG family database by taking advantage of
the power of GPU computing (Johnson et al., 2019). However,
there still remain several limitations in existing computational
methods. First, all the above-mentioned methods only consider
single features when studying pseudogenes, for example, DNA
sequence or expression profile. The inclusion of multiple features
might help characterize pseudogenes more comprehensively.
Second, no computational methods have been proposed to
directly infer functions of pseudogenes to guide biomedical
researchers for targeted experimental validation. Gene Ontology
(GO) is a comprehensive source of information on the functions
of genes (Ashburner et al., 2000; Gene Ontology Consortium,
2018). A reliable machine learning model for predicting GO
terms of pseudogenes is preferred.

Computational methods for predicting functions of coding
genes (as well as proteins) have been studied for almost two
decades. Most existing algorithms exploit homology inference
to predict protein functions (Chitale et al., 2009; Loewenstein
et al., 2009; Piovesan et al., 2011), based on the assumption
that proteins with similar sequences tend to share similar
functions. Some approaches involve the use of other features to
infer protein functions, for example, protein-protein interaction
(PPI) networks (Chua et al., 2007; Sharan et al., 2007), protein
domains (Forslund and Sonnhammer, 2008; Rentzsch and
Orengo, 2013), subcellular localization (Jensen et al., 2002; Lee
et al., 2007), post-translational modifications (Jensen et al.,
2002) and literature (Verspoor, 2014). Considering the limited
capacity of a single feature source, many methods opt to combine
multiple information and take advantage of the power ofmachine
learning techniques. COFACTOR consists of three individual
pipelines for sequence-, structure- and PPI-based predictions
and generates the consensus based on three confidence scores
obtained from three pipelines (Zhang et al., 2017). DeepGO
uses representation learning methods to learn features from
both sequence information and interaction networks respectively
and then combine them to predict functions using a deep
learning model (Kulmanov et al., 2017). Both Mashup (Cho
et al., 2016) and DeepNF (Gligorijević et al., 2018) are network

fusion methods for extracting integrated features from multiple
heterogeneous interaction networks and then train a support
vector machine (SVM) model to predict protein functions.

It is not suitable to directly apply protein function prediction
algorithms to infer functions of pseudogenes, since functional
annotations of pseudogenes is highly sparse, which is a significant
challenge for traditional supervised machine learning methods.
Semi-supervised learning is preferred in such a sparsely labeled
setting. It is known that pseudogenes share similar functions
with their parent genes based on homology inference (Johnson
et al., 2018, 2019). Therefore, interaction networks between
pseudogenes and coding genes can be constructed from the
sequence similarity, where abundant labels of coding genes
can be transferred to infer functions of pseudogenes. Besides
the network information, the incorporation of more features
is desirable to improve the robustness of the prediction
model. Graph convolutional network (GCN) model is a neural
network that operates on graphs and enables learning over
graph structures, which was first proposed for semi-supervised
classification (Kipf and Welling, 2016). The GCN model can
naturally integrate both graph topology patterns and node
features of graph data, and has significantly outperformed many
state-of-the-art methods on several benchmarks (Wu et al.,
2019). Due to its powerful capacity for representation and
integration, it has been successfully applied in biomedical field
that involves the use of graph data, including neuroimage
analysis for Parkinson’s Disease (Zhang et al., 2018), disease
gene prioritization (Li et al., 2019), polypharmacy side effects
prediction (Zitnik et al., 2018) and drug combination synergy
prediction (Jiang et al., 2019).

In this work, we developed a multi-modal semi-supervised
classification model based on GCN to predict functions of
pseudogenes by considering multiple sources of information.
Since each pseudogene may have multiple GO annotations
simultaneously, this is a multi-label prediction model. We first
build a similarity graph based on sequence similarity to connect
pseudogenes and coding genes. For each node (pseudogenes,
coding genes) in the graph, we consider expression profiles,
interactions with microRNAs and node2vec embeddings of
PPI and genetic interactions as node attributes (Grover and
Leskovec, 2016), making the similarity graph an attributed
graph. Then a two-layer GCN model is used to model
this attributed graph, propagating node attributes across the
graph. We compared our method with several state-of-the-
art methods designed for protein function prediction in
terms of three metrics. We have shown that Pseudo2GO
outperforms all other methods in the comparison, demonstrating
promising performance.

