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Distance-weighted Sinkhorn
loss for Alzheimer’s disease classification

Zexuan Wang,1,5 Qipeng Zhan,1,5 Boning Tong,1,5 Shu Yang,1 Bojian Hou,1 Heng Huang,2 Andrew J. Saykin,3

Paul M. Thompson,4 Christos Davatzikos,1 Li Shen,1,6,* and for the Alzheimer’s Disease Neuroimaging Initiative
SUMMARY

Traditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified
training sample without adequately considering its distance from the ground truth class distribution in
the feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this obser-
vation, we propose a penalty called distance-weighted Sinkhorn (DWS) loss. For each mis-classified
training sample (with predicted label A and true label B), its contribution to the DWS loss positively cor-
relates to the distance the training sample needs to travel to reach the ground truth distribution of all the
A samples.We apply the DWS frameworkwith a neural network to classify different stages of Alzheimer’s
disease. Our empirical results demonstrate that the DWS framework outperforms the traditional neural
network loss functions and is comparable or better to traditional machine learning methods, highlighting
its potential in biomedical informatics and data science.

INTRODUCTION

Alzheimer’s disease (AD) is a progressive and degenerative condition that affects the brain’s neurons and causes memory loss, cognitive

decline, and behavioral issues.1–3 The increasing prevalence of AD and its devastating impact on individuals and societies has necessitated

the development of strategies for early and accurate diagnosis. Since there are currently no viable therapies for AD, it is thought that the best

way to slow its progression is to start with an early diagnosis. Traditionally, AD diagnosis has relied on clinical evaluations and cognitive tests.

However, these approaches often fail to detect the disease until it has significantly progressed, making effective intervention more chal-

lenging. Therefore, there is a growing interest in exploring alternative diagnostic methods.

To achieve this, researchers from a variety of fields have dedicated their work to comprehending the mechanisms underlying these dis-

eases and identifying pathological biomarkers for the diagnosis or prognosis of AD and/or mild cognitive impairment (MCI, a prodromal

stage of AD), by examining various neuroimaging modalities, such as magnetic resonance imaging (MRI),4 positron emission tomography

(PET),5 functional MRI (fMRI),6 etc.

Neuroimaging techniques have made significant contributions to our understanding of the brain. Over the past few decades, there has

been a growing concern regarding the need for breakthroughs in efficiently analyzing and interpreting observed data. Machine learning

(ML), which can handle highly dimensional and complicated data, has recently become a potent tool for disease classification and

prediction.7–9

Feedforward deep neural network (DNN) has been employed in various research studies for the purpose of AD and MCI diagnosis. For

example, Ning proposed a model that takes the image and genetic data to classify AD occurrence and identify the most crucial AD risk fac-

tors.10 Magni presented a support vector machine (SVM)-based automated technique of whole-brain anatomical MRI image to distinguish

between people with AD and older control participants.11 By introducing a group lasso penalty to induce structure sparsity, Sun improved

the traditional SVM-based model, comparable to or better than the state-of-the-art methods.12

Wasserstein distance is defined between two probability distributions on a given metric space. It has been applied to solve numerous

problems, including generative network,13 barycenter estimation,14 and multi-class classification.15 Besides the field of deep learning, the

optimal transport (OT) theory16 has also been applied to computational geometry,17 surface modeling,18 and casual inference.19

In multi-class classification models, traditional loss functions such as cross-entropy loss often quantify the penalty for a mis-classified

training sample without adequately considering its distance from the target ground truth class distribution in the feature space. Intuitively,

the larger this distance is, the higher the penalty should be. With this observation, In this paper, for each class label A, the proposed
1University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
2University of Maryland, College Park, 8125 Paint Branch Drive, College Park, MD 20742, USA
3Indiana University, 355 West 16th Street, Indianapolis, IN 46202, USA
4University of Southern California, 4676 Admiralty Way, Marina Del Rey, CA 90292, USA
5These authors contributed equally
6Lead contact
*Correspondence: li.shen@pennmedicine.upenn.edu
https://doi.org/10.1016/j.isci.2024.109212

iScience 27, 109212, March 15, 2024 ª 2024 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:li.shen@pennmedicine.upenn.edu
https://doi.org/10.1016/j.isci.2024.109212
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109212&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Schematic design of the proposed algorithm using the distance-weighted Sinkhorn (DWS) loss function

