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Abstract: The differential box-counting (DBC) method is useful for determining the fractal dimension
of grayscale images. It is simple to learn and implement and has been extensively utilized. However,
this approach has several problems, such as over- or undercounting the number of boxes due to
inappropriate parameter choices, limiting the calculation accuracy. Many studies have been conducted
to increase the algorithm’s computational accuracy by improving the calculating parameters of the
differential box-counting method. The grid size is a crucial parameter for the DBC method. Generally,
there are two typical ways for selecting the grid size in relevant studies: consecutive integer and
divisors of image size. However, both methods for grid size selection are problematic. The consecutive
integer method cannot partition the image entirely and will result in the undercounting of boxes;
the divisors of image size can partition the image completely. However, this method uses fewer
grid sizes to compute fractal dimensions and has a relatively huge distance error (DE). To address
the shortcomings of the above-mentioned two approaches, this research presents an improved grid
size selection strategy. The improved method enhances computational accuracy by computing
the discarded image edge areas in the consecutive integer method, allowing the original image
information to be used as thoroughly as the divisor strategy. Based on fractional Brownian motion
(FBM), Brodatz, and Aerials image sets, the accuracy of the three grid size selection techniques
(consecutive integer method, divisors of image size method, and the improved algorithm) to compute
the fractal dimension is then compared. The results reveal that, compared to the two prior techniques,
the revised algorithm described in this study minimizes the distance error and increases the accuracy
of the fractal dimension computation.

Keywords: fractal dimension; differential box-counting; grid size selection; fractional Brownian
motion; Brodatz database; Aerials database

1. Introduction

An image captured by a camera is a projection of an actual three-dimensional shape
on a plane. The image textures can reflect the morphological features of the physical
object. As a result, objects can be identified by evaluating the grayscale variations of an
image. Textured surfaces, on the other hand, are inherently complex in natural scenes.
Irregular and complex objects cannot be described using Euclidean geometry. Mandelbrot
proposed utilizing fractal geometry to describe this type of phenomenon in 1983 [1]. Frac-
tal geometry is used to define self-similar scale-independent elements known as fractal
sets. The irregularity of a fractal set can be computed using the fractal dimension. The
fractal dimension is now widely utilized in computer vision applications such as texture
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analysis [2], image segmentation [3], shape recognition [4], pattern recognition [5], time
series analysis [6], complex network analysis [7], landslide susceptibility assessment [8],
topography analysis of thin films [9], cement-based materials analysis [10], and description
of urban morphology [11].

Researchers have proposed many calculating methods to precisely estimate the fractal
dimension. Mandelbrot first proposed calculating the fractal dimension when determining
the length of the British coastline [1]. Then, based on Mandelbrot’s idea, Pentland [12],
Peleg et al. [13], Clarke et al. [14], Dubuc et al. [15], Keller et al. [16], and Gagnepain et al. [17]
proposed various methods for determining fractal dimension.

In 1994, Sarkar et al. [18] proposed the differential box-counting (DBC) method to
compute the fractal dimension by counting the number of boxes. This method is extensively
utilized since it is simple to understand and implement. However, the DBC approach has
numerous flaws, including excessive counting of z-direction boxes, inappropriate box
heights, inaccurate box-counting in the xy-direction, and inappropriate box sizes. These
weaknesses frequently result in incorrect fractal dimensions, severe distance errors (DEs),
and other problems.

For the DBC method, the fractal dimension is calculated by fitting a series of points
(log1/r, logNr) in a log–log plot. The parameter associated with r is the grid size s, while
the Nr value is influenced by many parameters, such as the box side length s and height
h, the number of boxes nr of each gird, and the partitioning method of the xy plane. The
calculation methods of these parameters directly impact the calculating accuracy of the
DBC method. Many studies have been undertaken to increase the computational accuracy
by improving each parameter of the DBC method to tackle the shortcomings of the original
DBC approach.

Jin et al. [19] discovered that, during the DBC calculation, the log–log plot presents
“steps” under large s values. The central portion of the curve had a relatively constant
gradient, while the plot started to level off for smaller values of s. This phenomenon
decreased the accuracy of the calculation. Thus, the authors proposed the RDBC approach
to lower the DE by optimizing the range of grid size s. Although this study indicates that the
trend at both ends of the curve influences the calculation results, it does not give a complete
examination of the origins of its phenomenon and does not fix the underlying problems.

Chen et al. [20] presented the SDBC method to overcome the problem of overcounting
boxes in the z-direction, by introducing a box-shifting mechanism in the z-direction to
optimize the calculation of nr. Li et al. proposed a new nr strategy in 2006 [21] and 2009 [22]
to overcome the problem of overcounting boxes in the z-direction. They also proposed an
overlapping grid partitioning approach to address box over- and undercounting problems
along the xy-axis, where two nearby grids overlap by one row and one column. However,
several shortcomings in this method have been identified in previous literature [23].

Long et al. [24] proposed the integer ratio DBC (IRDBC) to estimate the FD of rectan-
gular images. IRDBC avoided the overcounting of boxes along the xy-axis by employing
a new nr formula that does not use the ceiling function. As a result, IRDBC generates
authentic values for nr. However, IRDBC employs only integer values for 1/r, resulting in
very few grid sizes being used to compute the fractal dimension.

Liu et al. [25] optimized the formula to compute nr and introduced a grid-shifting
mechanism to solve the undercounting of boxes along the xy-direction; for non-trivial plane
partitioning, the image size divisors were employed as the grid size s. Compared to DBC,
they indicated that the improved method enhanced accuracy by 24.1%. Based on Liu’s
work, Lai et al. [26] improved the computation of box h. Panigrahy et al. have put in
much effort to improve the DBC method. In 2017 [27], they investigated the effect of box
height on the accuracy of DBC computation and presented a new method of calculating
box height, which considerably enhanced the accuracy of fractal dimension calculation.
In 2020 [28], they proposed three new DBC algorithms based on weighted least squares
regression. These methods also use a new xy-plane shifting mechanism and a modified
formula for computing nr. However, their method utilized the divisors of image size as
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the grid size, resulting in a larger DE. In 2021, Liu et al. [29] proposed the IMDBC method,
which improved the box-shifting mechanism. The proposed method not only solved the
undercounting problem along the xy-direction but also had superior stability for image
rotation. Compared to DBC and its state-of-the-art methods, the IMDBC method has higher
computational accuracy.

