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ABSTRACT
In this study, experimental pathology, flow cytometry (FCM), quantitative real-

time polymerase chain reaction (qRT-PCR), and western blot (WB) were used to 
evaluate the effects of sodium fluoride (NaF) on hepatocellular cell cycle progression in 
mice. A total of 240 ICR mice were divided equally into four groups; the experimental 
groups received 12, 24, or 48 mg/kg NaF intragastrically for 42 days, while the 
control group received distilled water. Doses of NaF above 12 mg/kg increased the 
percentage of cells in S phase (S-phase arrest), reduced percentages of cells in G0/
G1 or G2/M phase, and activated the ATM-p53-p21 and ATR-Chk1-Cdc25A pathways. 
Activation of these pathways was characterized by up-regulation of ATM, p53, p21, 
ATR, and Chk1 mRNA and protein expression, and down-regulation of Cdc25A, cyclin E, 
cyclin A, CDK2, CDK4, and proliferating cell nuclear antigen (PCNA) mRNA and protein 
expression. These results indicate that NaF caused S-phase arrest by activating the 
ATM-p53-p21 and ATR-Chk1-Cdc25A pathways.

INTRODUCTION

Although fluorine is an essential mineral element 
for all mammals, including humans, exposure to high 
fluorine levels has toxic effects on various organs and 
tissues [1]. Fluorine, which is added to drinking water, 
is rapidly absorbed by the gastrointestinal tract after 
ingestion [2]. Other common sources of fluorine include 
dental products, food, drugs, and industrial emissions [3]. 
Excessive fluoride intake can have many harmful effects, 
including damage to the teeth, bones, and other organs [4]. 
We have previously demonstrated that excessive fluorine 
intake can induce cytotoxicity, immunotoxicity, oxidative 
damage, and pathological injury in the thymus [5], spleen 
[6-8], bursa of Fabricius [9], cecal tonsil [10-14], liver 
[15, 16], kidney [17-19], peripheral blood [20-23], and 
intestine [24-28] in broiler chickens. Other studies have 
also demonstrated that fluoride induces cytotoxicity, 

apoptosis, and DNA damage in both humans and animals 
[1, 29-31].

Dysregulation of the cell cycle, which is crucial for 
the maintenance of homeostasis in multicellular organisms 
[32], may result in uncontrolled cell proliferation or 
excessive cell death; such changes can promote tumor 
formation and various other disease states [32-34]. 
DNA damage activates molecules that inhibit the cell 
cycle and promote cell death to prevent proliferation of 
genetically altered cells [32]. Excessive fluoride increases 
the G0/G1 cell cycle phase population in thymocytes and 
splenocytes [5, 8] and reduces numbers of T and B cells 
in young broiler chickens. However, fluoride increases the 
S phase and decreases the G2/M phase population in rat 
osteoblasts, but does not affect the size of the G0/G1 phase 
population [34]. We recently demonstrated that sodium 
fluoride (NaF) inhibits proliferation and induces apoptosis 
in mouse splenic lymphocytes both in vivo and in vitro [3, 
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8, 35, 36] and increases G0/G1 arrest in the broiler chicken 
kidney [17] and thymus [5]. Furthermore, the molecular 
mechanisms underlying the ability of NaF to inhibit 
proliferation in splenic lymphocytes include alterations in 
the expression of cytokine proteins and increases in cell 
cycle arrest [36]. The liver is a crucial metabolic organ that 
regulates the metabolism of trace elements, and excessive 
fluoride intake can also damage hepatic tissue. We have 
previously demonstrated that elevated fluorine levels 
result in oxidative damage, pathological injuries [16], and 
S phase arrest [37] in the livers of broiler chickens. Shashi 
et al. [2] reported that fluoride exposure activated hepatic 
enzymes during osteofluorosis. In addition, fluoride 
caused lesions and induced the synthesis of stress proteins 
in the livers and kidneys of mice [38-40]. Chen et al. [41] 
reported that excessive fluoride inhibited hepatocellular 
proliferation and differentiation, which might be related 
to increased S-phase arrest.

