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Abstract: In colloidal methods, the morphology of nanoparticles (size and shape) as well as their
stability can be controlled by changing the concentration of the substrate, stabilizer, adding inorganic
salts, changing the reducer/substrate molar ratio, and changing the pH and reaction time. The synthesis
of silver nanoparticles was carried out according to the modified Lee and Meisel method in a wide pH
range (from 2.0 to 11.0) using citric acid and malic acid, without adding any additives or stabilizers.
Keeping the same reaction conditions as the concentration of acid and silver ions, temperature,
and heating time, it was possible to determine the relationship between the reaction pH, the type of
acid, and the size of the silver nanoparticles formed. Obtained colloids were analyzed by UV-Vis
spectroscopy and investigated by means of Transmission Electron Microscope (TEM). The study
showed that the colloids reduced with citric acid and malic acid are stable over time for a minimum
of seven weeks. We observed that reactions occurred for citric acid from pH 6.0 to 11.0 and for malic
acid from pH 7.0 to 11.0. The average size of the quasi-spherical nanoparticles changed with pH due
to the increase of reaction rate.
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1. Introduction

The global market value of nanotechnology is expected to reach $90.5 billion by 2021 as commercial
and consumer nano-products continue to rise [1]. According to the recently published statistics silver
is considered to be one of the most investigated and commercialized nanomaterials due to its good
conductivity, chemical stability as well as catalytic and antibacterial activity [2–7]. During the last
decade, design and fabrication of silver-based next-generation nanomaterials have been subjects of
intense research in the field material sciences [8,9].

Indeed, silver and silver-based nanomaterials, as the fruitful results of these studies, have been
widely applied in disinfection of medical devices and household appliances, catalysis, cosmetics,
in wound dressings, for water treatment, and in various textile materials containing silver nanoparticles
in fibers [6,7,10–15]. Moreover, published data indicate the “advantageous position” of silver
nanoparticles around other bactericidal agents, due to their relatively cheap production cost and high
efficiency [10,13].

In recent years, increasingly attention has been paid to green chemistry in design and production
of nanomaterials [6,16]. Therefore, the interest of many researchers has been focused on the use of
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natural compounds or extracts from plants and fruits, as novel, alternative and breakthrough reducers
and stabilizers [15–19]. In fact, compounds such as: fruit acids, naturally occurring in fruit, wine,
and almonds, meet the requirements of green chemistry [20]. They are also called as alpha-hydroxy
acids due to the presence of hydroxyl groups at the α-carbon atom as well as a variable number of
carboxylic groups. They have been widely employed in cosmetics and dermatology (i.e., in skin
moisturizing) for reduction of wrinkles and chemical peeling of the skin [20,21].

According to the published articles, it can be estimate that approximately 10% of protocols for silver
nanoparticles production have employed sodium salt of citric acid as a reducing agent [22]. For the first
time, the synthesis of silver colloids with sodium citrate was carried out in 1982 by Lee and Meisel [16].
The authors developed a procedure according to which an appropriate amount of aqueous solution
of sodium citrate should be added to a boiling aqueous solution of silver nitrate. Then, the solution
should be heated for 1 h, and finally it should be cooled down to room temperature [23,24]. It is worth
to underline that by following this protocol citrate ions serve as both a reducing agent and a stabilizer,
and they can coordinate Ag+ ions or Ag2+ dimers in the early stages of the reaction [25,26]. This method
is still very popular, due to its simplicity (i.e., it does not require a specialized, sophisticated equipment)
and high efficiency in high amount of silver colloid preparation; however, the obtained nanoparticles
have a wide range of sizes and shapes [24–26]. It has been disclosed that by controlling the pH
value of the reaction system, it is possible to successfully reduce the disadvantages of the mentioned
method and to achieve nanoparticles with a more monodisperse distribution [27,28]. According to
our knowledge, based on the literature/current state of the art investigation, the synthesis of silver
nanoparticles in aqueous solution at various pH with citric acid [28,29] and ascorbic acid [27] has not
been deeply studied. Published results demonstrated that conducted experiments were carried out
only in a narrow pH range or with the use of an additional stabilizing agent.

In this article, we present results of the synthesis of silver nanoparticles using citric acid and malic
acid in water, following to the modified method of Lee and Meise, in a wide pH range from 2.0 to 11.0,
without addition of additives or stabilizers.