According to the studies mentioned above, each algorithm overcomes the shortcom-
ings of the original DBC method by optimizing the calculation parameters to enhance the
computing accuracy and minimize distance error. Various parameters affect the compu-
tation of the fractal dimension; different approaches have different optimization focuses.
Nevertheless, they all achieved better results than the DBC method under their correspond-
ing validation method. However, some studies failed to provide more persuasive evidence
on the enhanced accuracy because their validations were not performed using images with
known theoretical fractal dimensions, such as synthesized FBM Database [25,29].

Among the various parameters utilized in DBC calculations, the grid size s is crucial.
The choice of grid size for a square image impacts how the plane is partitioned during
computing. The original DBC approach was based on consecutive integer partitioning,
which discards areas that cannot be partitioned in an integer manner [23]. Currently,
this strategy is frequently used in studies of state-of-the-art DBC methods [22,26,30,31].
However, in other works, such as those of Liu et al. [25] and Panigrahy et al. [28], the
authors utilized a similar approach to that used in Biswas’ study [32], employing divisors
of the image size as the grid size s to partition the square image fully.

These two approaches for calculating s values are frequently used in DBC algorithms.
Both strategies, however, have limitations. The consecutive integer partitioning method
discards the boundary region; hence, the original image is not fully utilized, which will
lead to the problem of undercounting boxes. Moreover, as noted previously, the curve
of the consecutive integer method is shaped like “steps” at large s values in the log–log
plots, which will also affect the calculation accuracy [19]. Although the divisor method can
partition the entire image, it omits a significant amount of information at other s values,
which leads to result distortion and high DE values [33].

The weight approach has been utilized to compute nr in some methods [23,24,30]. The
weight technique is used to calculate nr in a grid whose area is less than s × s and to assign
weights based on the actual area of the grid. Long et al. [24] were the first to propose the
weight method for calculating the nr values of the boundary grids. Nunsong et al. [30]
and Panigrahy et al. [23] then applied the weight technique to the modified triangle box-
counting (TBC) methods. In the work of Long et al., the grid partitioning approach is
an integer multiple of r values. This strategy would result in fewer s values utilized for
calculation and, sometimes, the same s for varied r values [33]. In the studies of Nunsong
and Panigrahy, on the other hand, the weight technique was utilized to calculate triangular
grids. However, most current DBC algorithms are based on square grids, where the weight
method is rarely used. Hence, we propose an improved continuous integer technique for
square grid calculation based on the weight method to tackle the problems of the typical
divisor method and consecutive integer method.

In order to further investigate the impact of the grid size selection on fractal dimension
calculation, this study first introduces the principles of two typical grid size selection meth-
ods and assesses their advantages and disadvantages. Then, by processing the discarded
edge regions of an image with the weight method, an improved strategy is proposed to
tackle the undercounting problem of the original consecutive integer approach and the
result distortion problem of the divisor method. Subsequently, based on three image sets
(synthesized FBM database, Brodatz database, and Aerials database), the impacts of the
three grid size selection methods (original consecutive integer, divisors of image size, and
the improved method) were then analyzed, evaluated, and compared. The results reveal
that, compared with the original consecutive integer method and the divisor method, the
DBC technique based on the improved grid size selection strategy can better estimate fractal
dimension values, produce lower DE values, and obtain more consistent goodness of fit
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values. The various notations and abbreviated terms used in this work are summarized
in Abbreviations.

The remaining parts of the paper are as follows: Section 2 describes the classic DBC
method, the typical grid size selection strategies, and the drawbacks of each strategy. In
the third section, an improved grid size selection strategy based on the consecutive integer
method is proposed. Section 4 discusses the three image databases (FBM, Brodatz, Aerials)
utilized for validation and evaluation metrics. Section 5 describes and discusses the results
of the two typical grid size selection strategies and the improved one based on three image
databases. Section 6 presents the conclusions.

2. Materials and Methods
2.1. The DBC Method

In 1994, Sarkar et al. [18] proposed a differential box-counting (DBC) technique to
compute the fractal dimension of a grayscale image. A square grayscale image with a
resolution of M ×M can be mapped in 3D space, as illustrated in Figure 1, where the x-
and y-directions denote the image length and width. The grayscale values are represented
along the z-direction. The xy plane is divided into non-overlapping grids of size s × s. The
values of s vary from 2 to M/2. Non-square grids are formed at the borders if s is not a
divisor of M. In this situation, the computation disregards these non-square grids near the
boundary. Thus, grids of size s × s partition the plane fully. The grid ratio, r, is calculated
using s/M. To represent the gray level variation, nr boxes of size s × s × h are required for
each grid, where h is the box height. The following equations are used to compute h and nr
(Equations (1) and (2)): ⌊

G
h

⌋
=
⌊ s

M

⌋
(1)

nr(i, j) =
⌈gmax

h

⌉
−
⌈gmin

h

⌉
+ 1 (2)

G is the total number of grayscale orders in the 8-bit grayscale image, which is 256;
gmax and gmin are the maximum and minimum grayscale values in the (i, j)th grid. Then,
the total number of boxes Nr corresponding to the ratio r can be calculated using the
following formula:

Nr = ∑i,jnr(i, j) (3)

Finally, the fractal dimension D is computed by fitting the points (log1/r, logNr) ∀r
with linear least squares regression (LLS). LLS can produce the fitting line y = px + q for
these points. The slope and intercept of the fitted line are denoted by p and q, respectively.
Here, the slope p is the fractal dimension D that we need.

Figure 1. Sketch of determination of the number of boxes (nr) by DBC method (here M = 12, s = 3, nr

is 3 for the grid).
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2.2. Two Typical Methods for Determining Grid Size and Their Shortcomings

Many modified DBC methods have emerged based on Sarkar’s DBC method. The
grid size s is an essential parameter in these methods. It determines how to partition the xy
plane. In general, there are two types of grid size selection methods: consecutive integer
and divisors of image size. However, each of these solutions has its shortcomings.

2.2.1. Consecutive Integer Method

The original DBC method uses all successive integers between smin and smax as grid
sizes. The same partitioning strategy was used in other state-of-the-art methods such as
RDBC [19], SDBC [20], Li’2006 DBC [21], Liu’2008 DBC [31], Li’2009 DBC [22], Lai’2016
DBC [26], and Liu’2021 DBC [29]. Most improved algorithms employ this partitioning
strategy. Using consecutive integers as grid size can obtain more fitting points for calculat-
ing fractal dimensions. However, this method suffers from some limitations. The primary
problem with the consecutive integer method is that for large grid size s, several s values
correspond to the same Nr value, and the relevant curve would be shaped like a “step” in
the log–log plot [28].