Although some studies have examined fluorine-
induced cell cycle arrest, very few have examined 
this relationship in liver cells either in vivo or in vitro, 
and the mechanisms underlying fluoride-induced cell 
cycle arrest in the liver remain unclear. In this study, 
we examined hepatocellular cell cycle distribution and 

cell cycle regulatory protein levels in mice to determine 
how NaF suppresses hepatocellular proliferation. 
After the administration of different concentrations 
of NaF, hepatocellular cell cycle distribution and the 
expression of cell cycle control molecules, including 
phosphorylated ataxia-telangiectasia-mutated (p-ATM, 
Ser1981), phosphorylated ATM- and Rad3-related 
(p-ATR, Thr1989), p-p53(Ser15), p21, p-Chk1(Ser317), 
p-Cdc25A(Ser76), cyclin E/D/A/B, CDK1/2/4, and 
proliferating cell nuclear antigen (PCNA) were examined 
using flow cytometry (FCM), western blot (WB), and 
quantitative real-time polymerase chain reaction (qRT-
PCR).

RESULTS

Fluoride inhibited liver development

Liver development was evaluated based on liver 
growth index (GI) values. GI values were similar in 
the control and 12 mg/kg groups throughout the 42-day 
experiment and in the control and 24 mg/kg groups on day 
21 of the experiment. However, GI was lower (P < 0.05 

Figure 1: Changes of the liver (a) and changes of the growth index (GI, b) of liver at 21 and 42 days of experiment. 
Livers are smaller in the three NaF-treated groups than those in the control group. Hepatic growth index is decreased in the 24 and 48 mg/
kg groups. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. b changes of the growth index (GI) in liver, 
*P<0.05, compared with the control group **P<0.01, compared with the control group.
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and P < 0.01) in the 48 mg/kg group on days 21 and 42 
and in the 24 mg/kg group on day 42 than in the control 
group (Figure 1b).

Fluoride induced pathological changes in the liver

Macroscopically, livers were smaller in the three 
NaF treatment groups than in the control group (Figure 
1a). However, there were no obvious changes in hepatic 
color or texture. 

As shown in Figures 2 and 3, fluoride administration 
increased the number of hepatocytes with granular 
and vacuolar degeneration in a dose- and time-
dependent manner, and tiny particles as well as small 
or large vacuoles were visible in the cytoplasm of these 
hepatocytes. Necrotic hepatocytes were also observed 
in the 48 mg/kg group. There was no evidence of these 
lesions in the control group. 

NaF induced S-phase arrest in the liver

As shown in Figures 4-6, percentages of hepatocytes 
in S phase increased in a dose- and time-dependent 
manner, while percentages of hepatocytes in the G0/G1 
and G2/M phases decreased.

Percentages of cells in the G0/G1 phase decreased 
(p < 0.05 or p < 0.01) in the 48 mg/kg group at both 
days 21 and 42 and in the 24 mg/kg group at day 21 of 
the experiment when compared to the control group. 
Percentages of cells in the G2/M phase were also lower (p 
< 0.05 or p < 0.01) in the 24 mg/kg and 48 mg/kg groups 
at day 42 of the experiment than in the control group. 
Finally, percentages of cells in S phase increased (p < 
0.05 or p < 0.01) in the 24 mg/kg and 48 mg/kg groups at 
days 21 and 42 and in the 12 mg/kg group at day 42 of the 
experiment when compared to the control group.

Changes in expression of cyclins, CDKs, and 
PCNA in the liver

To understand the mechanisms underlying NaF-
induced hepatocyte cell cycle arrest, we evaluated the 
expression of regulatory molecules associated with the 
G1/S phase, including cyclin E/D/A/B, CDK1/2/4, and 
PCNA, at the protein and mRNA levels. The results are 
shown in Figures 7-14.

Cyclin E and A protein levels were decreased (p < 
0.05 or p < 0.01) in the 24 mg/kg and 48 mg/kg groups at 
day 21 and in all three NaF-treated groups at day 42 of the 
experiment when compared to the control group; cyclin 
E protein levels were also decreased (p < 0.05) in the 12 
mg/kg group at day 21 of experiment in comparison to the 
control group (Figures 7c and 8c). Similarly, cyclin E and 
A mRNA expression was lower (p < 0.05 or p < 0.01) in 

the 24 mg/kg and 48 mg/kg groups at days 21 and 42 and 
in the 12 mg/kg group at day 42 of the experiment than in 
the control group (Figures 7a and 8a).