In our proposed model, we first send the data into the fully connected deep neural network. After applying the softmax activation functions, the row logits turn

into probability. The probability is used as the weight for the predicted distribution. To be specific, we have three probabilities for one instance and using the

whole data will give as three weighted distributions. The Sinkhorn algorithm is then used to match the distribution between the predicted distribution and the

ground truth distribution for each class label (i.e., CN, MCI, or AD). Finally, backpropagation is taken to adjust the neural network. In this flowchart, we assumed

that the model had correctly predicted each instance. Therefore, the dominated distribution of each class is similar to its ground truth distribution. For simplicity,

we assume the features live in a one dimensional continuous space.
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distance-weighted Sinkhorn (DWS) loss is explicitly designed tomatch the distributions between all the samples with predicted labelA and all

the samples with true label A; see Figure 1 for a schematic design. The Wasserstein distance and OT theory is used to capture the difference

between distributions.

This strategy could be considered as the data-wise label distribution learning (LDL) problem. This loss function is fundamentally based on

the OT theory as it could capture the underlying data space’s geometric details. On the other hand, the LDL20 aims to minimize the metric of

the model output and the ground truth labels, trying to find the best label trending of each instance.We implement a neural network with the

DWS loss and apply it to a diagnosis task on classifying AD, MCI, and cognitively normal (CN) subjects using F-fluorodeoxyglucose positron

emission tomography (FDG-PET) imaging data capturing glucose metabolism. The data used in this study are obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) Database: https://adni.loni.usc.edu. The results are robust in binary and multi-class classification

compared to other loss functions and comparable across methods besides DNNs. Our proposed DWS loss, to the best of our knowledge,

is the first one that considers the data-wise distribution of the output model.

The rest of this paper is structured as follows: In the method details section, we introduce our problem formulation and elaborate on the

proposedmodel in detail. The results section compares the DWS loss function with commonly used loss functions within the DNN framework

and traditional ML methods (e.g., SVM). We also generate the feature importance map from the DWS loss model, ranking the importance in

terms of their attribution to model decision, thus highlighting key cognitive markers. The paper concludes with a discussion of the current

scope of our work, its limitations, and potential direction for future works.
RESULTS

In this section, we evaluate the effectiveness of our proposedDWS loss through conducting an empirical study on classifyingCN,MCI, andAD

participants using the ADNI FDG-PET dataset. This dataset contains 789 participants with 116 features, including 264 CN, 390 MCI, and 135
Table 1. ADNI participant age distribution

Age range Less than 55 55–60 61–65 66–70 71–75 76–80 81–85 86–90 91–95

Number of participants 0 30 82 168 204 174 102 25 4
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Table 2. ADNI participant years of education

Year range 0–7 8–12 13–15 16 and above

Number of participants 1 117 150 521

Table 3. ADNI participant Hispanic/Latino ethnicity

Ethnicity Hispanic Latino Unknown

Number of participants 771 15 3

Table 4. ADNI participant race categories

Race White Asian Am Indian/Alaskan More than one

Number of participants 778 9 1 1
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AD subjects. Participant demographic information is detailed in Table 1, 2, 3 and 4. We examine the ability of DWS on three binary classifi-

cation tasks and onemulti-class classification task. The three binary classification tasks are CN vs. AD, CN vs. MCI, and AD vs. MCI. The multi-

class (three) task is CN vs. AD vs. MCI.