2. Materials and Methods

Silver nitrate (AgNO3, ≥99%), citric acid (C6H8O7, ≥99%), DL-malic acid (C6H8O7, ≥99%),
sodium hydroxide (NaOH, 99%), nitric acid (HNO3, 65%) and hydrochloric acid (HCl, 35–38%) from
Sigma Aldrich were analytical grade and used without further purification. Ultra-pure water (Milli-Q,
resistivity at 25 ◦C, 18.2 MΩ·cm) was used in all experiments. The glassware used in the synthesis
were cleaned by aqua regia (HCl:HNO3 in 3:1 volume ratio), rinsed with plenty of deionized water,
and dried.

The spectra of the silver colloids were recorded at a 1:1 dilution with deionized water at 20 ◦C
in a PLASTIBRAND PMMA cell with 1 cm path length with an Evolution 300 UV spectrometer–Vis
ThermoFisher Scientific (Thermo Electron Scientific Instruments LLC, Madison, WI, USA) equipped
with a xenon lamp (range 300–1000 nm, accuracy 1 nm, sweep rate 240 nm/min).

Morphology of silver colloids was analyzed by Electron microscope JEOL JEM 1011 TEM (Jeol Ltd.,
Tokyo, Japan), with an acceleration voltage of 100 kV. Silver colloid was put on the Formvar Carbon
Film 200 square mesh copper grids and dried in air. The size of the silver nanoparticles was determined
using the ImageJ software and size distributions were prepared in Origin software.

3. Results

The synthesis of silver colloids was carried out according to the modified method of Lee and
Meisel and proceeded in two steps [23]. At first, the citric acid/malic acid solution was adjusted to a
specific pH (from 2.0 to 11.0) using a Titrino 702 Methron system (Metrohm AG, Herisau, Switzerland)
equipped with a glass pH electrode, by adding the appropriate amount of 0.1892 M sodium hydroxide
or 0.1 M nitric acid. The low value of the protonation constants of α-hydroxy acids caused the
deprotonation of carboxyl groups to occur at low pH values. As can be seen in the distribution curves
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of the forms calculated on the basis of protonation constants, citric acid was completely deprotonated
and at pH around 7.0, Figure S12 and in the case of malic acid at pH 6.0, Figure S13 (Supplementary
Materials) [30,31]. In the second step, 49.5 mL of citric acid/malic acid solution at the specified pH was
heated in a round bottom flask equipped with a reflux condenser, placed in an oil bath on a magnetic
stirrer. After reaching the boiling point, 0.5 mL of 0.05 M silver nitrate was added and heating was
continued for 60 min. Then, the heating was turned off, the flask was removed from the oil bath. Next,
the colloid solution was cooled down slowly at room temperature. In the reactions, the concentrations
of silver nitrate and citric/malic acid were 5× 10−4 M and 5× 10−3 M, respectively. The metal salt to
reducer ratio was 5:1. No additional stabilizers were added to the colloids.

The reaction for citric acid occurred from pH 6.0 to 11.0, while for malic acid it occurred from
pH 7.0 to 11.0. Both acids in the reaction served as a reducing agent and stabilizer [24,26]. In the
reaction, the citric acid was oxidized to acetone dicarboxylic acid (Scheme 1) [24], whereas malic acid
was oxidized to 3-oxopropanoic acid (Scheme 2).

Materials 2020, 13, x FOR PEER REVIEW 3 of 12 

 

completely deprotonated and at pH around 7.0, Figure S12 and in the case of malic acid at pH 6.0, 
Figure S13 (Supplementary Materials) [30,31]. In the second step, 49.5 mL of citric acid/malic acid 
solution at the specified pH was heated in a round bottom flask equipped with a reflux condenser, 
placed in an oil bath on a magnetic stirrer. After reaching the boiling point, 0.5 mL of 0.05 M silver 
nitrate was added and heating was continued for 60 min. Then, the heating was turned off, the flask 
was removed from the oil bath. Next, the colloid solution was cooled down slowly at room 
temperature. In the reactions, the concentrations of silver nitrate and citric/malic acid were 5 × 10  
M and 5 × 10  M, respectively. The metal salt to reducer ratio was 5:1. No additional stabilizers 
were added to the colloids. 

The reaction for citric acid occurred from pH 6.0 to 11.0, while for malic acid it occurred from 
pH 7.0 to 11.0. Both acids in the reaction served as a reducing agent and stabilizer [24,26]. In the 
reaction, the citric acid was oxidized to acetone dicarboxylic acid (Scheme 1) [24], whereas malic acid 
was oxidized to 3-oxopropanoic acid (Scheme 2).  