We take a 512× 512 image as an example. For the consecutive integer method, smax can
be up to 256. At this point, the grids have partitioned the image into four regions (Figure 2e).
Several circumstances occur when s is between 128 and 256, as illustrated in Figure 2. When
s gradually decreases from 256, the entire image cannot be partitioned completely, and the
discarded region (blue) appears, as shown in Figure 2d. Then, s continues to decrease, and
the area of the discarded region increases (Figure 2c). Finally, when s is reduced to a value
less than 170, as shown in Figure 2b, the number of grids becomes nine, but the plane is
still not fully partitioned, even though the discarded area is smaller. When s decreases to
128, as indicated in Figure 2a, the image can be fully partitioned once more.

The results in Figure 3 can then be obtained based on the above analysis. The relation-
ship between the actual area for calculation (percentage of the image area) and the gird size
s is depicted in Figure 3. The amplitude of the curve increases with increasing s, as shown
in the figure. The minimum value of the curve is even less than 50%. When consecutive in-
tegers are used as s values, the area used for calculation differs significantly from the actual
image area. This deviation becomes more pronounced as the s value increases. Because of
the discarded areas, the number of boxes is undercounted, resulting in distorted results.

In theory, a smaller s value should result in a larger Nr value. However, due to the
vast number of undercounted boxes in this method, especially at large s values, the curve is
shaped like a “step”, which is a visual representation of the box undercounting problem.

Figure 2. The orange area is the calculated area, and the blue area is the ignored area. Image size is
512 × 512. (a) s = 128, (b) s = 160, (c) s = 220, (d) s = 240, (e) s = 256.

2.2.2. Divisors of Image Size

Biswas [32] first proposed using 2i
∣∣∀ ∈ Z+ , where i ∈ [1, log2(M)− 1] and log2(M) ∈ Z+.

Such methods identify the divisors of M to determine s values. This results in grids
that partition the entire image without the issue of discarding edge regions, as shown in
Figure 2a,e. Some s values, as illustrated in Figure 3, correlate to a calculated area/image
area percentage that can reach 100%. In the divisor method, such s values are selected
for calculation. This approach is relatively fast since the number of calculated s values is
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significantly lower than that in the consecutive integer method. All of the s values can
completely partition the image, and the corresponding Nr values can better capture the
properties of the entire image.

Figure 3. The relationship between the grid size and the percentage of the calculated area to the
actual area of the image.

However, the reduced number of s values introduces other issues. Images of natural
settings are frequently not ideal fractal objects [23] but rather approximate fractals. As a
result, fewer computed points may not necessarily represent the image features and cause
the results to deviate from the actual fractal dimensions. Moreover, for a 512× 512 image,
the highest s value of the method is 256, with the second biggest grid size being 128. This
significant interval between s values at large scales tends to ignore plenty of grayscale
information. Furthermore, the distance error of the divisor method is likewise fairly
large [33].

3. Improved Consecutive Integer Method

As mentioned above, the divisor method can thoroughly partition the image, but the
number of s values is minimal, which can easily lead to distorted results. Although more s
values are used in the consecutive integer technique, most of the s values, which cannot
entirely partition the image, are prone to the undercounting problem of boxes, especially
at large grid size s. Thus, we expect an improved method that can entirely partition the
image like the divisor method, but also has numerous s values involved in FD calculation
like the consecutive integer method.

To achieve this, we can improve the consecutive integer method by supplementing
it with the undercounting boxes. If a given value of s does not completely partition the
image, a zone with a width less than s is generated at the boundaries. This is depicted in
the blue region of Figure 4. Although the area of each grid in the blue region is less than
s × s, it also corresponds to a part of a two-dimensional surface with grayscale variations
inside, and the nr value can be computed using Equation (2). However, because the area is
less than s × s, the nr value cannot be determined directly as other grids. Thus, the weight
approach is introduced here.

The weight method would assign the corresponding weights according to the actual
area of the grids [24]. The number of boxes and the area weights need to be considered
simultaneously in calculating the nr value of grid (i, j)th. The weight factor F is calculated
as shown in Equation (4). A(i, j) is the actual area of the (i, j)th square, and S stands for
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s × s, which is the area of a grid. F is the ratio of the actual grid area to the theoretical grid
area. The corresponding nr value calculation can be obtained from Equation (5).

F =
A(i, j)

S
(4)

nr(i, j) = F×
[⌈ gmax

h

⌉
−
⌈gmin

h

⌉
+ 1
]

(5)

Figure 4. A part of the M×M picture is partitioned by square grids (1, 2, 4, and 5), and the other part
cannot be completely partitioned (3, 6, 7, 8, and 9).

The code of the DBC method based on two consecutive integer methods is shown in
Figure 5. The improved method’s specifics are as follows:

Partition an M×M image into tiny square grids with size s. The number of grids
is Size× Size. If M is not divisible by s at this point, non-square regions will form at the
margins. As shown in Figure 4, grids 1, 2, 4, and 5 are square regions while grids 3, 6, 7, 8,
and 9 are irregular edge regions.

Figure 5. Algorithm code of the DBC method with different consecutive integer methods (Left: the
original one; Right: the improved one).
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By replacing Equation (2) with Equation (5), the nr value for each grid of the image can
be calculated. Subsequently, summing the nr values for each grid gives Nr (Equation (6)).

Nr = ∑i,jnr(i, j) (6)

Finally, linear least squares regression (LLS) is used to fit the obtained points (log1/r,
logNr) ∀r to calculate the fractal dimension D. Section 5 of the study will further investigate
the validity of the method.

4. The Experimental Methodology and Evaluation Metrics
4.1. Databases for Validation

To compare the performance of the consecutive integer technique, the divisor method,
and the improved method, we validate these three approaches using the synthesized FBM
images, Brodatz database, and Aerials database. The FBM images can be synthesized based
on the theoretical fractal dimension, and the produced grayscale images can be used to
validate the accuracy of the three algorithms. The Brodatz and the Aerials databases are
typical for validating the fractal dimension algorithm, both obtained in natural scenes.
With the help of the Brodatz and the Aerials databases, the algorithms’ performance for
texture images and aerial photographs could be evaluated, respectively.