As shown in Figure 9c, CDK4 protein levels were 
decreased (p < 0.05 or p < 0.01) in the 48 mg/kg group at 
days 21 and 42 and in the 24 mg/kg group at day 42 of the 
experiment, but were increased in the 12 mg/kg group at 
day 21 of the experiment, when compared to the control 
group. CDK2 protein levels were also lower (p < 0.05 or 
p < 0.01) in the 24 mg/kg and 48 mg/kg groups at days 
21 and 42 and in the 12 mg/kg group at day 42 of the 
experiment than in the control group (Figure 10c). CDK4 
mRNA expression was similarly decreased (p < 0.05 or 
p < 0.01) in the 48 mg/kg group at days 21 and 42 and 
in the 12 mg/kg and 24 mg/kg groups at day 42 of the 
experiment (Figure 9a). CDK2 mRNA expression was also 
lower (p < 0.05 or p < 0.01) in the 48 mg/kg group at days 
21 and 42 and in the 24 mg/kg group at day 42 of the 
experiment than in the control group (Figure 10a). PCNA 
protein levels were decreased (p < 0.05 or p < 0.01) in 
the 24 mg/kg and 48 mg/kg groups at days 21 and 42 and 
in the 12 mg/kg group at day 21 of the experiment when 
compared to the control group. PCNA mRNA expression 
was also lower (p < 0.05 or p < 0.01) in the 48 mg/kg 
group at days 21 and 42 and in the 24 mg/kg group at 
day 42 of experiment than in the control group (Figure 
11). In contrast, cyclin B/D and CDK1 protein and mRNA 
expression did not differ among any of the groups (Figures 
12-14). 

Changes in protein and mRNA expression of 
cyclin/CDK regulators in the liver 

Cdc25A promotes cell cycle progression by 
activating cyclin-dependent protein kinases, and its 
production is associated with entry of cells into the S 
phase [42-44]. Moreover, exposure to novel pactamycin 
analogs also triggers p53-dependent S-phase cell cycle 
arrest in human head and neck squamous cell carcinoma 
(HNSCC) [45]. To determine whether the Cdc25A and p53 
pathway is involved in NaF-induced cell cycle arrest, we 
examined the expression of ATR-Chk1-Cdc25A and ATM-
p53-p21 pathway members at both the protein and mRNA 
levels [43, 46, 47]. The results are shown in Figures 15-20.

P-ATM protein and ATM mRNA levels were 
increased (p < 0.05 or p < 0.01) in the 24 mg/kg and 
48 mg/kg groups at days 21 and 42 and in the 12 mg/
kg group at day 42 of the experiment when compared 
to the control group (Figure 15). P-p53 protein and p53 
mRNA levels were also increased (p < 0.05 or p < 0.01) 
in the 24 mg/kg and 48 mg/kg groups at days 21 and 42 
and in the 12 mg/kg group at day 42 of the experiment in 
comparison to the control group (Figure 16). P21 protein 
levels were higher (p < 0.05 or p < 0.01) in all three NaF-
treated groups than in the control group at days 21 and 42 
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Figure 2: Histopathological changes in the liver at 21 days of experiment. (a) The control group (H&E ×400). (b) The 12 mg/
kg group. Hepatocytes show slight granular and vacuolar degeneration (H&E ×400). (c) The 24 mg/kg group. Hepatocytes show granular 
and vacuolar degeneration (H&E ×400). (d) The 48 mg/kg group. Hepatocytes show obvious granular and vacuolar degeneration. Also, 
necrotic hepatocytes are observed (H&E ×400).

Figure 3: Histopathological changes in the liver at 42 days of experiment. (a) The control group (H&E ×400). (b) The 12 mg/
kg group. Hepatocytes show granular and vacuolar degeneration (H&E ×400). (c) The 24 mg/kg group. Hepatocytes show obvious granular 
and vacuolar degeneration (H&E ×400). (d) The 48 mg/kg group. Hepatocytes show significant granular and vacuolar degeneration. Also, 
Necrotic hepatic cells are observed (H&E ×400).
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Figure 4: Cell cycle changes in the liver at 21 days of age by flow cytometry.