As far as we know, we are the first to propose a predictive
model for inferring functions of pseudogenes on Gene Ontology
directly. Our pseudogene-specific model is significantly better
than those designed for protein function prediction when
adapted for pseudogene function prediction. Besides, our model
is extensible to incorporate more features as node attributes to
further improve the performance. The satisfying performance of
Pseudo2GOmakes it desirable to be used for screening functional
pseudogenes for experimental validation.
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FIGURE 1 | Model architecture of Pseudo2GO. There are two types of input features: sequence similarity network (graph information) and node attributes (including

four kinds of features). Similarity graph is obtained by running BLAST on DNA sequence features. Four kinds of node attributes are first encoded and then

concatenated together to form the final node attribute matrix X with the dimension of N× R. Two layers of graph convolutional network (GCN) are stacked to process

the attributed graph. The green node in the graph refers to a pseudogene, while the blue ones are coding genes. The gray bar represents node attribute vector for

each gene (pseudogene or coding gene). The output is a set of GO terms we are going to predict (multi-label prediction). Our model gives a probability score for each

GO term. Adam algorithm is used to train the model by minimizing the cross entropy error. Our model is a semi-supervised machine learning model, training on coding

genes while testing on pseudogenes.

2. MATERIALS AND METHODS

2.1. Data Collection
Human pseudogene and protein coding gene annotations were
obtained from GENCODE release 29 (Frankish et al., 2018).
We only consider transcribed pseudogenes in our analysis as
they possess greater functional potentials. We collected two
groups of gene expression profiles: median expression values
per tissue from GTEx V8 (Lonsdale et al., 2013) and BRCA
expression values from dreamBase (Zheng et al., 2017), a large-
scale database for pseudogenes. For GTEx expression data,
TPM median expression values for all 54 tissues are used to
characterize each gene. The BRCA expression values are from
TCGA database and curated by dreamBase, and we will refer it
as TCGA expression feature. Genetic interactions and protein-
protein interactions (PPI) were downloaded from BioGRID
version 3.5.173 (Oughtred et al., 2018) and microRNA-target
interactions (MTI) were downloaded from miRTarBase release
7.0 (Chou et al., 2017). We used Gene Ontology terms as the
functional annotation that were download from Gene Ontology
knowledgebase (release 2019-03-19).

2.2. Data Preprocessing and Encoding
There are two kinds of features in our model: similarity graph
and node attributes, which are integrated to make classifications,
as shown in Figure 1. The graph represents the structural
information of data, while each data instance also comes with
feature vectors containing important information not present in
the graph. We first discuss how to construct the similarity graph
and then how to encode informative features as node attributes.

2.2.1. Graph Construction

In order to infer pseudogene functions by borrowing information
from coding genes, the first step is to construct a similarity
graph connecting these two kinds of genes. Considering that
pseudogenes have high sequence similarity with coding genes,
especially with their parent coding genes that share similar
functional annotations, constructing a graph based on sequence
similarity can help build the relationship between pseudogenes
and coding genes in the functional domain.

BLAST is used to detect similar gene pairs based on sequence
similarity (Altschul et al., 1990). As we can see from Figure S1,
there are a large portion of highly similar gene pairs whose e-
value equals to zero. In order to make the selected edges of
high confidence, we set the threshold as 1e-200 and only keep
those pairs whose e-value are less than 1e-200 to construct the
graph. In our dataset, we only select coding genes which share
high sequence similarity with at least one pseudogene, resulting
in 7,527 coding genes and 1,151 transcribed pseudogenes left.
After filtering, there are 2,865,136 edges in the graph, where
pseudogenes involve in 156,582 interactions.

2.2.2. Node Attributes

There are in total four kinds of node attributes used in our model:
two groups of expression profiles, PPI and genetic interactions,
and interactions with microRNAs. By including PPI and genetic
interactions in our model, we characterize the relationship
between pseudogenes and coding genes more comprehensively.
We take into account the interactions with microRNAs, whose
importance have been implicated in competing endogenous
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RNA (ceRNA) networks, where pseudogenes act as decoy targets
for microRNAs targeting protein-coding genes (Salmena et al.,
2011). It is possible that pseudogenes and coding genes sharing
the same microRNAs may be involved in the same cellular
mechanisms and thus share similar functional annotations
(Poliseno and Pandolfi, 2015).