4.1.1. Synthesized FBM Images

In this research, FBM images are synthesized based on the random midpoint displace-
ment (RMD) method. [34] Table 1 tab displays the computational parameters of RMD. The
“maxlevel” is used to limit the size of the synthesized image, which is 2maxlevel + 1; “sigma”
is the initial standard deviation; H is the Hurst parameter to determine the actual fractal
dimension D = 3 − H. The Boolean parameter “addition” is used to turn on and off the
random additions. The “seed” is the seed value for the random number generator.

Nine images with a resolution of 513× 513 are created using the RMD method with
varied Hurst parameters. To obtain images with a resolution of 512× 512, the last row and
last column of the image are removed. Figure 6 depicts the synthesized images and their
theoretical fractal dimension values.

Table 1. Parameters for synthesizing FBM images.

Item Value

Maxlevel 9
Sigma 4

H 0.1~0.9
Addition 1

Seed 1

4.1.2. Brodatz Database

The Brodatz database [35] contains 112 grayscale texture images and is one of the most
extensively used image databases. Each image in the database has an unknown theoretical
fractal dimension. Sixteen images (shown in Figure 7) were chosen from the database for
calculation. Because the images in the Brodatz database are all 640 × 640 resolution, the
bicubic algorithm was employed to resize the chosen images to 512 × 512 resolution.

4.1.3. Aerials Database

As illustrated in Figure 8, twelve satellite images from the SIPI image database [36]
were chosen to validate the algorithms’ performance. Because the original photos are
not grayscale, they need to be converted into grayscale images before calculation using
rgb2gray function in Matlab software. The rgb2gray algorithm used in Matlab is a weighted
average of the R, G, and B channels’ values, as shown in Equation (7):
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Gaylevel = 0.2989R + 0.5870G + 0.1140B (7)

4.2. Evaluation Metrics

Generally, LLS fit to a set of points in a log–log plot is required to calculate the fractal
dimension. The goodness of fit (R2) measures how well the fitting line matches the scattered
points, whereas the distance error (DE) measures the average error between the fitted and
actual values. All three databases are calculated using these two assessment measures.
The correlation coefficient and slope b̂ are introduced to the calculation of synthetic FBM
images. These two metrics can evaluate whether the estimated fractal dimensions correlate
well with the theoretical fractal dimensions.

Figure 6. Nine synthesized FBM images with their TFD values.
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Figure 7. Sixteen sample natural grayscale images of the Brodatz database. The numbering sequence
starts from the first row, left to right, top to bottom: D1, D11, D21, D30, D41, D47, D53, D61, D65, D74,
D81, D85, D91, D99, D104, D112.

Figure 8. Twelve images of Aerials database. The numbering sequence starts from the first row, left
to right, top to bottom: 2.1.01~2.1.12.
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4.2.1. Goodness of Fit (R2)

The goodness of fit is used to evaluate the fit of the regression line to the observed
values. The maximum value of R2 is 1. R2 close to 1 indicates the excellent fit of the
regression line to the observed values; conversely, R2 close to 0 indicates the poor fit of the
regression line to the observed values. For m samples, (x1, y1), (x2, y2), . . . , (xm, ym), the
estimates corresponding to the model are (x1, ŷ1), (x2, ŷ2), . . . , (xm, ŷm).

Then, calculate the total sum of squares (TSS):

TSS = ∑m
i=1(yi − y)2 (8)

Calculate the residual sum of squares (RSS):

RSS = ∑m
i=1(ŷi − yi)

2 (9)

Then, we can get:
R2 = 1− RSS/TSS (10)

4.2.2. Distance Error (DE)

The fractal dimension is calculated using LLS fitting in the various DBC techniques.
The distance error (DE) is defined as the root-mean-square distance between the scatter
points and the fitted line in a log–log plot. DE is a crucial metric for evaluating DBC
methods and has been utilized in many studies [23,29,33]. Various optimizations of the
DBC method are also aimed at smaller DE. The calculation equation is shown below.

DE =
1
m

√
∑m

i=1(pxi + q− yi)
2

1 + p2 (11)

4.2.3. Correlation Coefficient γ

Correlation coefficients are used to show the linear relationship between two sets of
data. The algorithms provide a number between −1 and 1, where 1 represents a strong
positive relationship, −1 represents a strong negative association, and zero represents no
relationship at all. For two sets of variables, X(x1,x2, . . . ,xm) and Y(y1,y2, . . . ,ym), the
correlation coefficient γ can be calculated by the following equation:

γ = Correl(X, Y) =
∑(xi − x)(yi − y)√

∑ (xi − x)2 ∑ (yi − y)2
(12)

4.2.4. Slope b̂

b̂ is the slope of LLS fitting line for m sets of samples (x1, y1), (x2, y2), . . . , (xm,
ym). Corresponding to the model estimates (x1, ŷ1), (x2, ŷ2), . . . , (xm, ŷm), the slope b
is determined as shown in Equation (13). This metric is utilized in the FBM database
calculation to assess how well the fractal dimension calculated by DBC methods matches
the theoretical values.

b̂ =
∑m

i=1(xi − x)(yi − y)

∑m
i=1(xi − x)2 =

∑m
i=1 xiyi − n x y

∑m
i=1 x2

i − n x2 (13)

4.3. Flow Chart of the Experiment

Combining the above content, we can get the experimental process of this study, as
shown in Figure 9. The experimental results in the fifth section are obtained according to
this procedure.
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Figure 9. Computational flow chart for experimental research.

5. Results and Discussions
5.1. The Effect of Grid Size Selection on the Fractal Dimension Calculation for Synthesized
FBM Images

The RMD method was used to generate FBM images with theoretical fractal dimen-
sions ranging from 2.1 to 2.9. The following methods were used to calculate grid size:
divisor of image size (ER), original consecutive integer method (CI), and optimized consec-
utive integer method (OCI). Table 2 displays the fractal dimension calculation, the goodness
of fit, and the distance error corresponding to the three methods. Figures 10–12 illustrate
the data in Table 2. The correlation coefficients and slope b̂ between the theoretical fractal
dimensions and the calculated fractal dimensions are shown in Table 3. Theoretically, the
estimated fractal dimensions should be identical to the theoretical values, but this does not
happen due to methodology error. When the correlation coefficient and slope are near 1,
we can conclude that the corresponding method performs well.