Figure 5: Cell cycle changes in the liver at 42 days of age by flow cytometry.
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Figure 6: Changes of cell cycle phase distribution (%) in the liver. Data are presented with the mean ± standard deviation 
(n=8),*P<0.05, compared with the control group **P<0.01, compared with the control group.
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Figure 7: Changes of mRNA and protein expression levels of cyclin E in the liver at 21 and 42 days of experiment. 
(a) The relative mRNA expression levels of cyclin E. (b) The western blot assay of cyclin E. (c) The relative protein expression levels of 
cyclin E. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard 
deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.

Figure 8: Changes of mRNA and protein expression levels of cyclin A in the liver at 21 and 42 days of experiment. 
(a) The western blot assay of cyclin A. (b) The relative mRNA expression levels of cyclin A. (c) The relative protein expression levels of 
cyclin A. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard 
deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.
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Figure 9: Changes of mRNA and protein expression levels of CDK4 in the liver at 21 and 42 days of experiment. (a) 
The relative mRNA expression levels of CDK4. (b) The western blot assay of CDK4. (c) The relative protein expression levels of CDK4. 
CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard deviation 
(n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.

Figure 10: Changes of mRNA and protein expression levels of CDK2 in the liver at 21 and 42 days of experiment. (a) 
The relative mRNA expression levels of CDK2. (b) The western blot assay of CDK2. (c) The relative protein expression levels of CDK2. 
CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard deviation 
(n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.
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Figure 11: Changes of mRNA and protein expression levels of PCNA in the liver at 21 and 42 days of experiment. (a) 
The relative mRNA expression levels of PCNA. (b) The western blot assay of PCNA. (c) The relative protein expression levels of PCNA. 
CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard deviation 
(n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.

Figure 12: Changes of mRNA and protein expression levels of cyclin B in the liver at 21 and 42 days of experiment. 
(a) The relative mRNA expression levels of cyclin B. (b) The western blot assay of cyclin B. (c) The relative protein expression levels of 
cyclin B. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard 
deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.
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Figure 13: Changes of mRNA and protein expression levels of cyclin D in the liver at 21 and 42 days of experiment. 
(a) The relative mRNA expression levels of cyclin D. (b) The western blot assay of cyclin D. (c) The relative protein expression levels of 
cyclin D. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard 
deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.

Figure 14: Changes of mRNA and protein expression levels of CDK1 in the liver at 21 and 42 days of experiment. (a) 
The relative mRNA expression levels of CDK1. (b) The western blot assay of CDK1. (c) The relative protein expression levels of CDK1. 
CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard deviation 
(n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group
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Figure 15: Changes of mRNA level of ATM and protein expression levels of p-ATM in the liver at 21 and 42 days of 
experiment. (a) The relative mRNA expression levels of ATM. (b) The western blot assay of p-ATM. (c) The relative protein expression 
levels of p-ATM. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± 
standard deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.

Figure 16: Changes of mRNA level of p53 and protein expression levels of p-p53 in the liver at 21 and 42 days of 
experiment. (a) The relative mRNA expression levels of p53. (b) The western blot assay of p-p53. (c) The relative protein expression 
levels of p-p53.CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± 
standard deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.
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of the experiment. Similarly, p21 mRNA expression was 
markedly increased (p < 0.05 or p < 0.01) in the 24 mg/kg 
and 48 mg/kg groups at days 21 and 42 of the experiment 
when compared to the control group (Figure 17).

As shown in Figures 18c and 19c, p-ATR and 
p-Chk1 protein levels were increased (p < 0.05 or p < 
0.01) in the 24 mg/kg and 48 mg/kg groups at days 21 and 
42 and in the 12 mg/kg group at day 42 of the experiment 
when compared to the control group. P-Chk1 mRNA 
expression was also markedly higher (p < 0.05 or p < 0.01) 
in the 24 mg/kg and 48 mg/kg groups at days 21 and 42 
and in the 12 mg/kg group at day 42 of the experiment 
than in the control group (Figure 19a). NaF treatment 
increased (p < 0.05 or p < 0.01) p-Cdc25A protein levels 
in the 48 mg/kg group at days 21 and 42 and in the 24 mg/
kg group at day 42 of the experiment in comparison to the 
control group. However, Cdc25A mRNA expression was 
decreased (p < 0.05 or p < 0.01) in the 48 mg/kg group at 
days 21 and 42 of the experiment when compared to the 
control group (Figure 20).