The way of encoding these node attributes greatly affects
the performance of our GCN model. For interactions with
microRNAs, we only consider microRNAs that have more than
250 targets in the database, resulting in 118 microRNAs left.
For each gene, we use bag-of-words encoding to represent this
information. The encoding vector is of length 118 consisting of 0’s
and 1’s, where 1 means the gene interacts with the corresponding
microRNA and 0 otherwise.

As for other three types of node attributes, we adopt a
learning-based method for encoding as suggested by Duong et al.
in their study on node attributes for graph neural networks
(Duong et al., 2019). For both GTEx and TCGA expression data,
we first calculate the Spearman correlation and select pairs whose
correlation are higher than 0.5 or less than −0.5 to build the co-
expression network. Then node2vec algorithm is applied on these
co-expression networks to generate embeddings for each node
(gene) (Grover and Leskovec, 2016). These embeddings represent
global structure information contained in the co-expression
patterns, which can be used to differentiate genes and make
classification, and we have shown that they are more informative
than raw expression values. As for PPI and genetic interactions,
we repeat the same procedure to generate latent embeddings by
node2vec to represent topology information within the network.
The length of the embeddings for all above three attributes is 256.

2.3. Problem Setting
We are given an undirected graph G = (Vp,Vc, E) where Vp are
pseudogene nodes and Vc are coding gene nodes, withNp = |Vp|,
Nc = |Vc| and N = Np + Nc. The adjacency matrix A of G
and its diagonal degree matrix D are derived from known graph
information, where each edge is a similarity pair in the sequence
similarity graph. Four kinds of node attributes are represented as
E (expression profiles from GTEx dataset), T (expression profiles
from TCGA database), M (interactions with microRNAs) and P
(PPI and genetic interactions) with the dimension ofN×256,N×

256, N × 118 and N × 256. These four matrices are concatenated
into one final node attribute matrix X with the dimension of
N × R, where R equals 886.

Since Gene Ontology (GO) has three categories—cellular
component (CC), molecular function (MF), and biological
process (BP), we useYcc,Ymf , andYbp to denote them separately.
They are label indicator matrices consisting of 0’s and 1’s. For
GO annotations, we only consider the experimental evidence
code among EXP, IDA, IPI, IMP, IGI, IEP, TAS, and IC. (Note:
Guide to GO Evidence Codes http://www-legacy.geneontology.
org/GO.evidence.shtml). If a gene is annotated with a GO term,
we additionally annotated it with all the ancestor terms. Due to
the small number of annotations for very specific GO terms, we
rank GO terms by their number of occurrences and select the top
339 terms for CC, 368 terms for MF and 309 terms for BP. The

corresponding cutoff values for selecting these terms are 25, 25,
and 250 for CC, MF, and BP, respectively.

Our goal is to predict pseudogene functions on CC, MF, and
BP separately by training the model using coding genes, in a
graph-based semi-supervised manner. Considering that coding
genes have rich annotations, we try to maximize the effective
utilization of structural and feature information of well-studied
coding genes by using graph convolutional networks.

2.4. Graph Convolution
Traditional convolutional neural networks (CNN) rely on the
regular grid-like structure with a well-defined neighborhood
(Krizhevsky et al., 2012). However, for a graph structure, there
is no natural choice for an ordering of the neighbors of a node,
therefore the convolution operation needs to be adapted. Given
an undirected graph with node attribute matrix X and adjacency
matrix A, the graph convolution operation is defined as:

H = f(D̂
− 1

2 ÂD̂
− 1

2 XW), (1)

where Â = A + I, I is the identity matrix, D̂ii =
∑

j Âij, W is

the trainable weight matrix for neural network, H is the updated
feature matrix and f is the activation function, e.g., ReLU(·) =

max(0, ·).
Intuitively, this graph convolution operation computes the

new features of a node as the weighted average of node attributes
of itself and its neighbors’, similar to Laplacian smoothing which
makes features of nodes in the same cluster similar (Li et al.,
2018). This operation naturally combines both graph structures
and node attributes in the convolution, where the features of
unlabeled nodes (pseudogenes in our case) are mixed with those
of nearby labeled nodes (coding genes), and propagated over the
graph structure. By this aggregation scheme, intuitively, if two
nodes have identical neighboring structures with identical node
features on the corresponding nodes, their embeddings H will be
exactly identical (Xu et al., 2018). In other words, the embeddings
are a good characterization to measure similarities based on both
graph information and node features, and thus promising to be
used for classification.