Under a DNN framework, we compare the proposed DWS to four loss functions: Binary Cross Entropy loss, Binary Cross Entropy loss with

Logits loss, Hinge loss, and Focal loss. For a fair comparison, we choose the same neural network for these five losses. A feedforward neural

network with two fully connected hidden layers is used. The neurons of the layer start from 256 anddecrease to 128 at the second hidden layer.

All the networks are trained to use the L2 norm of 10�3, Adaptive Moment Estimation (ADAM) optimizer with a batch size 24. The initial

learning rate is 0.001 and will be decreased by a tenth in the validation loss plateau. We used the Pytorch package SampleLoss from the Geo-

mloss to compute the Wasserstein distance.

In addition, we compare our model with several widely used classification models outside the DNN realm, including SVM, logistic regres-

sion, gradient boosting, its variant, random forest, etc. The results of these models are obtained from an automated machine learning

(AutoML) pipeline, STREAMLINE,21 which provides the models’ best practice with the Bayesian optimization hyperparameter tuning. We

follow the same data preprocessing and split settings for a fair comparison. The balance accuracy and accuracy are used as the evaluation

metric. Twenty test runs were performed, and the average performance with standard deviation are reported. We run all of the experiments

on a system with an x86 64 architecture, Intel(R) Xeon(R) CPU operating at 2.20 GHz, and 12 GB of RAM.

Comparative study with other loss functions under the same DNN framework

To evaluate the efficacy of the proposed loss function, we first compare the DWS loss with CE, BCELogit, Hinge, and Focal losses, and eval-

uate the performance using accuracy and balanced accuracy. In our study, we employ accuracy as a primary metric to evaluate the perfor-

mance of our models. Accuracy measures the proportion of correct predictions, making it an intuitive and straightforward way to understand

how well our models perform. In addition to accuracy, we also measure balanced accuracy, mainly due to the presence of imbalanced classes

in our dataset. Balanced accuracy is the average of the proportion corrects of each class individually, which is especially important when the

classes are imbalanced as it gives equal weight to the predictive performance of each class. This ensures that our models perform well in the
Table 5. Accuracy and balanced accuracy results compared to BCE, BCELogit, Hinge, and Focal loss

Metric Loss function CN vs. AD CN vs. MCI MCI vs. AD CN vs. MCI vs. AD

Accuracy BCE 0:868G0:0490 0:597G0:0332 0:819G0:0471 0:548G0:0398

Accuracy BCELogit 0:870G0:0411 0:593G0:0398 0:820G0:0331 0:564G0:0384

Accuracy Hinge 0:860G0:0381 0:607G0:0317 0:815G0:0423 0:539G0:0612

Accuracy Focal 0:871G0:0360 0:605G0:0374 0:819G0:0304 0:550G0:0544

Accuracy DWS 0.920G0.0394a 0.608G0.0369a 0.821G0.0305a 0.568G0.0416a

Balanced Accuracy BCE 0:844G0:0551 0:566G0:0265 0:778G0:0379 0:572G0:0398

Balanced Accuracy BCELogit 0:852G0:0518 0:582G0:0361 0:765G0:0370 0:577G0:0376

Balanced Accuracy Hinge 0:840G0:0529 0:594G0:0320 0:777G0:0383 0:571G0:0462

Balanced Accuracy Focal 0:846G0:0453 0:588G0:0364 0:770G0:0349 0:578G0:0414

Balanced Accuracy DWS 0.891G0.0247a 0.599G0.0338a 0.782G0.0381a 0.617G0.0294a

aThe best ones.
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Table 6. Accuracy and balanced accuracy results compared to logistic regression, support vector machine, decision tree, random forest, gradiant boost