DISCUSSION

In this study, we examined the molecular pathways 

underlying NaF-induced cell cycle arrest in the mouse 
liver. We found that, at does above 12 mg/kg, NaF 
induced cell cycle arrest in the S phase and decreased the 
percentages of cells in the G0/G1and G2/M phases (Figure 
6). 

Hayashi et al. [48] reported that NaF induced cell 
cycle-dependent cytotoxicity and clastogenicity in human 
diploid fibroblasts, and cells were especially sensitive to 
these effects during early and middle S phase. However, 
Aardema et al. [49] reported that NaF induced cell cycle 
was arrest in the G2/M phase and that cells in both the 
S and G2 phases were equally sensitive to the adverse 
effects of NaF [50]. Our results are consistent with those 
of Zhang et al. [51], who found that fluoride increased 
the proportion of cells in the S phase, decreased the 
proportions in both the G0/G1 and G2/M phases, and 
induced DNA damage in cultured primary cultured rat 
hippocampal neurons. Excessive fluoride levels can also 
increase the proportion of cells in the S phase, thereby 
affecting hepatocellular proliferation and differentiation 
[41].

Here, we examined the expression of S phase 
regulators to identify the molecular mechanisms 
underlying NaF-induced cell cycle arrest in the S phase 

Figure 17: Changes of mRNA and protein expression levels of p21 in the liver at 21 and 42 days of experiment. (a) The 
relative mRNA expression levels of p21. (b) The western blot assay of p21. (c) The relative protein expression levels of p21. CG: Control 
group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± standard deviation (n=8), 
*p<0.05, compared with the control group; **p<0.01, compared with the control group.
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Figure 18: Changes of protein expression levels of p-ATR in the liver at 21 and 42 days of experiment. (a) The western 
blot assay of p-ATR. (b) The relative protein expression levels of p-ATR. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; 
GIII: 48mg/kg group. Data are presented with the means ± standard deviation (n=8), *p<0.05, compared with the control group; **p<0.01, 
compared with the control group.

Figure 19: Changes of mRNA level of Chk1 and protein expression levels of p-Chk1 in the liver at 21 and 42 days of 
experiment. (a) The relative mRNA expression levels of Chk1. (b) The western blot assay of p-Chk1. c The relative protein expression 
levels of p-Chk1. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with the means ± 
standard deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.
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Figure 20: Changes of mRNA level of Cdc25A and protein expression levels of p-Cdc25A in the liver at 21 and 42 days 
of experiment. (a) The relative mRNA expression levels of Cdc25A. (b) The western blot assay of p-Cdc25A. (c) The relative protein 
expression levels of p-Cdc25A. CG: Control group; GI: 12mg/kg group; GII: 24mg/kg group; GIII: 48mg/kg group. Data are presented with 
the means ± standard deviation (n=8), *p<0.05, compared with the control group; **p<0.01, compared with the control group.