2.5. Pseudo2GO
The graph convolution operation can be stacked into multiple
layers to enable learning over a larger neighborhood structure.
However, a GCN model with too many layers is not a good
choice since repeatedly applying Laplacian smoothing may mix
the features of nodes from different clusters and make them
indistinguishable (Li et al., 2018). Here we adopted a two-layer
model suggested in Li et al. (2018) and Kipf and Welling (2016),
as shown in Figure 1. Our Pseudo2GO model is defined as:

Z = σ (ÃReLU(ÃXW0)W1). (2)

where Ã = D̂
− 1

2 ÂD̂
− 1

2 , σ is the sigmoid function, W0 and W1

are both trainable weight matrices. Here Ã is the symmetrically
normalized adjacency matrix in order to avoid changing the scale
of the feature vectors X.
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The loss function is defined as the binary cross entropy error
over all coding genes:

L = −
∑

i∈Vc

F∑

f=1

Yif ln Zif . (3)

where Vc is the set of indices of coding gene nodes and F is
the column dimension of the output matrix, which is equal to
the number of labels (GO terms) in this multi-label setting. The
Model is trained using stochastic gradient descent by updating
weight matrices so as to minimize loss function.

3. RESULTS

3.1. Experimental Setup
Pseudo2GO was implemented using PyTorch Geometric library
in Python and took advantage of the powerful computing
capacity of GPU (Fey and Lenssen, 2019). All the simulations
were carried out on Owens cluster provided by the Ohio
Supercomputer Center (OSC) with 27 processors and 127GB
memory (Ohio Supercomputer Center, 1987). The GPU we used
was NVIDIA Tesla P100 with 16GB memory. Our source code
is available at https://github.com/yanzhanglab/Pseudo2GO. In
our dataset, there are in total 7,527 coding genes and 1,151
transcribed pseudogenes. Coding genes are used as the training
set while pseudogenes are in our test set used for evaluation.
Several hyper-parameters need to be determined: number of
neurons of the hidden layer, learning rate and number of training
iterations. 5-fold cross-validation was performed on the training
data to select the best hyper-parameters. We end up with
choosing 256 as the number of units in the hidden layer. The
number of units in the output layer of our model equals the
number of GO terms in CC, MF or BP ontology. The model is
trained for 400 iterations using Adam algorithm with a learning
rate of 0.01 (Kingma and Ba, 2014).

We used three evaluation metrics for this multi-label task:
the macro-averaged area under the precision-recall curve
(M-AUPR), the micro-averaged area under the precision-
recall curve (m-AUPR) and the harmonic mean of precision
and recall when the top three predictions are assigned to
each gene (F1-score). The formal definition of F1-score
is as follows:

pr(t) =

∑
i

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)

∑
i

∑
f I(f ∈ Pi(t))

, (4)

rc(t) =

∑
i

∑
f I(f ∈ Pi(t) ∧ f ∈ Ti)
∑

i

∑
f I(f ∈ Ti)

, (5)

F1(t) =
2 · pr(t) · rc(t)

pr(t)+ rc(t)
. (6)

where pr means precision, rc means recall, I is the indicator
function, f is a GO term, Pi(t) is a set of predicted GO terms
for gene i using the threshold t, and Ti is a set of annotated GO
terms for gene i. In our implementation of F1-score, in order
not to determine a threshold, we only consider the top three

predictions and calculate the F1-score. This implementation
is also utilized by Mashup (Cho et al., 2016) and DeepNF
(Gligorijević et al., 2018).

The other two evaluation metrics M-AUPR and m-AUPR
are widely used when the labels are highly imbalanced, and
it has been proved that AUPR is more informative than area
under the receiver operating characteristic curve (ROC-AUC)
in the imbalanced case (Davis and Goadrich, 2006). The formal
definition of these two metrics is as follows:

prf (t) =

∑
i I(f ∈ Pi(t) ∧ f ∈ Ti)∑

i I(f ∈ Pi(t))
, (7)

rcf (t) =

∑
i I(f ∈ Pi(t) ∧ f ∈ Ti)∑

i I(f ∈ Ti)
, (8)

AUPRf =
∑

t

(rcf (t)− rcf (t − 1)) · prf (t), (9)

M-AUPR =
1

Nf
·
∑

f

AUPRf . (10)

m-AUPR =
∑

t

(rc(t)− rc(t − 1)) · pr(t). (11)

where prf and rcf are precision and recall for a single GO term f,
AUPRf is the area under the precision-recall curve (AUPR) for f,
Nf is the number of GO terms used for evaluation. The macro-
averaged AUPR (M-AUPR) is defined as the unweighted mean
of the AUPR for all labels, while the micro-averaged AUPR (m-
AUPR) is calculated globally by considering each element of the
label indicator matrix as a label.