and its variant, K-nearest neighbors, and multilayer perceptron

Metric Method CN vs. AD CN vs. MCI MCI vs. AD CN vs. MCI vs. AD

Accuracy LR 0:918G0:0317 0:596G0:0297 0:845G0:0277a 0:554G0:0384

Accuracy SVM 0:922G0:0334a 0:599G0:0372 0:783G0:0394 0:590G0:0273a

Accuracy DT 0.809G0.0276 0.527G0.0559 0.781G0.0421 0.519G0.0426

Accuracy RF 0:859G0:0274 0:848G0:0399 0:789G0:0365 0:545G0:0274

Accuracy GB 0:891G0:0271 0:607G0:0404 0:781G0:0340 0:542G0:0323

Accuracy LGB 0:866G0:0283 0:597G0:0367 0:695G0:0443 0:582G0:303

Accuracy KNN 0:805G0:0419 0:569G0:0336 0:819G0:0322 0:548G0:0422

Accuracy MLP 0:875G0:0405 0:603G0:0380 0:822G0:0386 0:560G0:0405

Accuracy DWS 0:920G0:0394 0:608G0:0369a 0:821G0:0305 0:568G0:0416

Balanced Accuracy LR 0:889G0:0450 0:598G0:0335 0:767G0:0430 0:608G0:0336

Balanced Accuracy SVM 0:896G0:0459a 0:594G0:0397 0:721G0:0524 0:558G0:0361

Balanced Accuracy DT 0:786G0:0381 0:517G0:0548 0:705G0:0460 0:517G0:0534

Balanced Accuracy RF 0:846G0:0453 0:570G0:0460 0:757G0:0490 0:577G0:0259

Balanced Accuracy GB 0.865G0.0384 0.577G0.0411 0.702G0.0494 0.436G0.0355

Balanced Accuracy LGB 0:835G0:0391 0:562G0:0392 0:750G0:0405 0:566G0:0372

Balanced Accuracy KNN 0:726G0:0576 0:552G0:0343 0:648G0:0395 0:475G0:0503

Balanced Accuracy MLP 0:842G0:0548 0:511G0:0327 0:732G0:0481 0:495G0:0495

Balanced Accuracy DWS 0:891G0:0247 0:599G0:0338a 0:782G0:0381a 0:617G0:0294a

aThe best ones.
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majority class and across all classes. Table 5 reports the result across the DNNmodel for binary and multi-class classification tasks. The result

shows that the DWS loss provides the best balance accuracy and has a smaller variance, making it robust across multiple experiments. Addi-

tionally, the standard deviation across 20 tested runs also suggested that DWS is more robust regarding randomness.

Comparative study with other classification models

In Table 6, we compare our DWS loss based DNNmodel with several other methods: logistic regression, SVM, decision tree, random forest,

gradient boosting, light gradient boost, K-nearest neighbors, andmultilayer perceptron. The DWSmethod has the best balanced accuracy in

CN vs. MCI, MCI vs. AD, and CN vs. MCI vs. AD and ranks second in CN vs. AD, indicating that the DWS performs well on this imbalanced

dataset. However, its accuracy may not be the best.

To summarize the two comparative studies, the CN vs. AD task, while easier due to the distinct nature of the two groups, saw comparable

results betweenDWS and SVM. The real challenge lies in distinguishing subtler changes, as in CN vs. MCI, MCI vs. AD, andmulti-class distinc-

tion in CN vs. MCI vs. AD. These tasks are harder due to the gradual progression of the disease but mastering them is crucial for early diag-

nosis in clinical settings. Here, DWS has shown to be significantly more effective.

Feature importance

Originating from the game theory, the SHapley Additive exPlanation (SHAP)22 method is based on Shapley’s value and uses it as a unified

measure of feature importance. In the SHAP method, each feature 4i represents the effect of including that feature in model prediction,

and it is computed as

4i =
1

jNj!
X

S4N\fig

��S��!ðjNj � jSj � 1Þ!½f ðSW figÞ � f ðSÞ� (Equation 1)

where f(S) is the output of the DNNmodel, S is the set of features to be used to explain the model, andN is the complete set of all features. In

our calculation, the Shapley value of each feature is the average of its contributions across all the data, i.e., its permutation.

For the binary class classification, the SHAP values for the two classes, given a feature and observation, are just opposites of each other.