Figure 10 shows that the fractal dimension value calculated by the three methods rises
as the TFD value increases. The consecutive integer method achieves the largest value
from the fractal dimension value calculation, the divisor method produces the smallest
value, and the computed value of the enhanced consecutive integer method is between the
two. According to the data in Table 3, the improved approach has the largest correlation
coefficient, the original consecutive integer method has the smallest, and the divisor method
has a correlation coefficient between the two. This demonstrates that the fractal dimension
values calculated by the improved consecutive integer method correlate better with TFD
values than those of the other two methods. In terms of slope, the improved consecutive
integer method has a somewhat lower slope than the original method. However, both
have higher slope values than the divisor method. The above results demonstrated that,
compared to the consecutive integer methods, the computed fractal dimensions derived by
the divisor method have a relatively good correlation with the TFD values but the trend
deviation is large. The calculated results of the original consecutive integer method can
better match the trend of the TFD values, but the correlation is the worst. The improved
method outperforms the other two in terms of linear correlation between calculated FD
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and TFD values, although it has slightly lower slope values than the original consecutive
integer method.

When comparing the goodness of fit results in Table 2 and Figure 11, it can be observed
that the improved method has the highest goodness of fit, followed by the divisor method,
and the original consecutive integer method has the lowest goodness of fit. When the DE
values are compared (Figure 12), the divisor method has the largest distance error; the
consecutive integer method has a relatively moderate distance error, and the enhanced
method has the smallest distance error.

To investigate the causes of this phenomenon, we generated Figure 13 based on the
calculation of the FBM image with a theoretical fractal dimension of 2.9. Figure 13a–c depict
the log–log plot curves of the three approaches, respectively. We produced Figure 13d to
compare the difference in the number of boxes between the improved consecutive integer
method and the original method.

In this work, eight s values are employed for the divisor method and 255 for the
consecutive integer method. These 255 s values contain the divisor method’s eight s values.
This is equivalent to the consecutive integer technique having 247 more data points than
the divisor method for LLS fitting. The absence of these 247 points is also responsible for
the distinction between the divisor method and the consecutive integer method.

According to Figure 13c, the divisor method requires fewer scatter points for the
calculation, which is related to the lower number of s values needed for the calculation.
Fewer points reduce the computing work accordingly. However, the relatively small
number of grid size values leads to the insufficient utilization of the original image, which
can easily distort the fractal dimension result. As a result, although the divisor method
has a higher R2 value and the obtained fractal dimension value has a higher correlation
with the TFD value, the calculated fractal dimensions are smaller than those of the two
consecutive integer methods, the distance errors are larger, and the trend deviation of the
calculated result from the TFD value is relatively large.

For the consecutive integer methods, more s values are used, and more corresponding
Nr values are acquired. Even though the calculation amount is substantially larger than
that of the divisor method, the grayscale information offered by the original image can
be fully utilized. As a result, consecutive integer methods produce higher FD and lower
distance error compared to the divisor method, and the computed fractal dimensions
trend is closer to the TFD values. However, because the edge region is discarded in the
original consecutive integer technique, the undercounting of boxes emerges at most s
values. The “steps” in the curve, as seen in Figure 13a, best represent this problem. The
improved method reconsiders the discarded boxes and produces a smoother curve, as seen
in Figure 13b.

Table 2. Fractal dimension, the goodness of fit, and distance error of three methods based on
FBM images.

TFD
FD R2 DE

ER CI OCI ER CI OCI ER CI OCI

2.1 2.0653 2.2097 2.1255 0.9979 0.9925 0.9992 0.0232 0.0045 0.0015
2.2 2.1116 2.2490 2.1654 0.9980 0.9928 0.9995 0.0230 0.0045 0.0012
2.3 2.1512 2.3030 2.2182 0.9986 0.9930 0.9995 0.0189 0.0044 0.0011
2.4 2.2171 2.3733 2.2857 0.9986 0.9931 0.9995 0.0192 0.0044 0.0011
2.5 2.2820 2.4490 2.3551 0.9985 0.9930 0.9995 0.0201 0.0045 0.0012
2.6 2.3489 2.5231 2.4243 0.9985 0.9925 0.9995 0.0203 0.0046 0.0012
2.7 2.4131 2.5939 2.4918 0.9984 0.9929 0.9995 0.0211 0.0045 0.0012
2.8 2.4727 2.6586 2.5575 0.9982 0.9940 0.9994 0.0220 0.0042 0.0013
2.9 2.5238 2.7169 2.6132 0.9980 0.9944 0.9994 0.0233 0.0040 0.0013
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Table 3. The correlation coefficient between the calculated fractal dimension and the theoretical
fractal dimension; the slope of the fitted line.

ER CI OCI

γ 0.9981 0.9979 0.9983
b̂ 0.5955 0.6648 0.6355

Figure 10. Calculated fractal dimension of images with different theoretical fractal dimension
values (FBM).

Figure 11. Goodness of fit of images with different theoretical fractal dimension values (FBM).

The improved method considerably improves the number of computed boxes com-
pared to the original consecutive integer method, as shown in Figure 13d. The higher the
s value, the greater the percentage of improvement. This curve resembles the trend in
Figure 3. It can be interpreted as the improved approach compensating exactly for the
original method’s discarded boxes, and the larger the s value, the larger the percentage
of compensation. Compared to the original consecutive integer method, the improved
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method makes better use of the image’s grayscale information. The compensating for the
discarded boxes, on the one hand, raises the Nr values under large s values, which results
in a reduction in the slope of the LLS line (i.e., the fractal dimension value) in Figure 13a.
As a result, the fractal dimension of the improved method appears to be less than that of
the original consecutive integer methods, as illustrated in Figure 10.

Figure 12. Distance error (DE) of images with different theoretical fractal dimension values (FBM).

Figure 13. LLS fitting lines of FBM images with a theoretical fractal dimension of 2.9 by three
methods. (a) Consecutive integer; (b) improved consecutive integer method; (c) image size divisor;
(d) compared with the original consecutive integer method, the improved method has an increase in
the number of boxes under different s values.
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On the other hand, the “steps” in the curve of the original consecutive integer method
are deleted, the incorrect box-counting is revised, and the computational accuracy is
enhanced. Thus, compared to the original consecutive integer method, the improved
method achieves larger goodness of fit and a smaller distance error, and the computed
fractal dimension has a better correlation with the TFD value.