3.2. Integration of Multiple Node Attributes
Improves the Performance
In our Pseudo2GO model, we use four kinds of features as node
attributes, as mentioned before. Here, we train one individual
model for each attribute to demonstrate the power of integration.
For each individual model, we use the same graph information,
training on the same training set (coding genes) and testing
on pseudogenes. The only difference between these models is
the choice of node attribute. Simulations were repeated 10
times for each model and bootstrap was used to estimate the
confidence interval.

As shown in Table 1, the model that includes all four kinds
of features greatly outperforms other individual models that only
use one feature as node attribute, demonstrating the importance
of integrating multiple features. Looking at these four individual
models, we can see that the two types of expression are the most
informative features, achieving the best performance in terms
of M-AUPR and F1-score on both CC and BP. Besides, the
model based on PPI and genetic interactions achieves the highest
M-AUPR score on MF ontology. Among all four individual
models, the model using interactions with microRNA as the
node attribute works the worst. This might be due to the sparse
encoding which makes training hard.

We also tested the model performance when using different
combinations of node attributes, as shown in Table S1. The
results are consistent with Table 1. In CC and BP ontology,
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TABLE 1 | Comparison between different node attributes.

Node attribute CC MF BP

M-AUPR F1-score M-AUPR F1-score M-AUPR F1-score

microRNA 0.292±0.02 0.357±0.01 0.211±0.05 0.263±0.01 0.230±0.03 0.192±0.01

PPI 0.415±0.03 0.369±0.01 0.346±0.02 0.291±0.01 0.264±0.02 0.191±0.02

TCGA-exp 0.462±0.07 0.376±0.01 0.319±0.03 0.278±0.01 0.338±0.02 0.184±0.01

GTEx-exp 0.462±0.09 0.373±0.01 0.271±0.03 0.301±0.01 0.308±0.04 0.195±0.01

GTEx-raw 0.325±0.02 0.357±0.01 0.224±0.02 0.257±0.01 0.211±0.02 0.183±0.01

shuffle 0.463±0.10 0.376±0.02 0.385±0.09 0.316±0.02 0.306±0.06 0.185±0.01

ALL 0.587±0.02 0.380±0.01 0.463±0.02 0.319±0.01 0.362±0.01 0.193±0.01

M-AUPR and F1-score are used for evaluation. PPI represents PPI and genetic interactions. TCGA-exp and GTEx-exp stand for expression profiles from TCGA and GTEx that are

processed by node2vec. GTEx-raw represents raw expression values from GTEx. ALL is our final model that includes all four kinds of features as the node attributes.

since two types of expression features are the most informative,
combining these two features only can achieve impressive
performance, even slightly outperforming the model using
all four kinds of node attributes. As for MF ontology,
since PPI and genetic interactions are also informative, the
model using two types of expression as well as PPI achieves
outstanding performance, but not as good as the model with
all node attributes.

3.3. Learning-Based Encoding for Node
Attributes Is Better Than Raw Information
As suggested by Duong et al. in their research on node attributes
for graph neural network models (Duong et al., 2019), learning-
based method for encoding node attributes can improve the
model performance. In our model, for both two types of
expression features and PPI and genetic interactions feature, we
transform their raw representations into learned embeddings
by applying node2vec algorithm (Grover and Leskovec, 2016).
It should be noted that for two types of expression features,
co-expression network should be constructed first in order to
run node2vec. node2vec is a representation learning method
where continuous low-dimensional representations for nodes
in the graph can be learned by optimizing a neighborhood
preserving objective.

In order to show the learning-based encoding is better
than raw representation, we compared the models that use
raw GTEx expression profiles or GTEx expression feature after
node2vec processing as node attribute. As shown in Table 1,
the model using learning-based feature achieves significantly
better performance than the one using raw feature as the
node attribute, especially in terms of M-AUPR. When we feed
raw feature into the model, considering that the data may
be of low quality or contains some noises, the entire load of
learning is put on the model, making it hard to train and
generalize. On the contrary, we already put some knowledge
into the data by applying node2vec to learn informative
representations, making it of high quality and easier for
the model to learn.