Therefore, we only have a single bar value. For the three-class classification, the impact of a feature on each class is stacked to create the

feature importance plot. In other words, the value tells us how much the feature is capable of helping us differentiate between classes.

Figure 2 is the feature importancemap of theDWS loss associatedwith all four classification tasks. Taking the CN vs.MCI task in Figure 2 as

an example, the left inferior parietal, left hippocampal, and different parts of temporal pole are the essential features, and previous

studies23,24 have indicated that these regions are able to detect the abnormal metabolism reduction at early stage of AD.
4 iScience 27, 109212, March 15, 2024



Figure 2. Feature importance of binary and multi-class classification from DWS Loss
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For the MCI vs. AD task, left angular, left inferior temporal, and parietal inferior regions are shown to be the top relevant features. These

regions are frequently used FDG ROIs in MCI and AD studies based on the meta-analysis, and AD patients have a significant metabolism

decline among these regions compared with MCI or CN subjects.25 In addition, posterior cingulate regions (Cingulum in the Automated

Anatomical Labeling [AAL] atlas) are highly contributed to all the classifications. Studies26,27 have demonstrated that posterior cingulate cor-

tex showed higher hypometabolism in AD patients, and regional atrophy mainly lead to this abnormality.28 On the clinical side, results have

shown that angular gyrus has been shown to have an important role in understanding impairment in AD.29 Left posterior cingulum has also

been shown to be likely to play a remarkable role in the progressive development of cognitive impairment in AD.30

For the CN vs. AD task, the top three features are posterior cingulate, left angular, and left hippocampus to differentiate AD and CN pa-

tients. In clinical trials, the result shows that posterior cingulate and temporal pole are changed severely by the AD31 pathologic.32 The left

hippocampus has also been shown to have high discriminative power in diagnosing Alzheimer’s disease.33

For the feature importance of three class tasks, AD vs. MCI vs. CN, we plot the summation of the shapley value of each feature in order to

show the global feature importance. The top three features are the left cingulate, left angular, and left inferior parietal. All numerical results

are shown in Figure 2. A decrease order sorts the feature importance. The visualization of top five important features is also plotted using

Mango (https://mangoviewer.com) in Figure 3.

Shown in Figure 4 is the feature importance map of the CN vs. MCI task for all the tested methods listed in Table 6. Due to the page lim-

itation, we only show the feature importance map for the CN vs. MCI classification task, as it is a more valuable task for dementia detection at

the early stage. The combined feature importancemap provides an overall picture of which features are consistently important acrossmodels

and how they affect predictions on average. In our result, the top five features in the combinedmap are left posterior cingulate, right angular,

left orbital part of inferior frontal, vermis subregion, and right temporal pole mid region.
Figure 3. Brain visualization for binary and multi-class classification

Top five features are shown.

(A–D) are the four classification tasks: CN vs. MCI; CN vs. AD; MCI vs. AD; CN vs. MCI vs. AD. The color spectrum from yellow to red in the figure indicates the

degrees of feature importance, with red being the most important.
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Figure 4. Feature importance of CN vs. MCI for all the methods tested in our empirical study
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DISCUSSION

Based on theWasserstein distances and Sinkhorn algorithm, we have proposed the DWS loss as an alternative to the current loss function for

AD classification. The DWS incorporates ground truth distribution into the loss function, providing more information when we calculate the

loss function.

In our empirical study, we have implemented a DNN with our DWS loss and applied it to a diagnosis task on classifying CN, MCI, and AD

subjects using FDG-PET imaging data from the landmark ADNI database. Since the dataset is imbalanced, the balanced accuracy is more

important than the accuracy as the evaluation metric. Our empirical results have demonstrated that the proposed DWS framework outper-

forms the traditional neural networks and yields comparable or better performances under the balanced accuracy. These experiments sug-

gest the potential usage of our proposed method.
Limitations of the study

The proposed DWS loss function has several limitations. Similar to many deep learning methods, it requires hyper-parameters tuning.

