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Detecting mismatch-repair (MMR) status is crucial for personalized treatment strategies and prognosis in rectal cancer (RC). A
preoperative, noninvasive, and cost-efficient predictive tool for MMR is critically needed. Therefore, this study developed and
validated machine learning radiomics models for predicting MMR status in patients directly on preoperative MRI scans.
Pathologically confirmed RC cases administered surgical resection in two distinct hospitals were examined in this retrospective
trial. Totally, 78 and 33 cases were included in the training and test sets, respectively. Then, 65 cases were enrolled as an
external validation set. Radiomics features were obtained from preoperative rectal MR images comprising T2-weighted imaging
(T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1WI), and combined multisequences.
Four optimal features related to MMR status were selected by the least absolute shrinkage and selection operator (LASSO)
method. Support vector machine (SVM) learning was adopted to establish four predictive models, i.e., ModelT2WI, ModelDWI,
ModelCE-T1WI, and Modelcombination, whose diagnostic performances were determined and compared by receiver operating
characteristic (ROC) curves and decision curve analysis (DCA). Modelcombination had better diagnostic performance compared
with the other models in all datasets (all p < 0:05). The usefulness of the proposed model was confirmed by DCA. Therefore,
the present pilot study showed the radiomics model combining multiple sequences derived from preoperative MRI is effective
in predicting MMR status in RC cases.

1. Introduction

Rectal cancer (RC) represents a major gastrointestinal
malignancy worldwide, with steadily increasing incidence
and death rates [1–3]. To date, immune checkpoint inhibi-
tors (ICIs) have become a crucial therapeutic option for
improving prognosis in several solid tumors [4, 5]. Previous
clinical trials have shown that microsatellite instability (MSI)
and/or mismatch-repair deficiency (dMMR) constitute sig-
nificant tissue-agnostic molecular markers for the prediction
of ICIs’ efficacy [6–9]. Because genetic and immunohisto-
chemical (IHC) tests for MMR deficiency are available, pem-

brolizumab and nivolumab as monotherapies or combined
with ipilimumab have had approval from the US Food and
Drug Administration (FDA) for treating chemoresistant
MSI/dMMR mCRC cases [10].

Accurate prediction and diagnosis of MMR status in
patients with RC is important in designing a treatment plan
and prognostic evaluation. Although laboratory genetic test-
ing and tissue biopsy have been applied to assess the
amounts of MMR proteins in RC, including MLH1, MSH2,
MSH6, and PMS2, these approaches are costly, invasive,
and/or time-consuming [11, 12]. More importantly, since
different parts of the tumor could have distinct MMR
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expression levels, MR imaging may better capture this het-
erogeneity as a whole rather than a needle biopsy of a single
tumor component.

Currently, radiomics, a novel noninvasive tool, has been
widely used for pretreatment assessment as well as treatment
outcome, distant metastasis, and local recurrence predic-
tions in RC, providing important details of tissue character-
istics inaccessible to human eyes [13–16]. The radiomics
approach was inspired by the notion that medical images
comprise considerable information reflecting potential path-
ophysiological properties through quantitative analysis of
digital medical images for the whole tumor. Since not all
patients are subjected to genomic tests, radiogenomics is
vital because individuals may undergo imaging examina-
tions during the course of disease. Therefore, radiomics data
originated from the complete tumor rather than only a tissue
sample and could provide gene expression or mutation data
to increase diagnostic, predictive, and prognostic capabili-
ties, enabling precision therapy [17–20]. However, the prog-
nostic and predictive value of MRI-based radiomics for
evaluating MMR status preoperatively in RC still deserves
further attention.

Therefore, this study focused on the radiomics features
of RC, aimed at assessing the value of radiomics models
derived from multiparametric MR imaging for preopera-
tively predicting MMR status.

2. Materials and Methods

2.1. Patients. The current trial had approval from the Com-
mittee on Ethics of Changhai Hospital and Ruijin Hospital
Luwan Branch, Shanghai, China. Informed consent was
not required because of the retrospective design.

