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Abstract

Background: Frailty in older adults is linked to increased risks and lower

quality of life. Pre‐frailty, a condition preceding frailty, is intervenable, but its

determinants and assessment are challenging. This study aims to develop and

validate an explainable machine learning model for pre‐frailty risk assessment

among community‐dwelling older adults.

Methods: The study included 3141 adults aged 60 or above from the China

Health and Retirement Longitudinal Study. Pre‐frailty was characterized by

one or two criteria from the physical frailty phenotype scale. We extracted 80

distinct features across seven dimensions to evaluate pre‐frailty risk. A model

was constructed using recursive feature elimination and a stacking‐CatBoost
distillation module on 80% of the sample and validated on a separate 20%

holdout data set.

Results: The study used data from 2508 community‐dwelling older adults (mean

age, 67.24 years [range, 60–96]; 1215 [48.44%] females) to develop a pre‐frailty
risk assessment model. We selected 57 predictive features and built a distilled

CatBoost model, which achieved the highest discrimination (AUROC: 0.7560 [95%

CI: 0.7169, 0.7928]) on the 20% holdout data set. The living city, BMI, and peak

expiratory flow (PEF) were the three most significant contributors to pre‐frailty risk.
Physical and environmental factors were the top 2 impactful feature dimensions.

Conclusions: An accurate and interpretable pre‐frailty risk assessment framework

using state‐of‐the‐art machine learning techniques and explanation methods has

been developed. Our framework incorporates a wide range of features and
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determinants, allowing for a comprehensive and nuanced understanding of pre‐
frailty risk.
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1 | BACKGROUND

Frailty is a complex age‐related clinical condition char-
acterized by a decline in physiological capacity across
several organ systems, with a resultant increased sus-
ceptibility to stressors [1]. Older adults with frailty have
an increased likelihood of unmet care needs, falls and
fractures, hospitalizations, lower quality of life, and early
mortality [2, 3]. Pre‐frailty is an evident risk‐state before
the onset of clinically identifiable frailty [4]. In China,
the rapid expansion of the aging population has led to an
increasing prevalence of frailty and pre‐frailty, with the
prevalence of 10% and 43%, respectively [5]. Evidence
suggests that comparing with frail individuals, the pre‐
frail older adults are more susceptible to intervention,
which can prevent and delay frailty or even reverse the
state from pre‐frailty to robust [6]. Therefore, effective
strategies that target early detection and prevention of
pre‐frailty in an aging population become China's
national priority to reduce the condition burden at the
level of both individual and health system.

The emergence of machine learning (ML) in the field
of pre‐frailty is a relatively recent development [7, 8]. It
has long been recognized that pre‐frailty in the clinical
population is heterogeneous in terms of physical, psy-
chosocial, demographic, and environmental character-
istics. The profiling focuses on understanding the in-
dividual's unique combination of characteristics and
their association with pre‐frailty. Traditional pre‐frailty
assessment scales cannot determine or predict pre‐frailty
risk with an acceptable degree of precision or reliability.
The development of ML in pre‐frailty research represents
an important methodological advance in the field of
precision health care as it improves the accuracy and
potential clinical utility [9–12]. Given the additional
pressure of the COVID‐19 pandemic on already over-
stretched healthcare services, potential gains in scalable
quality of care and improvements to resource efficiency
are appealing.

Despite their proven effect, real‐world implementa-
tion of ML into frailty research still faces three barriers.
First, although the research agenda of the determinants
of frailty keeps expanding, most of the studies focus on
the identification of frailty instead of more intervenable

pre‐frail individuals. Second, we know little about the
relative importance of individual characteristics, built
environment, social‐economic contexts, and social poli-
cies that have only been examined in a piecemeal fash-
ion. It is important to understand which factors exert the
most important influence on pre‐frailty among a large
number of candidate predictors. Third, due to a lack
of algorithm transparency, limited interpretability, and
theoretical frameworks, clinicians are reluctant to trust
the tools being integrated into care settings. The clinical
implications of ML and how these techniques might be
applied for early detection and intervention have largely
been overlooked.