Figure 21: Schematic of NaF-induced S-phase cell cycle arrest in mouse liver. NaF can activate two signal transduction 
pathways: the ATM-p53-p21 and ATR-Chk1-Cdc25A pathways, which cause hepatocellular cell cycle arrest at S-phase.
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in the liver. NaF increased p-ATM, p-p53, p21, p-ATR, 
p-Chk1, and p-Cdc25A protein levels, increased ATM, 
p53, p21, and Chk1 mRNA expression, and decreased 
Cdc25A mRNA expression (Figures 15-20). Li et al. 
[52] reported that fluoride induced p53 expression 
and cell cycle arrest in the S phase in human embryo 
hepatocytes in a dose-dependent manner; fluoride also 
increased or induced p53 expression in rat leukocytes 
[53] and human embryonic hepatocytes [54]. ATM plays 
a prominent role in checkpoint regulation at S phase 
transition and is associated with p53 phosphorylation 
after DNA damage-induced stresses [55-58]. Our results 
demonstrate conclusively that NaF up-regulates ATM and 
its downstream target p53, thus activating the ATM signal 
transduction pathways (Figures 15 and 16). These findings 
are similar to those of Guha et al., who demonstrated that 
novel pactamycin analogs can cause S-phase arrest in 
human head and neck squamous cell carcinoma (HNSCC) 
cells by increasing p53 activity, up-regulating expression 
of the cyclin kinase inhibitors p27 and p21, slightly 
reducing cyclin D1 expression, and moderately increasing 
cyclin E expression; no changes were observed in the 
expression of cyclin B, CDK2, or CDK4 [45]. Treatment 
with the novel anthraquinone derivative IMP1338 also 
increased p53-dependent cell cycle arrest in the S phase 
in human cancer cells [59]. P53 therefore may be a critical 
mediator of apoptosis, DNA repair, and cell cycle arrest 
in response to DNA damage and cellular stress [60]. In 
addition, p53 can up-regulate p21 expression, which 
also promotes cell cycle arrest in the S phase [61]. Here, 
NaF increased p21 protein levels and mRNA expression 
(Figure 17), which is consistent with studies demonstrating 
that various stimuli induce cell cycle arrest in the S phase 
through p53-dependent activation of p21 [45, 62-64]. P21 
generally induces S-phase cell cycle arrest by inhibiting 
CDK2 activity [64-66] which, together with cyclin A, is 
necessary for the progression of cells through the S phase 
[67]; inactivation of cyclin A/CDK2 complexes prevents 
progression beyond the S phase checkpoint. 

CDK2 is the major downstream target of Cdc25A, 
which activates the cyclin A/CDK2 complex [68]. 
Triptolide and simvastatin can induce S-phase arrest by 
inhibiting Cdc25A [69, 70]. In addition, Chk1, which is 
regulated by ATR, phosphorylates the Cdc25A protein 
at S76, which in turn up-regulates ubiquitin-mediated 
proteolysis of Cdc25A [47, 43]. Chk1 also regulates the 
S phase checkpoint by promoting proteolysis of Cdc25A, 
which in turn inhibits CDK2 activity, in response to 
some anticancer agents, such as infrared ray (IR) and 
ultraviolet (UV) light [71-73]. Our results demonstrate 
that NaF decreased cyclin A and CDK2 and increased 
ATR and Chk1 protein levels and mRNA expression 
(Figures 8, 10, 18, and 19). However, p-Cdc25A (S76) 
protein levels increased, while Cdc25A mRNA expression 
decreased, after NaF treatment (Figure 20). The increases 
in p-ATR, p-Chk1, and p-Cdc25A protein levels suggest 

that NaF activates the ATR signal transduction pathways. 
In addition, downregulation of Cdc25A induced S-phase 
arrest by inhibiting activation of the cyclin A/CDK2 
complex. Cyclin D1, along with its kinase partners CDK4 
and CDK6, is a major mitogen-induced regulator of 
cell cycle progression in the G1 phase. Cyclin E/CDK2 
complexes are crucial for the transition from the G1 to the 
S phase [3]. As shown in Figures 7 and 9, NaF markedly 
reduced cyclin E and CDK4 protein levels and mRNA 
expression, thus inhibiting the transition from the G1 to 
the S phase. The decreases observed in cyclin E, cyclin A, 
Cdc25A, and CDK2 protein levels and mRNA expression 
are consistent with a previous report that triptolide induced 
S phase arrest in multiple myeloma cells by inhibiting 
cyclin E, cyclin A, Cdc25A, and CDK2 expression and 
up-regulating p21 and p27 expression [69]. 

The PCNA protein, a marker of proliferation 
that plays crucial roles in many cellular processes, is 
ubiquitously expressed in eukaryotic cells. For example, 
PCNA is involved in DNA replication, DNA repair, and 
chromatin assembly and maintenance [74-76]. We found 
that NaF decreased PCNA protein levels and mRNA 
expression (Figure 11), suggesting that NaF also inhibits 
hepatocellular proliferation by down-regulating PCNA 
expression. These decreases in PCNA protein levels and 
mRNA expression are consistent with a previous report 
that fluoride can decrease germ cell counts and damage the 
male reproductive system by inhibiting PCNA expression 
[77].