In the scheme of OT, the ground metric of the cost function plays an important role. We plan to focus on ground metric learning later

to automatically determine the best ground metric to make the loss function more effective. Currently, the loss function is tailored
Algorithm 1. Updating the Weight q of Deep Neural Network

1: Input: Mapping function z = hq(x), y ˛ R13k.

2: Calculate: ST, pj, Sp,j, C.

3: Initialize: u = 1, K = e�lC.

4: for t = 1,2, . do.

5: v ) y/KTu

6: u ) z/Kv.

7: end for.

8: Vhq(x)[SD = eln(u)

9: Output: Gradient of the objective function with respect to the learned mapping hq.

6 iScience 27, 109212, March 15, 2024
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specifically for DNNs, utilizing their architecture to calculate gradients. Future work will aim to derive an explicit gradient descent formula

applicable to the DWS method. This formula will enable the integration of the DWS loss function into a broader range of ML models

beyond DNNs.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

ADNI Weiner34 https://adni.loni.usc.edu/

Software and algorithms

DWS Loss This Paper https://github.com/PennShenLab/DWS-Loss
RESOURCE AVALIABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Li Shen (Li.Shen@

pennmedicine.upenn.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. These accession URLs for the datasets are listed in the key resources table.
� The Source code and tutorials for implementing the DWS Loss has been deposited at GitHub and is publicly available as of the date of

publication. DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Data for this study were sourced from the ADNI database. The experiment involved 789 participants, comprising 390 women and 399 men.

Participant demographics such as age, total years of education, and ethnicity are detailed in the Tables 1, 2, 3, and 4. All participants were

diagnosed with one of the following conditions: Alzheimer’s disease (AD), MCI, or were deemed CN.

METHOD DETAILS

Data

Data used in the preparation of this article were obtained from the ADNI database,34,35 which was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other

biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI and AD. All par-

ticipants provided written informed consent and study protocols were approved by each participating site’s Institutional Review Board.

Up-to-date information about the ADNI is available at www.adni-info.org.

In this study, we downloaded and analyzed FDG-PET imaging data (measuring glucosemetabolism) from the ADNI database.36 The FDG-

PET imaging data play a crucial role in the diagnosis and assessment of AD. The Statistical Parametric Mapping software tool37 was used to

register FDG-PET scans into the standard brain space definedby theMontreal Neurological Institute (i.e., MNI-space). After that, the FDGPET

scans were segmented based on the AAL atlas.38 We calculated the average voxel signal intensity for each of 116 AAL regions and used these

regional average measures as our features in the subsequent classification studies.

Optimal Transport

Below, we explain in brief the OT theory and its special instrument, the Wasserstein metric and the sinkhorn divergence.39

The OT problem is the optimal cost of changing one probability vector to match the shape of another probability vector. This gives us a

measure of how similar the two probability vectors are. Most of the time, the least expensivemethod of movingmass from one distribution to

another is also called Wasserstein distances.

Mathematically, consider twomulti-variate distributions, with position fxigni = 1 and fyigni = 1, and then we have the discretized distributions:

P =
Xn

i = 1

pidxi andQ =
Xm
j = 1

qjdyj (Equation 2)
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where dx denotes aDirac delta function placed at a location x˛Rn. In this way, thepi is vector of weights and fxigni = 1 is themass locations. The

ground cost matrix represents the transportation costs between each pair of mass locations:

Cij = k xi � xj k2 (Equation 3)

The transportation plan T , which tells us how much mass needs to be moved from xi/yj is a matrix T˛Rn3m.

The total cost of a transport plan is then:

minimize
T

lOT ðP;QÞ = CT ;CD

subject to T˛Rn3m
+ ;

TT1n = q;

T1m = p

(Equation 4)

where CT;CD is the Frobenius inner product between the transport plan T and the cost matrix C.