In summary, the improved consecutive integer method outperforms the divisor
method and the original consecutive integer method in computing accuracy for the fractal
dimension calculation of FBM images.

5.2. The Effect of Grid Size Selection on the Fractal Dimension Calculation for Brodatz Images

The Brodatz texture database, a commonly used database in DBC investigations, is
utilized for validation to examine the three methods’ performance in fractal dimension
calculation of texture images. This database is composed of grayscale images with various
textures. The calculation in this section is based on the consecutive integer method, the
divisor method, and the improved consecutive integer method for 16 images from the
Brodatz database. Table 4 displays the acquired results for fractal dimension, the goodness
of fit, and distance error, and Figures 14–16 illustrate the data in the table.

Figure 14 shows that the three methods for calculating the fractal dimension have a
similar variation trend. The trend depicted in Figure 14 is generally consistent with the
prior study [33]. The fractal dimensions acquired by the consecutive integer method are
large, while the fractal dimensions produced by the divisor method are small; the fractal
dimension result of the improved method is between the two. The improved consecutive
integer method has a much higher goodness of fit than the original consecutive integer
method, according to the goodness of fit curve in Figure 15; the goodness of fit achieved by
the divisor method is between the two. Figure 16 illustrates that the distance error values
of the divisor method are higher than those of the two consecutive integer methods, and
the improved consecutive integer method obtains the smallest distance errors.

The Brodatz texture database, unlike the FBM images, is derived from the natural
scene. As discussed in Section 2.2.2, images of natural scenes are not always ideal fractal
patterns [23]. This is where the Brodatz database images differ from the FBM-generated
images. It also emphasizes the significance of validating with the Brodatz database. Based
on the analysis of the previous section, in the calculation of Brodatz images, the improved
consecutive integer method considers edge regions and calculates more boxes than the
original consecutive integer method. It is equivalent to raising the value of Nr under
certain s values, particularly when s is large. Compared to the original consecutive integer
approach, the improved method decreases the slope of the fitted line, i.e., the fractal
dimension value. For calculating the fractal dimension of texture images, the improved
method obtains larger goodness of fit and a smaller distance error compared to the original
method. It demonstrates that the conclusions obtained in the previous section are still
applicable to texture image calculation.

The preceding section mentioned that using fewer s values can result in distorted
computing results for the divisor method. For the Brodatz database, the distortion of the
divisor method results in small fractal dimensions and large distance errors. This result
agrees with the FBM-based study described above.

In summary, the improved consecutive integer method outperforms the original
method for texture image calculation. Because of distortion, the divisor method does
not produce satisfactory results when calculating texture images. In 2021, Liu et al. [29]
compared their method to the algorithms proposed by Panigrahy et al. in 2020 [28] and
Li et al. in 2014 [25]. For the Brodatz database, the mean value of DE calculated by
these methods is more than 0.0025. In this study, the Brodatz database’s mean DE value
determined by using the DBC algorithm only modified with the improved consecutive
integer method is 0.024. Furthermore, only the grid size selection method is optimized
in this study compared to the original DBC approach; no box-shifting mechanism or box
height change is utilized. This also emphasizes the significance of grid size selection.
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Table 4. Fractal dimension, goodness of fit, and distance error of three methods based on Brodatz images.

No. ITEM
FD R2 DE

ER CI OCI ER CI OCI ER CI OCI

1 D1 2.5490 2.8369 2.7290 0.9933 0.9915 0.9973 0.0429 0.0050 0.0028
2 D11 2.7029 2.9103 2.8015 0.9963 0.9920 0.9988 0.0322 0.0049 0.0018
3 D21 2.8238 2.9919 2.8823 0.9976 0.9933 0.9988 0.0262 0.0045 0.0018
4 D30 2.4027 2.7106 2.6001 0.9907 0.9864 0.9954 0.0502 0.0063 0.0036
5 D41 2.6880 2.9076 2.7982 0.9957 0.9912 0.9985 0.0345 0.0051 0.0021
6 D47 2.5025 2.8229 2.7130 0.9926 0.9919 0.9962 0.0450 0.0049 0.0033
7 D53 2.7945 2.9720 2.8624 0.9967 0.9935 0.9990 0.0305 0.0044 0.0017
8 D61 2.5250 2.7589 2.6503 0.9949 0.9903 0.9982 0.0373 0.0053 0.0023
9 D65 2.6220 2.8856 2.7758 0.9931 0.9901 0.9977 0.0436 0.0054 0.0026

10 D74 2.6461 2.9308 2.8196 0.9928 0.9925 0.9975 0.0448 0.0047 0.0027
11 D81 2.7382 2.9468 2.8397 0.9968 0.9943 0.9989 0.0298 0.0041 0.0018
12 D85 2.7160 2.8882 2.7774 0.9978 0.9943 0.9993 0.0245 0.0041 0.0014
13 D91 2.3144 2.5885 2.4793 0.9928 0.9879 0.9960 0.0439 0.0059 0.0034
14 D99 2.4858 2.7552 2.6470 0.9931 0.9895 0.9974 0.0434 0.0056 0.0028
15 D104 2.8115 2.9987 2.8893 0.9966 0.9937 0.9986 0.0308 0.0043 0.0020
16 D112 2.6276 2.8853 2.7759 0.9948 0.9929 0.9982 0.0378 0.0046 0.0023

Figure 14. Calculated fractal dimension of different images (Brodatz).

Figure 15. Goodness of fit of different images (Brodatz).
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Figure 16. Distance error (DE) of different images (Brodatz).

5.3. The Effect of Grid Size Selection on the Fractal Dimension Calculation for Aerials Images

To compare the performance of the three methods, twelve images from the Aerials
database with a resolution of 512 × 512 were chosen. As these are high-altitude aerial im-
ages, they are suitable for remote sensing applications. Figures 17–19 and Table 5 illustrate
the fractal dimension, goodness of fit, and DE values obtained by three different methods.

Table 5. Fractal dimension, goodness of fit, and distance error of three methods based on Aerials images.