In conclusion, the results of this study demonstrate 
that NaF increases ATM, p53, p21, ATR, and Chk1 
expression, decreases Cdc25A, cyclin E, cyclin A, CDK2, 
CDK4, and PCNA expression, activates the ATM-p53-p21 
and ATR-Chk1-Cdc25A pathways, and ultimately leads to 
S-phase arrest in the mouse liver (Figure 21).

MATERIALS AND METHODS

Animals and treatments

240 healthy ICR mice were provided by the 
Experimental Animal Corporation of Dossy in Chengdu, 
China. Food and water were provided ad libitum. After 
1 week of acclimatization, mice were divided randomly 
into four groups (N=60). The control group received 
intragastric doses of distilled water, while the experimental 
groups received intragastric doses of 12, 24, or 48 mg/
kg NaF (Chengdu Kelong Chemical Co., Ltd., Chengdu, 
China). NaF was diluted with distilled water. The gavage 
doses for all four groups were 1 mL/100 g body weight 
once daily for 42 days. Liver samples were collected from 
mice on days 21 and 42 of the experiment.

The use of mice and all experimental procedures 
were approved by the Animal Care and Use Committee, 
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Table1: Antibodies used in western blot
Name Company Cat# dilution
cyclin E Abcam, China ab52189 1/1000
Cyclin A Abcam, China ab181591 1/1000
Cyclin D Abcam, China ab134175 1/1000
Cyclin B Abcam, China ab181593 1/1000
CDK1 Abcam, China ab32384 1/1000
CDK2 Abcam, China ab76146 1/1000
CDK4 Santa Cruz, China sc260 1/50
p-ATR Gene Tex, China GTX128145 1/500
p-Chk1 Cell Signaling, China 12302T 1/100
p-Cdc25A Santa Cruz, China sc101655 1/50
p-ATM Biolegend, China 651201 1/400
p-p53 Cell Signaling, China 9284T 1/1000
p21
PCNA

Boster, China
Abcam, China

BA0271
Ab92552

1/100
1/1000

Table 2: Sequence of primers used in qRT-PCR
Gene symbol Accession number Primer Primer sequence(5’-3’) Product size
cyclin E NM_007633 Forward GTTACAGATGGCGCTTGCTC 104

Reverse AGCCAGGACACAATGGTCAG
Cyclin A NM_009828 Forward CTTGTAGGCACGGCTGCTAT 451

Reverse CATGTTGTGGCGCTTTGAGG
Cyclin D NM_007631 Forward AAGTGTGACCCGGACTGC 174

Reverse GATGTCCACATCTCGCACG
Cyclin B NM_172301 Forward AGCGAAGAGCTACAGGCAAG 141

Reverse CTCAGGCTCAGCAAGTTCCA
CDK1 NM_007659 Forward TCGGCTCGTTACTCCACTC 154

Reverse GCCACACTTCGTTGTTAGG
CDK2 NM_016756 Forward TTGGAGTCCCTGTCCGAACT 142

Reverse CGGGTCACCATTTCAGCAAAG
CDK4 NM_009870 Forward CAATGTTGTACGGCTGATGG 120

Reverse GGAGGTGCTTTGTCCAGGTA
Chk1 NM_007691.5 Forward GCAAACTTTGGGAGAAGGTGC 103

Reverse TATGGCCCGCTTCATGTCTAC
Cdc25A NM_007658 Forward AGAACCCTATTGTGCCTACTG 124

Reverse TACTCATTGCCGAGCCTATC
ATM NM_007499.2 Forward CCTTCCCACTCCAGAAACAG 123

Reverse CTCCGCATAACTTCCATCGT
p53 NM_011640.3 Forward AGAGACCGCCGTACAGAAGA 227

Reverse GCATGGGCATCCTTTAACTC

p21 U24173.1 Forward CAAAGTGTGCCGTTGTCTCTT 111Reverse TCAAAGTTCCACCGTTCTCG

PCNA NM_011045 Forward ATCCCAGAACAGGAGTACAGC 92Reverse ACAGCATCTCCAATGTGGCT
β-actin NM_007393 Forward GCTGTGCTATGTTGCTCTAG 117

Reverse CGCTCGTTGCCAATAGTG
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Sichuan Agricultural University.