Solving the above optimization problem can be computationally challenging and unstable, requiring Oðn3 log nÞ calculations. Because
of this, it is challenging to apply Wasserstein distances in two-sample tests consistently. The entropic regularized Wasserstein distance

is created by adding a regularization term gHðTÞ to address these issues. This is called Sinkhorn algorithm, and its mathematical

formulation is:

minimize
T

lROT ðP;QÞ = CT ;CD � gHðTÞ
subject to T˛Rn3m

+ ;

TT1n = q;

T1m = p

(Equation 5)

whereHðTÞ is the entropy of the transport plan matrix T and is given byHðTÞ = Pn
i = 1

Pm
j = 1T i:jðlog T i;j � 1Þ. Note that the regularizedWas-

serstein distance is biased as lROT ðP;PÞs0. Therefore, combining two regularized Wasserstein distances can build an unbiased divergence,

and it is called the Sinkhorn divergence:

lSDðP;QÞ = lROT ðP;QÞ � lROT ðP;PÞ � lROT ðQ;QÞ (Equation 6)

Problem formulation and proposed method

Figure 1 shows the schematic design of the proposed algorithm using our DWS loss function. In our proposed model, we first send the data

into a fully connected DNN. After applying the softmax activation functions, the row logits turn into probability. The probability is used as the

weight for the predicted distribution. To be specific, we have three probabilites for one instance and using the whole data will give as three

weighted distributions. The Sinkhorn algorithm is then used to match the distribution between the predicted distribution and the ground

truth distribution for each class label (i.e., CN, MCI, or AD). Finally, backpropagation is taken to adjust the neural network. In this flowchart,

we assumed that the model had correctly predicted each instance. Therefore, the dominated distribution of each class is similar to its ground

truth distribution. Below, we discuss our problem formulation.

Let X represent the feature space and Y denote the label space L = fl1; l2;.; lkg, where lk is the k th label. In this paper, the aim is to

learn an optimal mapping function hq: X/Y, parameterized by q, over space of hypotheses H. Given an input x; hq maps it into a

vector = ½yl1 ;yl2 ;.;ylk �. Therefore, the vector y represents the probability that the instances belong to each label. The ground truth probability

is also defined by z = ½zl1 ;zl2 ;.;zlK �, where the component is equal to 1 for true label and 0 otherwise.

Given an i.i.d. set ofN training samplesD = ððx1;y1Þ.ðxN;yNÞÞ, the overarching goal of the algorithm is to find the mapping function hq
that minimizes the empirical risk

min
hq ˛H

1

N

XN
i = 1

lðzi = hqðxiÞ; yiÞ (Equation 7)

where lð,; ,Þ is a loss function. Instead of minimizing the empirical risk among each instance, we would like to minimize the empirical risk w.r.t

each class

min
hq ˛H

1

K

Xk

j = 1

lSD
�
Sj;Sp;j

�
(Equation 8)

where K is the number of class in our sample.
10 iScience 27, 109212, March 15, 2024
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Distance-weighted Sinkhorn loss

In this section, the DWS Loss will be introduced. In the following sections, we use the shorthand DWS for brevity. Instead of considering the

difference between two probability vectors of the same instance, we consider the difference between the total distribution of data and its

weight-predicted distribution. The formulation of DWS Loss is as follows:

lDWSðD;hqÞ =
Xk

j = 1

lSD
�
Sj;Sp;j

�
(Equation 9)

The Sj is the empirical distribution of the data in class j in the dataset and could be represented as

Sj =
1

Nj

XN
i = 1

zi;jdxi (Equation 10)

where Nj is the number of instances in class j, and the sum is over all instances in the dataset. Notice that zi is the one-hot encoded ground

truth label of instance i, where zi;j = 1 if instance i belongs to class j and zi;j = 0 otherwise. dxi is a Dirac delta function centered at the location of

instance i. Similarly, let yi = hqðxiÞ be the predicted label distribution for instance i. We can then define pj as a vector that collects the pre-

dicted probabilities for class j across all instances. It estimates the probability of each instance being assigned to class j according to the

model hq.