3.4. Graph Information Is Important for
Pseudogene Function Prediction
In order to show the importance of using graph information
to borrow information from coding genes based on GCN
model to predict functions of pseudogenes, we shuffle the node
attributes and evaluate the performance. As we can see from
Table 1, even with the completely randomized features, the
model can still achieve a reasonable performance, comparable to
the individual model using expression feature as node attribute.
This can be attributed to the power of using graph information
and GCN model that makes features of nodes in the same
cluster similar, which helps subsequent classification. If we
look at the performance of SVM and DNN models shown
in Figure 2, we can see that our method outperforms them
by a large margin. These two models use the same node
attributes (four kinds of features) in our method as features,
which means the only difference between them and our method
about features is whether to use graph information to transfer
knowledge. It is indicated that only using node features without
graph information is not desirable, further demonstrating the
importance and necessity of using graph information.

3.5. Pseudo2GO Outperforms Other
Machine Learning Methods
We have shown that both graph information and node attributes
are informative and important for predicting functions of
pseudogenes. In order to show the superiority of our method
Pseudo2GO, we compare it with four other machine learning
methods. deepNF (Gligorijević et al., 2018) and Mashup (Cho
et al., 2016) are two state-of-the-art network fusion methods
for protein function prediction. Sequence similarity network, co-
expression network and PPI network features are used in these
two methods. We also compare it with two machine learning
models that are not based on graph information: support vector
machine (SVM) and deep neural network (DNN), which use the
same node attributes used in our method as the input features.
For above-mentioned four methods, we also use 5-fold cross-
validation on training data to choose hyper-parameters.
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FIGURE 2 | Performance comparison of Pseudo2GO with other machine learning methods. Macro-AUPR, micro-AUPR and F1-score are used for evaluating the

performance. Panels (A–C) show the comparison results on CC, MF and BP ontology, respectively. Each method is evaluated using 5-fold cross-validation, repeated

10 times to calculate the confidence interval.

It is shown that our method achieves the best performance on
all three ontologies in terms of all metrics, except that Mashup
outperforms our method on CC in terms of m-AUPR. It should
be noted that in terms of M-AUPR, Pseudo2GO outperforms
other four methods by a large margin (about 0.2 higher than
the second best method on all three ontologies), showing the
superiority of our method. We can also see that on MF ontology,
our method significantly outperforms other methods in terms of
all three metrics, indicating that the use of graph information
about sequence similarity is highly informative for predicting
molecular function (MF). Among all five methods, the SVM
and DNN model work the worst, though they are among
the most popular methods in predicting protein functions.
Given the limited annotation of existing pseudogenes, without
borrowing information from well-studied coding genes by way
of graphs, these two models are not able to learn sufficiently good
classifiers. Comparing our method with Mashup and deepNF,
two network fusion models, the inclusion of more features (node
attributes) and the powerful representation capacity of GCN
make Pseudo2GO a much better model.

3.6. Pseudo2GO Shows Better Precision
Than BLAST for Inferring Pseudogene
Functions
It is widely known that pseudogenes exhibit great DNA sequence
similarity with their parent coding genes, resulting from the
inactivating gene mutations during evolution. The similarity
in DNA sequence implicates the similarity in functions, for
example, pseudogenes act as decoy targets for microRNAs that
target protein-coding genes because of the same microRNA
response elements, forming the competing endogenous RNAs
(ceRNAs) and showing almost the same functions. When
analyzing the functional relationship between pseudogenes and
their parent genes, out of limited pseudogenes with functional
annotations (only 97 pseudogenes have GO term annotations
on MF ontology), we found out 10 pairs of pseudogene-coding
gene have exactly the same GO terms annotation on MF
ontology. These pairs include FKBP9P1-FKBP9, CA5BP1-CA5B,
DPY19L2P1-DPY19L2, CES1P1-CES1, TDGF1P3-TDGF1,
STAG3L1-STAG3, STAG3L2-STAG3, STAG3L3-STAG3, and

STAG3L4-STAG3. These evidences show that transferring
functional annotations of the parent coding gene to the
corresponding pseudogene can be an effective method.