Determination of liver growth index

After body weights were recorded, eight mice per 
group were humanely killed on days 21 and 42 of the 
experiment. Gross observations and weights were recorded 
for each liver. Liver growth index (GI) was calculated 
according to the following formula:

Pathological observations

Liver samples were taken from eight mice in each 
group on days 21 and 42 of the experiment and gross 
observations were recorded. After gross examination, 
liver samples were fixed in 4% paraformaldehyde solution, 
dehydrated in ethanol, and embedded in paraffin. Serial 
slices at 5 μm thickness were prepared and stained with 
hematoxylin and eosin (H•E) for histopathological 
examination under a light microscope.

Flow cytometry cell cycle assay

Eight mice per group were humanely killed on 
days 21 and 42 of the experiment; liver samples were 
immediately removed and cut into pieces to form a 
cell suspension that was filtered through a 300-mesh 
nylon screen. The cells were washed twice with cold 
PBS (phosphate buffer solution, pH 7.2-7.4) and then 
suspended in PBS at a concentration of 1×106 cells/mL 
using the normal counting method for blood cells. 100 μL 
portions of the cell suspension were transferred into new 5 
mL culture tubes. The cells were then incubated for 30 min 
at room temperature in the dark with 0.25% Triton X-100 
and 5 μL propidium iodide (PI) (BD, Cat. No.51–66211E, 
USA). Cells were resuspended in 0.5 mL PBS and run 
on a BD FACS Calibur flow cytometer. The results were 
analyzed using Mod Fit LT for Mac V3.0.

Cell cycle regulatory protein expression by 
western blot

On days 21 and 42 of the experiment, liver samples 
were collected from eight mice per group and the 
expression of cell cycle regulatory proteins was examined 
by western blot. The liver was homogenized and proteins 
were extracted with RIPA lysis buffer and kept in Laemmli 
loading buffer. Protein samples were resolved on SDS-
PAGE gels (5%–15%) and transferred to nitrocellulose 
filter membranes. Membranes were blocked with 5% fat-
free milk for 1h and incubated with primary antibodies 
overnight at 4°C. The primary antibodies were cyclin D/E/
B/A, CDK1/2/4, p-ATM, p-p53, p21, p-ATR, p-Chk1, and 
p-Cdc25A (Table 1). The membranes were then washed 

with PBS-Tween, incubated with biotin-conjugated 
secondary antibodies (Santa Cruz, USA) for 1h, and 
washed again with PBS-Tween. Blots were visualized by 
ECL™ (Bio-Rad, Hercules, CA, USA) and X-ray film. 
Statistical analysis of protein expression was performed 
using ImageJ2x software.

Cell cycle regulatory molecule mRNA expression 
by quantitative real-time polymerase chain 
reaction (qRT-PCR)

On days 21 and 42 of the experiment, liver samples 
were collected from eight mice per group and stored in 
liquid nitrogen. They were then homogenized in liquid 
nitrogen using a mortar and pestle. Total RNA was 
extracted from frozen liver powders using RNAiso plus 
(9108/9109, Takara, China) following the manufacturer’s 
instructions. cDNA was then synthesized using a 
PrimScript™ RT reagent Kit (RR047A, Takara, China) 
according to the manufacturer’s instructions. The cDNA 
product was used as a template for qRT-PCR analysis. 
Specific oligonucleotide primers were designed and 
synthesized by Sangon Biotech (Shanghai, China; Table 
2) according to the Mus musculus sequences. All qRT-PCR 
was performed on a Model C1000 Thermal Cycler (Bio 
Rad, USA) using the SYBR® Premix Ex Taq™Ⅱ system 
(RR820A, Takara, China) according to the standard 
protocols.

Mice β-actin expression was detected as an internal 
reference housekeeping gene. Gene expression from 
control group samples on days 21 and 42 of the experiment 
was used to calibrate gene expression in samples from 
the experimental groups. The 2-ΔΔCT method was used to 
analyze data from the qRT-PCR experiments [78].

Statistical analysis

One-way analysis of variance (ANOVA) procedure 
in SPSS 18.0 software was carried out to analyze all the 
data. All the results were expressed as mean ± standard 
deviation. p < 0.05 was significant, and p < 0.01 was 
markedly significant.
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