 
Scheme 1. The citric acid was oxidized to acetone dicarboxylic acid. 

 
Scheme 2. Malic acid was oxidized to 3-oxopropanoic. 

3.1. Silver Nanoparticles Reduced by Citric Acid 

Figure 1 presents UV-Vis absorption spectra of the silver colloids reduced by citric acid from pH 
2.0 to 11.0, recorded 60 min after switching off the heating. Products synthesized at pH 6.0, 7.0, 8.0, 
9.0, 10.0, and 11.0 demonstrated absorption peaks at 428, 407, 403, 401, 402, and 400 nm, 
corresponding to full width at half-maximum (fwhm) of 126, 145, 103, 90, 84 and 69 nm.  

 
Figure 1. UV-Vis spectra of the silver nanoparticles reduced by citric acid at pH 2.0 to 11.0 in 1:1 
dilution with deionized water. 

Scheme 1. The citric acid was oxidized to acetone dicarboxylic acid.

Materials 2020, 13, x FOR PEER REVIEW 3 of 12 

 

completely deprotonated and at pH around 7.0, Figure S12 and in the case of malic acid at pH 6.0, 
Figure S13 (Supplementary Materials) [30,31]. In the second step, 49.5 mL of citric acid/malic acid 
solution at the specified pH was heated in a round bottom flask equipped with a reflux condenser, 
placed in an oil bath on a magnetic stirrer. After reaching the boiling point, 0.5 mL of 0.05 M silver 
nitrate was added and heating was continued for 60 min. Then, the heating was turned off, the flask 
was removed from the oil bath. Next, the colloid solution was cooled down slowly at room 
temperature. In the reactions, the concentrations of silver nitrate and citric/malic acid were 5 × 10  
M and 5 × 10  M, respectively. The metal salt to reducer ratio was 5:1. No additional stabilizers 
were added to the colloids. 

The reaction for citric acid occurred from pH 6.0 to 11.0, while for malic acid it occurred from 
pH 7.0 to 11.0. Both acids in the reaction served as a reducing agent and stabilizer [24,26]. In the 
reaction, the citric acid was oxidized to acetone dicarboxylic acid (Scheme 1) [24], whereas malic acid 
was oxidized to 3-oxopropanoic acid (Scheme 2).  

 
Scheme 1. The citric acid was oxidized to acetone dicarboxylic acid. 

 
Scheme 2. Malic acid was oxidized to 3-oxopropanoic. 

3.1. Silver Nanoparticles Reduced by Citric Acid 

Figure 1 presents UV-Vis absorption spectra of the silver colloids reduced by citric acid from pH 
2.0 to 11.0, recorded 60 min after switching off the heating. Products synthesized at pH 6.0, 7.0, 8.0, 
9.0, 10.0, and 11.0 demonstrated absorption peaks at 428, 407, 403, 401, 402, and 400 nm, 
corresponding to full width at half-maximum (fwhm) of 126, 145, 103, 90, 84 and 69 nm.  
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3.1. Silver Nanoparticles Reduced by Citric Acid

Figure 1 presents UV-Vis absorption spectra of the silver colloids reduced by citric acid from pH
2.0 to 11.0, recorded 60 min after switching off the heating. Products synthesized at pH 6.0, 7.0, 8.0, 9.0,
10.0, and 11.0 demonstrated absorption peaks at 428, 407, 403, 401, 402, and 400 nm, corresponding to
full width at half-maximum (fwhm) of 126, 145, 103, 90, 84 and 69 nm.
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Colloids were stored in dark glass bottles at room temperature and for 7 weeks tested their
stability over time by weekly UV-Vis measurements (see Table 1). Before each measurement, the colloid
solution was diluted to exclude the effect of dilution on stability and that could be a reason for the little
fluctuations in the absorbance value.

Table 1. Comparison of data on the stability study of colloids reduced by citric acid determined using a
UV-Vis spectrometer.