In this study, we drew data from the China Health
and Retirement Longitudinal Study (CHARLS) to iden-
tify the most important determinants of pre‐frailty for
Chinese older adults from a large set of factors at bio-
logical, individual, and community levels. We took
advantage of the recursive feature selection method to
estimate the importance of factors cutting across multiple
dimensions. We focus on the practical aspects of how
explainable artificial intelligence can be clinically useful
to increase model interpretability.

2 | METHODS

2.1 | Data source

The data were collected from the baseline survey
(2011–2012) of CHARLS [13], an ongoing longitudinal
cohort study of nationally representative community‐
dwelling adults aged 45 or older from China with com-
prehensive biomedical, clinical, and sociodemographic
information. All participants were provided with written
consent and the study protocol was approved by the
Ethical Review Committee at Peking University
(IRB00001052−11015).

It had been previously reported that the missing data
can impact the interpretation of the prediction model
[14]. Therefore, to avoid the potential bias, the current
study only included participants without missing infor-
mation. The overall exclusion criteria were as follows: (1)
younger than 60 years old, (2) did not complete 2 or more
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components in physical frailty phenotype (PFP) scale
[15], (3) categorized as frailty by PFP scale, and (4)
missing information present among selected features. We
randomly selected 20% of the included subjects as the test
set while the rest of them (80%) as the training set.

2.2 | Frailty level measurements

The frailty level of each participant was measured by the
PFP scale [16] (validated on CHARLS [15]), in which five
elements included weakness, slowness, exhaustion,
inactivity, and shrinking (Supporting Information S1:
Tables S1 and S2). Individuals with no criteria met were
categorized as robust; those with one or two were clas-
sified as prefrail and three to five were considered frail.
Details of frailty measures and cutoffs are shown in the
supplementary methods.

2.3 | Determinants of pre‐frailty

Through extensive literature review and expert consul-
tation (Z.Z. and J.N.), we summarized the following 80
features from seven dimensions [1] including laboratory
measurements, physical factors, demographics, health
behaviors, comorbidities and medical histories, health-
care service utilization and environmental factors for the
analysis. 80 features are detailed in the supplementary
methods.

2.4 | Analytical plan

As demonstrated in Figure 1, we optimize the IMPACT
framework [19] by introducing Categorical Boosting
(CatBoost) [20] to present the interPretable ACcurate and
effICient pre‐FraIlty Classification (PACIFIC) frame-
work, which enables analysis of categorical features.
Moreover, with the help of knowledge distillation [21]
(KD) we introduced a stacking‐CatBoost distillation
module (Figure 1b) to improve the model performance.
In the module, we first train several different tree‐based
models including Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), Light Gradient‐Boosting
Machine (LightGBM), CatBoost, eXtreme randomized
Tree (XT) with k‐fold bagging [22] as base model and
stacked them using ensemble selection [23]. Whereafter,
the stacking model is distilled into a CatBoost model to
enable efficient calculation, analyses of categorical fea-
tures and feature interaction effects. Hyperparameters for
different models were illustrated in Supporting Infor-
mation S1: Table S3.

2.5 | Recursive feature
elimination (RFE)

Several literatures [19, 24] have demonstrated the effi-
ciency of task‐aware supervised features selection. In the
current study, to ensure the time efficiency, a LighGBM
[25] with fast training and high accuracy is applied to
recursively eliminate features. In detail, we generate a
random feature which follows the standard normal dis-
tribution first and then train the model, obtaining the area
under the receiver operator characteristic curve (AUROC).
After then, we rank the feature importance with the help
of permutation feature importance [26]. We then remove
up to 5% of the total features whose feature importance is
below the randomly generated feature from the bottom of
the feature importance ranked list. A new model is then
trained with the remaining features with AUROC eval-
uated. If the AUROC of the new model is not improved,
we then randomly choose up to 5% features, with the
sampling rate inversely proportional to their feature
importance (feature with lowest feature importance has
the highest probability being sampled). Once the AUROC
of the model improved after removing the selected feature,
the feature importance is ranked again using permutation
feature importance with selected features removed. We
end the RFE if the early stopping criteria have been met,
or all the features set below the randomly generated fea-
ture have been evaluated without improving the model
performance. We keep the k‐fold bagging the same as the
stacking model to ensure the data consistency [27].