BLAST is a sequence alignment tool that can be used to
search the most similar gene for the query pseudogene (Altschul
et al., 1990). For each pseudogene, BLAST program is used to
search against all coding genes to select the most similar one
(probably the parent gene), and then assign all functions of
this target gene to the query pseudogene as the prediction. We
compared our method with this BLAST-based method. F1-score
(harmonic mean between precision and recall), precision and
recall metrics are used for evaluation. In order to calculate these
metrics for our method, we choose the threshold (between 0
and 1) for each ontology such that the F1-score is maximized
(Radivojac et al., 2013). As shown in Table S2, in terms of F1-
score, our method is better than BLAST on CC and BP, but
slightly worse on MF. Looking at the precision, our method
shows promising results, a lot higher than BLAST. By directly
borrowing functional annotation from the most similar gene,
BLAST can achieve high recall score, as we showed previously
that there is a large correlation between sequence similarity
and functions. However, this method is not very accurate
and robust, resulting in many false positives, given that only
sequence information is considered. Compared to BLAST, our
method not only borrows information from multiple similar
genes by constructing a network, but also considers several node
attributes, making it more comprehensive and robust.

In order to further show the promising performance of our
method in predicting novel functions, for each pseudogene, we
sorted the prediction scores across all GO terms and selected
the top 5 predictions with the highest confidence. Then we
calculated the proportion of these 5 predictions belonging to
the true annotations. Out of 97 pseudogenes with at least
one true MF annotations, 31 (31.9%) pseudogenes got 100%
proportion. There were 46 (49.5%) out of 93 pseudogenes got
100% proportion in CC ontology, and 30 (34.5%) out of 87 in
BP ontology. In Table S3, we listed selected 9 pseudogenes where
ourmodel’s top 5 prediction were all true positives across all three
ontologies. As we can see, the top predictions of our method are
reliable and can be used for inferring novel functions not present
in the database.
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4. DISCUSSION

Pseudo2GO is a graph-based deep learning model for predicting
functions of pseudogenes by borrowing information from coding
genes. DNA sequence similarity information is used to build a
graph connecting pseudogenes and coding genes, where multiple
features are incorporated to characterize each node (gene). This
attributed graph is modeled by a two-layer graph convolutional
network which is capable of capturing both graph structural
information and node attributes. We are the first to directly
predict pseudogene functions on Gene Ontology, which can help
guide the experimental validation. Comparing our method to
other popular methods designed for protein function prediction,
Pseudo2GO has achieved state-of-the-art performance.

One significant challenge for predicting pseudogene functions
is the huge amount of missing features and functional
annotations, making traditional supervised learning models
inapplicable. Ourmodel managed to solve this problem in several
ways. First, as coding genes have plentiful features, putting
pseudogenes and coding genes in the same pool by building
a similarity graph helps pseudognes borrow information from
coding genes usingGCNmodel. Second, considering only limited
pseudogenes have functional annotations, incorporating coding
genes into our model can be regarded as a way to increase the
sample size, which is important for training a deep learning
model. Third, when encoding node attributes with lots of missing
values, node2vec algorithm helps generate more informative
representations. For expression data from TCGA, there are more
than 50% missing values for genes used in our dataset, which
can not be directly encoded. After constructing the co-expression
network and using node2vec to process the network, the newly
generated representations are free of missing values and provide
informative features.

Since the graph is constructed based on sequence similarity, it
is possible that several protein coding genes of the same paralog
families connect to one pseudogene simultaneously, as shown
in Figure S2 (using pseudogene AC114812.1 as an example).
Since node attributes and labels of coding genes belonging to
the same paralog family tend to be clustered together, when
the pseudogene borrows information from neighboring coding
genes, it can be regarded that multiple copies of the similar node
attributes will be used to enrich the pseudogene. The problem
is that the learning of the pseudogene feature may be biased
to the paralog family with lots of instances. In the future, we
may consider adding edge weight for each similarity pair and

normalizing the weight for edges connecting with coding genes
of the same paralog family to solve this potential problem.

Regarding to the future direction, our model has the
potential to be further improved. Currently, we only utilize
one kind of graph information (sequence similarity network)
to connect pseudogenes and coding genes. To fully take
advantage of the power of GCN, building a heterogeneous
network consisting of pseudogenes, coding genes, microRNAs
and maybe lncRNAs may worth a try in the future, because
this heterogeneous network characterizes a more comprehensive
relationship between pseudogenes and other kinds of genes or
RNAs. Besides, node attributes defined in our model can be
easily extended to incorporate more discriminating features to
improve the performance. We can also relax the criterion for
building interactions between pseudogenes and coding genes.
For example, instead of calculating the similarity based on the
whole sequences, we can only focus on certain intact domains to
measure the similarity.
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