Pathologically confirmed RC cases administered rectal
MRI and surgical resection in Changhai hospital from Janu-
ary 2018 to December 2019 were enrolled into the training
and test sets. Next, individuals meeting the above eligibility
criteria in Ruijin Hospital Luwan Branch were enrolled from
January to December 2020 into the validation set (external
validation cohort).

Inclusion criteria were as follows: (1) MRI with a patho-
logic diagnosis of RC, (2) baseline MRI exam within 2 weeks
before surgical resection, (3) immunohistochemical test for
MMR after surgery, and (4) single focal lesion. Exclusion cri-
teria were as follows: (1) palliative resection; (2) previously
administered pelvic surgery, radiation therapy, chemother-
apy, or chemoradiotherapy; (3) image quality unsuitable
for tumor segmentation; and (4) hereditary colorectal cancer
syndrome. Totally, 111 and 65 patients were eventually
included in the Changhai and Ruijin cohorts, respectively
(Figure 1). Then, the random number technique
(random seeds = 24) was carried out for assigning 70% and
30% of the cases in the Changhai cohort to the training
and test sets, respectively.

Baseline clinical information was collected, including
age, gender, BMI, presurgical carcinoembryonic antigen
(CEA) and carbohydrate antigen (CA19-9) levels, and dis-
tant metastasis. An experienced radiologist (G.J.), with 10
years of experience, obtained the data from medical records.

2.2. Image Acquisition. After fasting for 4 hours, the patients
were administered enema with 20ml of glycerin prior to MR
scanning. Raceanisodamine hydrochloride was not utilized
because of potential contraindications.

Routine rectal MRI sequences were carried out on a 1.5T
or 3.0T MR scanner, i.e., oblique axial high-resolution T2WI
without fat suppression, sagittal T2WI, axial diffusion-
weighted imaging (DWI; b value = 0; 1000 s/mm2), axial
T1-weighted imaging (T1WI), and gadolinium contrast-
enhanced T1WI (CE-T1WI) in the sagittal, coronal, and
axial planes. CE-T1WI scans were obtained at 1min follow-
ing Gd-DTPA (Beilu Pharmaceutical, China) injected intra-
venously at 2ml/s with a high-pressure syringe and saline
flush (20ml at 2ml/s). Details regarding the parameters
applied for the above sequences are listed in Supplemental
Table 1.

2.3. Pathological Evaluation. Mismatch-repair (MMR) status
was determined based on surgical specimens, confirmed by
immunohistochemical staining of four MMR proteins,
including MLH1, MSH2, MSH6, and PMS2. Deficiency in
any of these proteins was defined as dMMR. Based on the
National Comprehensive Cancer Network and American
Joint Committee on Cancer (AJCC) TNM system (8th Edi-
tion) [21], two pathologists with more than 10 years of work
experience determined the tumor’s TN stage, histological
type, differentiation status, tumor deposit, lymphovascular
invasion, perineural invasion, tumor budding, and circum-
ferential resection margin (CRM) from hematoxylin and
eosin- (H&E-) stained slices. In case of discrepancy, both
examiners discussed to reach a consensus.

2.4. Image Segmentation. The original DICOM images
underwent importation into the Radcloud radiomics plat-
form (Huiying Medical Technology, China). As MR image
acquisition utilized distinct MRI systems in both hospitals,
the images were normalized for homogeneity using the fol-
lowing formula:

f xð Þ = s x − μxð Þ
σx

, ð1Þ

where f ðxÞ is the normalized intensity, x is the original
intensity, μx is the mean of the image intensity value, σx is
the standard deviation of the image intensity value, and s is
an optional scaling, by default, which is set to 1.