2.6 | Classifier modeling

For the purposes of accurate classification and analysis of
categorical feature [28], a CatBoost [20] distilled from a
stacking model is implemented to model the pre‐frailty
risk. AutoGluon‐Tabular (v 0.7.0), an auto machine
learning (AutoML) framework, is utilized to ensure the
accurate and efficient training of the stacking model from
different tree‐based individual model via stacking, bag-
ging, boosting and weighted combination. Whereafter, we
distill our stacking model (teacher model) into a CatBoost
(student model) with soft targets [21]. To demonstrate the
accuracy of the distilled CatBoost, we also train RF,
XGBoost, LightGBM, origin CatBoost (trained directly
without knowledge distillation), XT, artificial neural net-
work (ANN), and logistics regression (LR) for comparison.
The hyperparameters (Supporting Information S1:
Table S3) for each model are chosen by Random Search
with 100 iterations and fivefold cross‐validation. Model
performance is measured with the AUROC, with accu-
racy, F1 score, precision and recall reported. The results
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FIGURE 1 (See caption on next page).
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are reported with mean values and a 95% confidence
interval (CI) obtained from 1000 bootstrap samples for the
test set. All individual models are build using the Scikit‐
learn package in Python 3.10. Simultaneously, we train the
stacking and distilled CatBoost using AutoGluon‐Tabular
package. Note that, we keep the hyperparameters of dis-
tilled CatBoost the same as the directly trained CatBoost to
evaluate the performance of KD. We also compare the
infer time of stacking model, distilled CatBoost, XGBoost,
ANN and LR to demonstrate the trade‐off between model
performance and computational efficiency.

2.7 | Performance evaluation

To address the robust of the RFE methods, accuracy,
AUROC, F1 score, precision and recall rate of the
stacking model on the test set before and after the
feature selection was reported. We also compare the
accuracy, AUROC, F1 score, precision, and recall rate
of stacking model, distilled CatBoost (trained with
stacking‐CatBoost distillation module), RF, XGBoost,
LightGBM, origin CatBoost (trained directly without
model distillation), ANN, XT and LR. The hy-
perparameters of the above models were chosen by
RandomSearch and fivefold cross‐validation.

3 | RESULTS

3.1 | Participant characteristics

During the baseline survey of CHARLS, 17,708 Chinese
residents participated, of whom 7681 were equal or
older than 60 years old, and 5357 participants had data
on at least four components. Participants classified as
frailty (n= 407) or containing missing data (n= 1819)
were also excluded from the study. Eventually, 3141
residents were included in the study, and 1926 of them
were categorized as prefrailty and 1215 were identified
as robustness.

3.2 | Feature selection

After 318 rounds of RFE (Supporting Information S1:
Figure S1), the total number of features utilized in our
stacking model dropped from 80 features to 57 features
(Supporting Information S1: Table S4). Our results also
demonstrated that the task aware RFE methods can sig-
nificantly decrease the number of features while simulta-
neously improving the model performance of the stacking
model (AUROC: 0.7599 [95% CI: 0.7222, 0.7965] vs. 0.7638
[95% CI: 0.7251, 0.8004]). We also evaluated the per-
formance of individual models including RF, XGBoost,
LighGBM, CatBoost. XT, ANN, LR before (Table 1) and
after (Table 2) the feature selection and only LR reports a
worsen model performance after feature pruning.

3.3 | Model performance

In the current study, stacking model outperforms all
individual model before (AUROC: 0.7599 [95% CI:
0.7222, 0.7965]) and after (AUROC: 0.7638 [95% CI:
0.7251, 0.8004]) the RFE. Our result demonstrates that
despite the highest AUROC is obtained by Catboost
among all individual models, the stacking‐CatBoost
distillation module can still further improve the model
performance with a statistic difference (p= 0.005).
Eventually, the CatBoost model reaches a similar model
performance compared with stacking model, while sig-
nificantly reducing the inference time (Supporting
Information S1: Figure S2).

3.4 | Model explanation

Figure 2a presents a SHAP summary plot, which illus-
trates the magnitude, prevalence, and direction of the top
10 features with the greatest impact on the distilled
CatBoost model. The living city, BMI, and peak ex-
piratory flow (PEF) were identified as the three most
significant contributors to the risk of pre‐frailty.