No. ITEM
FD R2 DE

ER CI OCI ER CI OCI ER CI OCI

1 2.1.01 2.5653 2.7998 2.6939 0.9973 0.9951 0.9983 0.0272 0.0038 0.0022
2 2.1.02 2.6274 2.8440 2.7351 0.9975 0.9951 0.9982 0.0263 0.0038 0.0023
3 2.1.03 2.3861 2.5221 2.4275 0.9992 0.9968 0.9985 0.0148 0.0031 0.0021
4 2.1.04 2.5664 2.7880 2.6770 0.9981 0.9952 0.9985 0.0226 0.0038 0.0021
5 2.1.05 2.4971 2.7461 2.6369 0.9962 0.9940 0.9977 0.0323 0.0042 0.0026
6 2.1.06 2.5538 2.7413 2.6338 0.9976 0.9952 0.9982 0.0254 0.0037 0.0023
7 2.1.07 2.4586 2.6197 2.5094 0.9993 0.9929 0.9985 0.0134 0.0045 0.0021
8 2.1.08 2.4564 2.7155 2.6068 0.9977 0.9933 0.9955 0.0248 0.0044 0.0036
9 2.1.09 2.3832 2.5449 2.4448 0.9994 0.9914 0.9982 0.0132 0.0050 0.0023

10 2.1.10 2.5125 2.7052 2.5996 0.9986 0.9921 0.9976 0.0197 0.0048 0.0026
11 2.1.11 2.4268 2.6870 2.5769 0.9966 0.9943 0.9975 0.0303 0.0041 0.0027
12 2.1.12 2.4979 2.7237 2.6204 0.9984 0.9920 0.9968 0.0211 0.0048 0.0030

According to Figure 17, the estimated fractal dimensions are identical to those of
Brodatz and FBM. The original consecutive integer method produces the highest fractal
dimension, the divisor method produces the smallest fractal dimension, and the improved
consecutive integer method produces values in between. In terms of goodness of fit, the
improved method outperforms the original consecutive integer method. Unlike Brodatz
and FBM, the divisor technique’s goodness of fit for Aerials images is almost equivalent to
that of the improved consecutive integer approach. The distance error results are similar
to the FBM and Brodatz results, with the divisor method generating the highest error,
followed by the original consecutive integer method; the improved consecutive integer
method produces the lowest error.

The Aerials images are pictures of natural scenes, which are also not ideal fractals.
Compared to Figures 14 and 16 in the preceding section, the fractal dimension and distance
error results of the Aerials images (Figures 17 and 19) are extremely similar to the computed
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results of Brodatz images. This also validates the conclusion of the previous section. It
indicates that, for Aerials images, the improved method still achieves lower distance errors
than the divisor method and the original consecutive integer method.

Figure 17. Calculated fractal dimension of different images (Aerials).

However, unlike the results for Brodatz images, the goodness of fit values obtained
by the divisor method are not intermediate between the two consecutive integer methods.
We indicated in Section 5.1 that the divisor method requires eight points to fit an LLS line,
whereas the consecutive integer method takes 255 points, including the 8 points of the
divisor method and the other 247 data points. The absence of 247 points in the divisor
method makes the calculation results “distorted”. The effect of the “distortion” varies
depending on the image type. Comparing Figures 7 and 8, it can be seen that the aerial
image has different characteristics from the texture image. The Brodatz texture image is
more homogeneous and has basically the same features in all image regions, but the Aerials
image usually appears with some conspicuous objects.

Figure 18. Goodness of fit of different images (Aerials).

Because there are fewer s values in the divisor technique, the fitting results will
be considerably influenced if the image’s conspicuous objects influence certain s values.
Because the consecutive integer method uses a large number of s values, some abnormal
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scatter points do not affect the results. As a result, in Figure 18, the divisor method’s
goodness of fit curve seems to oscillate around the curve of the improved consecutive
integer method. Of course, further research is required to confirm this. In summary, the
improved consecutive integer method outperforms the divisor method and the original
continuous integer method for computing the fractal dimension of Aerials images.

Figure 19. Distance error (DE) of different images (Aerials).

5.4. Applying Improved Grid Selection Strategies to Other DBC Methods

From the above analysis based on the original DBC method, it is found that the
improved grid selection strategy, i.e., the improved consecutive integer method, can obtain
better accuracy of fractal dimension calculation. For further validation, we tested the
effectiveness of the improved strategy based on the three methods of Long’2013DBC [24],
Lai’2016DBC [26], and Liu’2021DBC [29]. The image database used for the calculation is
the same as that described in Section 5.1. The results of the three methods (with/without
the improved strategy) are calculated separately based on the FBM images. The obtained
results of fractal dimension, goodness of fit, and distance error are shown in Tables 6–8.

From the fractal dimension results in Table 6, we can find that the Long’2013 method
with the improved strategy obtains a higher fractal dimension than the original method.
FDs of Lai’2016 and Liu’2021 methods show a fractal dimension decrease after applying
the improved strategy. From the results in Tables 7 and 8, it can be found that for all three
methods, the improved strategy improves the goodness of fit and reduces the distance
error compared to the original methods.

Table 6. Fractal dimension of three methods (with/without the improved strategy) based on FBM images.

TFD Long’2013DBC with CW Improvement Lai’2016DBC with CW Improvement Liu’2021DBC with CW Improvement

2.1 2.0501 2.0935 0.0434 2.2388 2.1521 −0.0867 2.2875 2.2003 −0.0872
2.2 2.0959 2.1361 0.0402 2.2900 2.2010 −0.0889 2.3376 2.2483 −0.0893
2.3 2.1522 2.1881 0.0360 2.3288 2.2383 −0.0905 2.3722 2.2821 −0.0901
2.4 2.2161 2.2485 0.0324 2.3866 2.2944 −0.0922 2.4295 2.3366 −0.0928
2.5 2.2831 2.3141 0.0309 2.4629 2.3664 −0.0964 2.5019 2.4061 −0.0958
2.6 2.3491 2.3807 0.0316 2.5373 2.4402 −0.0971 2.5721 2.4762 −0.0959
2.7 2.4113 2.4459 0.0346 2.6084 2.5099 −0.0984 2.6420 2.5441 −0.0979
2.8 2.4669 2.5056 0.0387 2.6726 2.5739 −0.0987 2.7063 2.6080 −0.0984
2.9 2.5148 2.5575 0.0426 2.7290 2.6284 −0.1006 2.7621 2.6608 −0.1013
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Table 7. Goodness of fit of three methods (with/without the improved strategy) based on FBM images.