Regions of interest (ROIs) in all RC cases were manually
delineated slice-by-slice along the clearest solid border that
best fitted the lesion area, excluding the blurry margin, on
each of these three sequences (T2WI, CE-T1WI, and DWI
with b = 1000 s/mm2). Then, volumes of interest (VOIs)
were derived from the obtained ROIs. All images were proc-
essed by 2 experienced radiologists (Z.L. and H.L., with 11
and 6 years of experience in abdominal imaging, respec-
tively) in an independent manner, blinded to group assign-
ment. All segmentations were checked by one senior
radiologist (F.S., who had 12 years of experience in rectal
MRI).
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2.5. Radiomics Feature Selection. Based on the derived whole
VOI segmentations, radiomics feature extraction was per-
formed with the above platform from T2WI, DWI, CE-
T1WI, and combined sequences, respectively. Four types of
features were obtained: (1) first-order statistics, including
peak and mean value (with variance), quantifying the distri-

bution of voxel intensities on MR scans; (2) shape proper-
ties, including volume, lesion area, and spherical value,
reflecting the 3D features of the delineated area’s shape
and size; (3) texture features, i.e., gray-level cooccurrence,
run length, size zone, and neighborhood gray-tone differ-
ence matrices, quantitating a given area’s heterogeneity;

From January 2018 to December 2019
158 patients underwent baseline MRI with a pathologic

diagnosis of rectal cancer

111 patients available for inclusion

Excluded (n = 32):
- Patients who underwent palliative resection (n = 10)
- Previous pelvic surgery or any other therapy (n = 8)
- Poor quality of the images (n = 11)
- Hereditary colorectal cancer syndrome (n = 3)

From January 2020 to December 2020
98 patients underwent baseline MRI with a pathologic

diagnosis of rectal cancer

Received immunohistochemical test
for MMR after surgery (n = 143)

Received immunohistochemical test
for MMR after surgery (n = 88)

dMMR (n = 20) pMMR (n = 91)

Excluded (n = 23):
- Patients who underwent palliative resection (n = 7)
- Previous pelvic surgery or any other therapy (n = 5)
- Poor quality of the images (n = 7)
- Hereditary colorectal cancer syndrome (n = 4)

65 patients available for inclusion

dMMR (n = 11) pMMR (n = 54)

Develop radiomics models

CH cohort RJ cohort

Verify radiomics models

Figure 1: Study flowchart. CH Cohort: Changhai Hospital; RJ Cohort: Ruijin Hospital Luwan Branch.
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Figure 2: Workflow for building the radiomics model.
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Table 1: Demographic and pathological data of the patients in both cohorts.

Variables
CH cohort

p value
RJ cohort

p value
dMMR (n = 20) pMMR (n = 91) dMMR (n = 11) pMMR (n = 54)

Gender (male/female) 16/4 56/35 0.117 7/4 36/18 1.000

Age (year) 55:8 ± 9:9 57:1 ± 10:8 0.775 59:2 ± 11:9 60:1 ± 11:4 0.881

BMI (kg/m2) 23:2 ± 3:1 23:9 ± 3:8 0.660 24:1 ± 4:0 23:5 ± 3:5 0.747

Histological type

Adenocarcinoma 13 73 0.238 7 41 0.639

Mucinous adenocarcinoma 7 18 4 13

Pathological T stage

T1-2 7 32 0.989 4 20 1.000

T3-4 13 59 7 34

Pathological N stage

N0 8 35 0.898 5 25 0.959

N1-2 12 56 6 29

Clinical M stage

M0 4 26 0.434 3 16 1.000

M1 16 65 8 36

Tumor location

Upper 3 8 0.700 2 10 0.589

Middle 11 53 8 32

Lower 6 30 1 12

Differentiation

Well 3 14 0.213 1 10 0.330

Moderate 14 46 8 26

Poor 3 31 2 18

Tumor deposit

No 13 62 0.786 7 28 0.475

Yes 7 29 4 26

Lymphovascular invasion

No 12 47 0.498 8 29 0.408

Yes 8 44 3 25

Perineural invasion

No 12 63 0.425 5 30 0.540

Yes 8 28 6 24

Tumor budding

No 11 66 0.124 6 35 0.764

Yes 9 25 5 19

KRAS

Wild type 12 67 0.223 6 33 0.946

Mutant type 8 24 5 21

NRAS

Wild type 13 58 0.915 8 30 0.473

Mutant type 7 33 3 24

BRAF

Wild type 11 52 0.861 7 28 0.475

Mutant type 9 39 4 26

CEA∗

<5 ng/ml 14 52 0.289 8 32 0.619

≥5 ng/ml 6 39 3 22
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and (4) higher-order statistics, encompassing transformed
first-order statistics and texture features [13–15], e.g., loga-
rithm, gradient, square, and wavelet transform.