FIGURE 1 Overview of the PACIFIC framework. (a) We use the CHARLS (2011) data set, which contains 80 features that can be
grouped into seven dimensions: laboratory measurements, physical factors, demographic, health behaviors, comorbidities and
medical history, health‐care services utilization, and environmental factors. (b) The PACIFIC framework combines an efficient
recursive feature elimination method with a stacking‐CatBoost distillation module and explainable AI techniques. (c) The
advantages of the stacking‐CatBoost distillation model. (d) The model interpretation of the PACIFIC framework. (e) The
individualized explanations of PACIFIC show the impact of each risk factor on the overall pre‐frailty risk score. In our framework,
we implemented the Tree Explainer [17] to calculate SHapley Additive exPlanations values, providing local explanations for the
distilled CatBoost model and aiding clinicians in analyzing its credibility. We also quantified the dimensional contribution of
selected features to the model performance using Shapley Additive Global Explanation values, estimated by the Permutation
Estimator [18].
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SHAP values also indicate the associations between
features and the pre‐frailty risk (Supporting Information
S1: Figure S4). Living in certain cities and lacking
community‐based older adults associations increase pre‐
frailty risk. Conversely, living in a house with a household‐
installed water heater, and being younger with higher BMI,
PEF, and weight decrease pre‐frailty risk. Chest pains
during physical exertion fall within the last 2 years, and
arthritis or rheumatism diagnoses are the top three co-
morbidities that increase pre‐frailty risk.

Figure 2b illustrates the contribution of various
dimensions to the model performance of the distilled
CatBoost. Physical factors, including BMI, PEF, weight,
height, DBP, SBP, and pulse, are identified as the most
impactful dimension, while healthcare service utiliza-
tion, such as outpatient and hospitalization reasons, is
found to be the least impactful dimension.

3.5 | Interpretable individual pre‐frailty
scores

As shown in Figure 3, the PACIFIC framework can
visualize personal risk using features with the help of
TreeExplainer and force plot. Figure 3a shows a pre‐frail
individual with a pre‐frailty risk score of 0.72. Factors
such as living in Zhaotong, a relatively underdeveloped
mountainous city in southwestern China, without
community‐based older adult associations, community
sewer systems, or in‐house shower/bath facilities, as well

as short average monthly sleep duration (3 h), relatively
low PEF (230 L/min), height (150.5 cm), weight (50.8 kg),
and BUN (12.27 mg/dL) significantly increased the risk
despite the individual's relatively young age (67), ideal
BMI (22.43 kg/m2), and hematocrit (36%). Figure 3b
shows a robust individual with a pre‐frailty risk score of
0.34. Factors such as living in Taizhou, a relatively de-
veloped coastal city in southeastern China, with
community‐based older adult associations and ideal PEF
(360 L/min), BMI (20.34 kg/m2), height (167.4 cm), and
platelet count (128 × 109/L ×decreased the risk, while
outpatient treatment, relatively high triglyceride levels
(162.84mg/dL), and the absence of in‐house shower/bath
facilities increased the risk.

4 | DISCUSSION

In our study, we established an explainable machine
learning framework (PACIFIC) to identify pre‐frail older
adults living in the community using the information on
laboratory measurements, physical factors, demographics,
health behaviors, comorbidities and medical histories,
healthcare service utilization, household facilities, and
neighborhood resources. This represents the first attempt
to integrate state‐of‐the‐art machine learning techniques
and explanation methods to systematically study pre‐
frailty. We have enhanced the practical value of our study
by introducing an easy‐to‐use and explainable pre‐frailty
risk calculator.