Synthesis
Day

1
Week

2
Weeks

3
Weeks

4
Weeks

5
Weeks

6
Weeks

7
Weeks

pH 6.0 λmax (nm) 428 430 432 434 434 436 437 439
A (a.u.) 0.263 0.278 0.289 0.310 0.319 0.336 0.360 0.364

pH 7.0 λmax (nm) 407 407 407 407 407 408 408 408
A (a.u.) 1.495 1.475 1.478 1.495 1.474 1.497 1.485 1.490

pH 8.0 λmax (nm) 403 404 404 404 405 405 405 405
A (a.u.) 1.854 1.884 1.863 1.861 1.847 1.853 1.852 1.847

pH 9.0 λmax (nm) 401 403 403 403 403 404 404 404
A (a.u.) 2.052 2.075 2.071 2.052 2.062 2.046 2.051 2.040

pH 10.0 λmax (nm) 402 403 403 403 404 404 404 404
A (a.u.) 2.272 2.282 2.305 2.292 2.271 2.289 2.320 2.293

pH 11.0 λmax (nm) 400 400 400 399 400 400 399 400
A (a.u.) 2.804 2.789 2.794 2.785 2.780 2.802 2.789 2.822

Measurements using the Transmission Electron Microscope (TEM) were carried out to determine
the size and shape of the obtained nanoparticles. The average sizes of the quasi-spherical nanoparticles
were 11.81 ± 8.05, 43.18 ± 24.04, 35.49 ± 16.25, 36.04 ± 13.93, 36.24 ± 12.52, 25.33 ± 7.58 nm for pH 6.0,
7.0, 8.0, 9.0, 10.0, and 11.0 respectively. Figure 2. shows TEM images of the silver colloids reduced by
citric acid, the scale bare is 200 nm. At pH 6, only small nanoparticles were visible, whereas from pH
7.0 to 11.0 the average size of the nanoparticles decreased with increasing pH. The largest particles
were observed are at pH 7.0, while the smallest were observed at pH 11.0.
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On the basis of a minimum of 200 measurements, size distributions were plotted. At pH 6.0,
we observe a very narrow distribution of the size obtained nanoparticles, while at pH 7.0 it was very
wide. From pH 7.0 to 11.0 we clearly see that the size distributions were getting narrower, and thus the
polydispersity of the colloid decreased. Size distributions for the nanoparticles are shown in Figure 3.
The same scale in nm on the x-axis was used for all size distributions for greater transparency.
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In addition to the spherical shapes, in the TEM images, we can also see other shapes, mainly rods.
They occurred from pH 7.0 to 11.0 and represented 9.89%, 10.26%, 18.49%, 20.32%, and 19.48% for
pH 7.0, 8.0, 9.0, 10.0, and 11.0, respectively of all measured nanoparticles. As we can see in Figure 4,
the distribution of rod length was gradually narrowed and size decreased as pH increased. The average
size was 234.65 ± 172.98, 157.00 ± 88.26, 123.84 ± 75.10, 110.00 ± 56.63, 61.51 ± 15.40 nm for pH 7.0, 8.0,
9.0, 10.0 and 11.0 respectively.
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However, for the width of the rods, there was no such clear difference as pH increases (Figure 5).
The average width was 35.30 ± 6.90, 33.24 ± 8.01, 31.09 ± 7.05, 30.71 ± 6.85, 21.02 ± 5.35 for pH 7.0,
8.0, 9.0, 10.0, 11.0, respectively. The width of the rods was relatively constant from pH 7.0 to 10.0 and
slightly decreased, and for pH 11.0 it dropped by more than 10 nm.
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3.2. Silver Nanoparticles Reduced by Malic Acid

Figure 6. shows UV-Vis absorption spectra of the silver colloids reduced by malic acid from pH 2.0
to 11.0, which were recorded 60 min after switching off the heating. The maxima of absorption peaks
for pH 7.0, 8.0, 9.0, 10.0, and 11.0 were 393, 397, 409, 422, and 429 nm respectively, and corresponding
to the full width at half-maximum (fwhm) of 71, 71, 69, and 85 nm; at pH 11.0 it was not possible
to determine.
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These colloids were also stored temperature in dark glass bottles in the dark at room temperature
and for 7 weeks tested their stability over time by weekly UV-Vis measurements, using a new portion
of the colloid (see Table 2). Before each measurement, the colloid solution was diluted to exclude the
effect of dilution on stability. That could be a reason for the little fluctuations in the absorbance value.

Table 2. Comparison of data on the stability study of colloids reduced by malic acid determined using
a UV-Vis spectrometer.