The predicted distribution of the data for class j is then represented as:

Sp;j =
1

Cj

XN
i = 1

hqðxiÞ½j�dxi (Equation 11)

Here Cj is a normalizing factor to ensure Sp;j is indeed a distribution.

We then illustrate the exact computation method for calculating the DWS loss; see also Algorithm 1. Notice that optimizing and differen-

tiating the DWS loss consists of 2 regularizedWasserstein distances. Therefore, we first focus on the computation of a single regularizedWas-

serstein. The dual form could be written as

Dualða; bÞ = auP+ buQ � e
Xn;m
i;j = 1

e
ðCij �ai � bjÞ

e (Equation 12)

Then, by the Sinkhorn’s scaling theorem, one could show that the optimal solution for the primal problem is related to its dual form

solution:

T� = diagðeea� Þe� C
ediag

�
eeb�

�
(Equation 13)

where a� and b� are the minimizers of the dual Lagrange problem. The above optimal solution for dual problem a+;b+ can be computed

using Sinkhorn’s algorithm. From the Sinkhorn algorithm, one can show that a+ = ε log u+;b+ = ε log v+, where the u+; v+ are the outputs

of Sinkhorn algorithm. Referring to the dual formulation, one could notice that VhqðxÞlSD = a�.
Also, for each instance i in the dataset, the DWS loss also maintains the point wise convergence, that is:

yi / zi5lSD
�
Si;Sp;i

�
/05lDWSðD; hqÞ/0 (Equation 14)

Theoretical result

Here, we provide a theoretical bound using Rademacher Complexity.

Definition 1. Let G be a family of functions mapping a set Z into R. A list S = ðz1;.; zmÞ of elements. Let s = ðs1;.;smÞ be a list of inde-

pendent random variables, where, for each i˛ f1;.;mg; si takes value + 1 with probability 1=2 and takes value�1 with probability 1= 2. Then

the empirical Rademacher complexity of G with respect to S is defined to be

RSðGÞ = Es

"
sup
g˛G

1

m

Xm
i = 1

sigðziÞ
#

(Equation 15)

The Rademacher complexity of G with respect to samples of size m drawn according to D is

RmðGÞ = E
S�Dm

½RSðGÞ� (Equation 16)

We also have the definition of Emprical Risk and Risk as follows:

EðhÞ = E
ðx;yÞ�D

½lðhðxÞ; yÞ�; bESðhÞ =
1

m

Xm
i = 1

lðhðxiÞ; yiÞ (Equation 17)
iScience 27, 109212, March 15, 2024 11
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Then, based on the general theorem of Rademacher complexity, we have that.

Theorem 1. LetG be a family of functions mapping a set Z to the unit interval ½0;1�. Suppose that a sample S of sizem is drawn according to

distribution D on Z. Then for any d> 0, with probability at least 1 � d the following holds for all functions g˛G :

EðgÞ % bESðgÞ + 2RmðGÞ+O

0BB@
ffiffiffiffiffiffiffiffiffiffiffi
log

1

d
m

vuut 1CCA (Equation 18)

To connect the Sinkhorn divergence with the Rademacher complexity, we have the following approximation between the original OT

formulation and the Sinkhorn divergence. We adopted Proposition 11 from Chizat.40

Theorem 2. Assume that mn =
Pn

i = 1pidxi and nn =
Pn

j = 1qjdyj are discrete measures with n atoms such that pi;qj Ra=n for some a> 0.

Then, we have that

0 % lSDðm; nÞ � lOT ðm; nÞ % 2lHðg�;m5 nÞ%4lðlog n + logð1 =aÞÞ (Equation 19)

Therefore, we could have that

RmðlOT Þ % RmðlSDÞ % RmðlOT Þ+ 2lðlog n + logð1 =aÞÞ (Equation 20)

Finally, we can conclude that with at least 1 � d probability, EðlDWSÞ% infh˛HEðhÞ+ 2lðlog n + logð1 =aÞÞ+O

� ffiffiffiffiffiffiffiffi
log

1

d
m

s �
.
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