FIGURE 2 Global Risk Classification Using the PACIFIC Framework. (a) SHAP summary plot of the PACIFIC framework trained on
the pre‐frailty classification task. The plot displays the 10 most impactful features on classification, ranked from high to low. Numeric
features are colored with red representing a higher feature value and blue indicating a lower value, while categorical or bool features are
labeled in gray. A negative SHAP value, extending to the left, reduces the pre‐frailty risk, while a positive value indicates an increased risk.
(b) SAGE value plot for each feature dimension. Our results demonstrate that living city is the most influential feature in contributing to the
pre‐frailty risk through geographic variations, while physical factors are identified as the most impactful dimension. SAGE, Shapley Additive
Global Explanation; SHAP, SHapley Additive exPlanations.
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Our study demonstrates that distilled Catboost is an
effective ML model for identifying pre‐frailty from
community‐dwelling older adults. In our study, dis-
tilled Catboost surpassed all other individual models.
Only a few studies [7, 8] have explored the feasibility of
identifying pre‐frailty from community‐dwelling old
adults using ML. We significantly improved the model
performance (AUROC: 0.7560 vs. 0.7220 [7]) using the
PACIFIC framework by leveraging the advantages of
CatBoost and KD. Gradient boosting decision tree al-
gorithms are known to efficiently model the heteroge-
neous data [28]. Among these models, CatBoost out-
performs others [20, 28], due to the its build‐in ordered
target statistic [20] that effectively processes categorical
features common in modern data‐driven medical
problems [29]. We also utilized KD to boost our model
performance. Although stacking models [23] can sig-
nificantly reduce variance and improve performances,
it increases inference time and is difficult to deploy. KD
[21] can bridge the knowledge gap between stacking
(teacher) and individual (student) models (Supporting
Information S1: Figure S3), trading off between
model performance and inference time (Supporting
Information S1: Figure S2).

Machine learning models such as distilled CatBoost
provide superior risk estimates, but the source of risk is
often non‐interpretable [17]. To overcome this issue, we
visualized global and individual risk sources using SHAP
summary plot (Figure 2a) and SHAP dependence plot

(Supporting Information S1: Figure S4), making our
study one of the most comprehensive clinical applica-
tions with SHAP values. We identified the top 10 most
impactful features and their associations with pre‐frailty
risk, most of which have been reported by prior epide-
miological studies, including BMI [30, 31], PEF [32, 33],
weight [34], age [35], falls within the last 2 years [36],
and arthritis or rheumatism [37, 38] (Supporting Infor-
mation S1: Figure S3). However, their complex interac-
tions result in varying risk contributions. With the aid of
a SHAP individual explanation plot (Figure 3), WE can
visually discern the risk contributions of each feature,
helping individuals improve their self‐awareness [19] or
providing potential avenues for risk modification [39].

We employed feature selection to effectively eliminate
less predictive variables and methodically examine poten-
tial pre‐frailty risk factors from various sources. This led to
the identification of previously overlooked risk factors,
including chest pains during physical exertion, the pres-
ence of in‐house shower or bath facilities, and participation
in community‐based older adult associations. Chest pains
during physical exertion have been recognized as a signif-
icant indicator of acute coronary syndrome [40], which is
closely linked to pre‐frailty [41]. However, the connection
between chest discomfort during physical activity and
frailty remains unclear. Meanwhile, few studies have ex-
plored the determinants of household amenities and
neighborhood resources [42]. Our research revealed that
the absence of in‐home shower or bath amenities or

FIGURE 3 Individual pre‐frailty risk score calculator. The output value is the risk score for the individual. The base value is the mean
risk score, which is the output without any features inputted. Features in red increase the risk, while features in blue decrease the risk. (a) A
pre‐frail individual with a risk score of 0.72 calculated by the pre‐frailty risk calculator. (b) A robust individual with a risk score of 0.34
calculated by the pre‐frailty risk calculator. The risk score calculator can also be used to assess the impact of improving specific indicators on
the overall risk.
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community‐based senior citizen organizations increased
the risk of pre‐frailty. The absence of in‐home shower or
bath amenities may hinder personal hygiene or reflect
substandard indoor conditions, increasing the risk of pre‐
frailty. On the other hand, senior citizen organizations offer
opportunities for social interaction [43], physical exercise
[44], and access to health information and resources [45],
aiding in the prevention of pre‐frailty. From a global
standpoint, our study highlighted the significance of en-
vironmental factors using SAGE values (Figure 2b), which
provide comparable contributions that aid in model ex-
planation and knowledge discovery in clinical practice
[46, 47]. Our findings align with recent arguments that
environmental factors play a crucial role in health longevity
[45] and frailty [42, 48].