Synthesis
Day 1 Week 2 Weeks 3 Weeks 4 Weeks 5 Weeks 6 Weeks 7 Weeks

pH 7.0 λmax (nm) 393 394 394 394 394 395 395 395
A (a.u.) 0.830 0.870 0.875 0.873 0.880 0.879 0.891 0.902

pH 8.0 λmax (nm) 397 397 397 397 397 398 398 398
A (a.u.) 1.503 1.598 1.634 1.659 1.693 1.689 1.737 1.709

pH 9.0 λmax (nm) 409 409 409 409 409 409 408 409
A (a.u.) 2.661 2.601 2.626 2.661 2.662 2.706 2.697 2.657

pH 10.0 λmax (nm) 422 422 422 422 422 422 422 422
A (a.u.) 1.624 1.553 1.572 1.573 1.566 1.585 1.574 1.571

pH 11.0 λmax (nm) 429 — — — — — — —
A (a.u.) 0.112 — — — — — — —

To determine the size and shape of the obtained nanoparticles, a Transmission Electron Microscope
was applied (Figure 7, scale bare is 200 nm). The average size of the quasi-spherical nanoparticles
was 10.59 ± 7.94, 18.91 ± 13.65, 29.84 ± 13.07, 11.68 ± 8.76, and 13.97 ± 7.83 nm for pH 7.0, 8.0, 9.0,
10.0, 11.0 respectively. In all pHs except 9.0, we observed very small nanoparticles next to large ones,
which lowered the average and increased the standard deviation. From pH 7.0 to 9.0, the average
size of the nanoparticles increased and then dropped sharply, as did the absorbance of the colloids.
At pH 11.0, it was difficult to draw conclusions because the colloid had a low absorbance due to the
deposition of most of the reduced silver on the flask.
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Size distributions of the nanoparticles are shown on Figure 8. For pH 7.0, 8.0, 10.0, and 11.0,
the size distribution had a very similar shape and was shifted towards smaller values. However, at pH
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9.0 we observed two maxima, the first at about 15 nm, and the second at 42.5 nm. The same scale in
nm on the x-axis was used for all size distributions for greater transparency.Materials 2020, 13, x FOR PEER REVIEW 8 of 12 
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4. Discussion

Absorption peak of silver colloids reduced by citric acid were slightly shifted to shorter wavelengths
and became much narrower with increasing pH, due to a decrease in the size and polydispersity of the
nanoparticles [27,32,33]. Absorbance gradually increases with increasing pH. The biggest difference in
absorbance is between pH 6.0 and 7.0, which is probably due to the fact that the reaction at pH 6.0
occurs after 45 min, while at pH 7.0 just after 20 min (Figure 9). The reason for this is that at pH 6.0,
citric acid is a partially deprotonated form (pKa1 = 3.2, pKa2 = 4.8, pKa3 = 6.4) and cannot strongly
coordinate silver ions and reduce them [24,34]. Therefore, the reduction reaction occurs after a longer
time for pH 6.0 than for pH 7.0. For colloids reduced by malic acid, the absorption peaks are shifted
to longer wavelengths from 7.0 to 11.0 and the absorbance increased from pH 7.0 to 9.0, and then at
pH 10.0 dropped sharply, at pH 11 is a flat line, due to the increasing reaction rate and the weaker
stabilizing properties of malic acid. Full width at half-maximum is more or less constant for pH 7.0–9.0,
and it grows at pH 10.0. Malic acid has also weaker reducing properties, as indicated by the fact
that the reaction at a given pH takes longer than for citric acid. With increasing pH, the reaction rate
increases for both acids.

Stability of the colloids reduced by citric acid can be explained by the fact that citrate ions act also
as stabilizers in the reduction reaction—stabilized nanoparticles by charge repulsion and are weakly
bound to the silver producing a charged layer that serves as an electrostatic barrier to aggregation [7,34].
At pH 6.0, there is a slight increase in absorbance that could not be the result of the fluctuations
associated with dilution. This is due to the fact that the solution contains unreduced silver ions and at
room temperature citric acid is capable of reducing Ag+ ions, but it is a very slow process. That is
why we can observe the increase of the absorbance at pH 6.0 after a few weeks [35]. From pH 7.0 to
11.0, there is a practically constant value of absorbance and only a small, up to several nanometers,
fluctuation in λmax at longer wavelengths, which is evidence of stability. Therefore, they do not contain
unreduced silver ions, because there is no increase of the absorbance.