TFD Long’2013DBC with CW Improvement Lai’2016DBC with CW Improvement Liu’2021DBC with CW Improvement

2.1 0.99942 0.99969 0.00027 0.99102 0.99915 0.00813 0.99192 0.99944 0.00752
2.2 0.99940 0.99971 0.00031 0.99150 0.99898 0.00748 0.99271 0.99934 0.00663
2.3 0.99939 0.99974 0.00035 0.99275 0.99921 0.00646 0.99343 0.99938 0.00595
2.4 0.99937 0.99975 0.00039 0.99308 0.99950 0.00642 0.99374 0.99967 0.00593
2.5 0.99933 0.99975 0.00042 0.99344 0.99960 0.00617 0.99428 0.99977 0.00550
2.6 0.99927 0.99974 0.00047 0.99367 0.99955 0.00588 0.99457 0.99980 0.00523
2.7 0.99919 0.99973 0.00053 0.99373 0.99948 0.00575 0.99461 0.99982 0.00521
2.8 0.99912 0.99971 0.00059 0.99410 0.99932 0.00523 0.99492 0.99972 0.00479
2.9 0.99904 0.99969 0.00065 0.99475 0.99909 0.00434 0.99553 0.99954 0.00401

Table 8. Distance error of three methods (with/without the improved strategy) based on FBM images.

TFD Long’2013DBC with CW Improvement Lai’2016DBC with CW Improvement Liu’2021DBC with CW Improvement

2.1 0.00350 0.00092 −0.00258 0.00500 0.00152 −0.00348 0.00475 0.00124 −0.00352
2.2 0.00355 0.00089 −0.00267 0.00488 0.00167 −0.00321 0.00453 0.00135 −0.00318
2.3 0.00360 0.00084 −0.00276 0.00451 0.00147 −0.00304 0.00431 0.00131 −0.00300
2.4 0.00369 0.00082 −0.00287 0.00443 0.00118 −0.00325 0.00422 0.00096 −0.00325
2.5 0.00383 0.00083 −0.00299 0.00433 0.00105 −0.00328 0.00405 0.00080 −0.00325
2.6 0.00401 0.00085 −0.00315 0.00427 0.00112 −0.00315 0.00396 0.00075 −0.00320
2.7 0.00422 0.00088 −0.00334 0.00426 0.00122 −0.00304 0.00396 0.00072 −0.00324
2.8 0.00443 0.00091 −0.00352 0.00415 0.00140 −0.00275 0.00385 0.00091 −0.00295
2.9 0.00463 0.00095 −0.00368 0.00392 0.00162 −0.00230 0.00362 0.00116 −0.00246

The strategy of integer r used in the Long’2013 method leads to fewer values of s
involved in the calculation. This is very similar to the divisor method. Therefore, it is easy
to produce the problem of small fractal dimension, large goodness of fit, and large distance
error. However, because the weight method is used in Long’s method, the distance error
obtained is not much different from that of the consecutive integer method even though
the above problems exist. After applying the “consecutive integer method + weighting
method” strategy, Long’s method could involve more s values and fully use the grayscale
variation of the original image, resulting in a larger fractal dimension, higher goodness of
fit, and smaller distance error.

In both Lai’2016 and Liu’2021 methods, the original consecutive integer method is
used as the grid selection strategy. Thus, even though various optimizations have been
performed in their methods, the problems caused by the original consecutive integer
method still exist. Based on the analysis of previous sections, the original consecutive
integer method has the problem of undercounting boxes. The larger the value of s, the
higher the percentage of undercounting boxes. After applying the improved strategy, it is
equivalent to raising the vertical coordinates of the points corresponding to large s values.
This change reduces the excessive fractal dimension while increasing the goodness of fit
and reducing the distance error. The fractal dimension, goodness of fit, and distance error
results for Lai’2016 and Liu’2021 (Tables 6–8) confirm this conclusion.

In summary, the grid selection strategy based on the “consecutive integer method + weight
method” can improve the goodness of fit, reduce the distance error, and obtain more accu-
rate fractal dimension results for DBC methods. However, from the results in this section,
although the grid selection strategy improves the computational accuracy compared to
the original method, the calculated results of the three methods are very different. This
is because many parameters affect the fractal dimension, and each method uses different
optimization strategies for other parameters, resulting in many deviations in the results.

6. Conclusions

This study proposes an improved consecutive integer method to address the current
difficulties of distorted calculation results and huge distance errors caused by the inap-
propriate choice of grid size s in the differential box-counting method. The synthetic FBM
images, Brodatz database, and Aerials database are then used to evaluate and compare
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the effects of three grid size selection methods, namely the consecutive integer method,
the divisor method, and the improved consecutive integer method, on the accuracy of
fractal dimension calculation. Except for the different grid selections, all other parameters
are identical to the DBC approaches. The results indicate that the original consecutive
integer method ignores the boxes along the edges, resulting in fewer boxes to calculate.
This reduces the goodness of fit and increases the distance error, distorting the estimated
fractal dimension.

Although the divisor method has a small computation and can partition the whole
image completely, the number of s values is too small. Then, a large amount of effective
information is ignored compared with the consecutive integer method, resulting in a severe
distortion of fractal dimension results and more significant distance error, and the fitting
goodness is not stable. The improved strategy solves the undercounting problem of the
original consecutive integer method by retaining the edge regions of images. Further-
more, the method can partition the image completely like the divisor method. Thus, the
improved consecutive integer method obtains a smaller distance error than the original
consecutive integer method and the divisor method, improving the accuracy of fractal
dimension calculation.
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Abbreviations

Symbol Description
s Size of a square grid
smin The minimum value of s
smax The maximum value of s
M Image size for a square image
G Total number of gray levels in an image
gmax Maximum gray level over a grid
gmin Minimum gray level over a grid
nr Total number of boxes at scale r, required to cover the rough surface over (i, j)th grid
Nr Total number of boxes at scale r, required to cover the rough surface of an image
r The scale of a square grid for an image
h Height of a box
γ Correlation coefficient
R2 Goodness of fit
b̂ The slope of LLS fitted line (for evaluation of FBM images)
ER Equal ratio. Indicates that s is a divisor of the image size
CI Consecutive integer. Indicates that the value of s is all integer from smin to smax.
CW The “consecutive integer + weight method” strategy
OCI Optimized consecutive integer. Indicates that the division of the xy plane is based on the

improved consecutive integer method.
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TFD Theoretical fractal dimension refers to the fractal dimension used to generate FBM images
FD Fractal dimension
DE Distance error
FBM Fractional Brownian motion
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