One major drawback of traditional epidemiological
research is the difficulty of modeling high cardinality
features, which are frequently one‐hot encoded (dummy)
into sparse vectors [25], leading to an underestimate of
their importance. However, the build‐in algorithm of
CatBoost efficiently handles these features [20] and, in
the PACIFIC framework, ranked living city as the most
influential feature (Figure 2a) in contributing to the pre‐
frailty risk through geographic variations. This finding
aligns with previous studies [15, 49] that reported
regional disparities in healthcare as a cause for geo-
graphic variation in the prevalence of frailty among
Chinese community‐dwelling older adults. This could be
attributed to several underlying factors, such as geo-
graphic factors (i.e., altitudes and climates) [50], imbal-
anced healthcare facilities, and service of different cities
[51], as well as varying average city education and
income level [52]. Our findings underscore the impor-
tance of considering geographical variations in public
health strategies and interventions aimed at reducing
pre‐frailty among older adults.

To our knowledge, this was also the first study using a
machine learning‐based method to summarize the
dimensional risk based on sources of risk. The SAGE
values enabled us to visualize the global impact of feature
dimension and quantify their importance. This is critical
not only for clinical counseling but also for the devel-
opment of optimized preventative strategies that are
personalized and standardized. The early identification
of pre‐frailty can significantly reduce the onset of frailty
and reduce healthcare costs. There is emerging evidence
that indicates early prevention needs more person‐
centered community care planning [53]. It is also known
that these older adults represent a heterogeneous cohort,
and a one‐size‐fits‐all approach is unlikely to be suc-
cessful. For practice, a comprehensive assessment could
be distilled to a 4‐layer system: environmental factors,
social factors, clinical factors, and biological factors. This

approach combines system‐level targets with the devel-
opment of person‐centered healthcare, which has been
little studied. Our model may provide earlier alerts
compared to commonly used assessment tools, such as
Activities of Daily Living evaluations and serve as a
valuable self‐assessment or clinical decision support tool.
The integration of our model with existing frameworks
could enhance its clinical utility and facilitate broader
adoption. Future work is needed to validate the effec-
tiveness of our frameworks.

The best timing for using ML as a clinical decision‐
support tool might be embedded within the physical
examination and outpatient services, for example, where
an on‐screen notification during a consultation informs
the clinician about their patient's pre‐frailty risk. These
notifications might be particularly beneficial in health‐
care settings in which a patient does not always see the
same clinician, and the clinician might not be aware of a
patient's full history and living environment.

Our research has several limitations. First, although
BMI is an important criterion in the PFP, we did not ex-
clude it due to its cost‐efficiency and our aim to analyze
the effect of high BMI on the risk of pre‐frailty. Second,
due to the lack of information on shrinking [54] and
neighborhood information [42], we only analyzed the
baseline data, which introduces potential bias and limits
our study to a cross‐sectional analysis, despite our fra-
mework's potential for extension by modifying the out-
come. Third, although we have rigorously validated the
model performance on a holdout unseen set, external
validations are still required to ensure the robustness of
our model. Fourth, we included 80 features from seven
dimensions based on existing literature and experts' con-
sultation, the list is not exhaustive. Meanwhile, the rela-
tionship detected by our study cannot be claimed to be
causal, and further studies are required. Nonetheless, the
study demonstrated the utility of the state‐of‐the‐art ML
and explanation method in accurate and interpretable pre‐
frailty risk quantification which may facilitate the risk
stratification and residency consultation. The identifica-
tion and understanding of several underappreciated de-
terminants in our framework may also have important
implications in policymaking and intervention design.

5 | CONCLUSIONS

In conclusion, we have developed an accurate and
interpretable pre‐frailty risk assessment framework using
state‐of‐the‐art ML techniques and explanation methods.
Our framework incorporates a wide range of features
and determinants, allowing for a comprehensive and
nuanced understanding of pre‐frailty risk. The results of
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our study demonstrate the potential for ML‐based ap-
proaches to improve risk stratification and inform tar-
geted interventions in the field of epidemiology. Beyond
the current study, the PACIFIC framework holds prom-
ise for adaptation to other populations and health con-
ditions, thereby contributing to the formulation of
broader public health strategies. Further research is
needed to validate our findings and explore the potential
for wider application of our framework.
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