The colloids obtained from pH 7.0 to 10.0 reduced by malic acid were found to be stable for at
least 7 weeks. At pH 7.0, there is a little increase in absorbance and this is a similar situation as at pH 6
for nanoparticles reduced by citric acid. The solution still probably contains silver ions, which are
reduced over time by malic acid. However, at pH 8.0 to 10.0, there is a practically constant value of
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absorbance during time and small, up to several nanometer fluctuation in λmax, which is evidence of
stability. At pH 11.0, there was no sense to conduct stability tests due to the insignificant absorbance of
the colloid. Malate ions act also as stabilizers in the reaction like citrate and stabilize nanoparticles by
charge repulsion.
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nanoparticles reduced by citric and malic acids.

For silver colloid reduced by citric acid at pH 6.0, we observed small spherical nanoparticles,
which was influenced by a short reaction time (Figure 9). From pH 7.0 to 11.0, the average size
of the spherical nanoparticles decreased, but from pH from 8.0 to 10.0 the average size was nearly
constant. The size of the silver nanoparticles reduced by malic acid changes with the pH of the reaction.
It increased in the pH range from 7.0 to 9.0 and then decreased rapidly at pH 10.0 and 11.0. This is
probably due to the fact that malic acid is a weaker reducer than citric acid, the reaction with it occurs
later at the same pH, and the nanoparticles do not have time to grow.

The obtained results for pH 7 to 11 for citric acid confirm the literature data [28,29]. With the
increasing of pH, the reaction rate increases and particle size decreases. The explanation why at pH 6
we observe only small nanoparticles, and not greater than at pH 7, is the fact that all reactions were
carried out for an hour after the addition of the solution of silver nitrate, while the literature does not
specify the exact reaction time. However, for malic acid, there are no literature data on the reaction,
where it would be both a reducing and stabilizing factor.

The presence of many rods in colloids reduced with citric acid at pH 7.0 to 11.0 is related to the
fact that citrate ions bound more strongly to Ag (111) than Ag (100) surfaces and the nanoparticle can
grow in the (110) direction to form a rod [24,36,37]. Theoretical calculations confirmed that citric acid
may preferentially bind to the facets of Ag (111) due to the fact that the three-fold symmetry of citric
acid is consistent with Ag (111) facets and results in four Ag-O bonds, whereas with Ag (100) facets
citrate creates only two bonds due to geometry mismatch [37,38]. At pH 6.0, we did not observe the
rods, probably because the nanoparticles are very small, and they just started growing and the rods
would appear after a longer time of heating. In colloids reduced by malic acid, we do not observe rods
because of the mismatch geometry of malic acid and silver.
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5. Conclusions

As a result of reduction with citric, and malic acids according to the modified method of Lee and
Meisel, we obtained quasi-spherical nanoparticles, in the case of citric acid rods. The reactions were
carried out at pH 2.0 to 11.0; however, reactions occurred for citric from pH 6.0 to 11.0 and for malic
acid from pH 7.0 to 11.0 respectively. The average size of the quasi-spherical nanoparticles changed
with pH—for citric acid it decreased with increasing pH from 7.0 to 11.0, whereas for malic acid grew
from pH 7.0 to 9.0, and then rapidly decreased. The time dependence after which the reaction was
observed for both acids had a visible exponential relationship. Rods that appeared in colloids reduced
by citric acid from pH 7.0 to 11.0, and their average size in length and width decreased with increasing
pH. The study showed that the obtained colloids reduced with citric acid and malic acid are stable
over time for a minimum of 7 weeks. Compared to the time after which the reaction was observed
and that the reduction reaction occurs with malic acid at pH 7.0, we found that malic acid is a weaker
reducer than citric acid. This is probably due to the weaker interaction between malic acid and Ag and
due to the lower number of carboxylic acid groups in malic acid than in citric acid [19].

The obtained results allow to better see how the pH influences the formation of silver nanoparticles
in the reaction with citric/malic acid. We demonstrate how the reaction rate is changing with pH
and thus how the absorbance, size, and shape of nanoparticles changes. This will allow a better
understanding of the influence of pH on this type of reaction with one compound, which is a reducer
and stabilizer, and the design of a synthesis that will allow obtaining colloids of a specific size.
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at pH 10.0, Figure S6: (Figure 2f). TEM image of the silver nanoparticles reduced by citric acid at pH 11.0, Figure S7:
(Figure 7a). TEM image of the silver nanoparticles reduced by malic acid at pH 7.0, Figure S8: (Figure 7b).
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