In the training cohort, inter- and intraclass correlation
coefficients (ICCs) were determined to assess feature robust-
ness. Features with inter- and intraobserver ICCs above 0.8
were further analyzed. Next, the variance threshold. Select-
K-best and least absolute shrinkage and selection operator
(LASSO) algorithms were employed to choose optimal
parameters. In addition, the synthetic minority oversam-
pling technique (SMOTE) was utilized to tackle the imbal-
anced samples in the training cohort for subsampling. The
SMOTE algorithm represents an improved sampling strat-
egy, with a given novel synthetic sampling computed
according to the Euclidian distance for variables.

2.6. Radiomics Model Establishment. The Radcloud platform
was utilized for SVM learning with the “scikit-learn” pack-
age in Python (v0.24.1, https://scikit-learn.org/stable/).
Based on the optimal features related to MMR status, the
SVM with linear kernel was employed to construct 4 predic-
tive models: (1) ModelT2WI, (2) ModelDWI, (3) ModelCE-
T1WI, and (4) Modelcombination, with optimal features
extracted from T2WI, DWI, and CE-T1WI sequences in
combination. To prevent overfitting, the validation set was
employed for verifying and comparing the performances of
the final models. Figure 2 depicts the radiomics workflow.
Furthermore, the penalty coefficient with the best perfor-
mance was used to train the final SVM model.

2.7. Statistical Analysis. Continuous variables were assessed
for normality by the Kolmogorov-Smirnov test, and group
comparisons were performed by the t-test or the Wilcoxon

test. Categorical variables were compared by the Chi-
square or Fisher’s exact test. Variance threshold methods
were applied for selecting radiomics features (variance
threshold = 0:8), taking out eigenvalues below 0.8. For the
select-K-best method, utilizing p values for analyzing the
associations of radiomics features with MMR status, features
with p < 0:05 were used. For the LASSO algorithm, L1 regu-
larizer was used as the cost function, and optimal λ value
was derived based on the minimum of the average mean
square error by 5 cross-validation and 1000 iterations.
Radiomics features with a nonzero coefficient in LASSO
were chosen by linearly combining the chosen features mul-
tiplied by the corresponding coefficients for each patient.
Receiver operator characteristic (ROC) curve analysis was
carried out for performance evaluation for each model by
deriving the area under the ROC curve (AUC) and deter-
mining sensitivity, specificity, and accuracy. ROC curve
comparisons utilized the DeLong test. Decision curve analy-
sis (DCA) was applied to assess the benefits of each model.
The nomogram was analyzed with R v3.6.3. Other data were
analyzed with SPSS 20.0 (SPSS, USA) and MedCalc 19.6.1.
p < 0:05 was deemed statistically significant.

3. Results

3.1. Patient Features. Totally, 111 and 65 individuals in the
Changhai and Ruijin cohorts were finally enrolled, respec-
tively. Table 1 lists the patient features, which had similar
characteristics in both cohorts (Supplemental Table 2).
Based on MMR status determined by postsurgical
pathological assessment, 20/111 individuals (18.0%) were
categorized as dMMR in the Changhai cohort, versus 11/

Table 1: Continued.

Variables
CH cohort

p value
RJ cohort

p value
dMMR (n = 20) pMMR (n = 91) dMMR (n = 11) pMMR (n = 54)

CA19-9∗

<37U/ml 15 77 0.480 10 39 0.354

≥ 37U/ml 5 14 1 15

CH cohort: Changhai Hospital, training and test sets; RJ cohort: Ruijin Hospital Luwan Branch, validation set; BMI: body mass index; dMMR: deficient
mismatch repair; pMMR: proficient mismatch repair; CEA: carcinoembryonic antigen; CA19-9: carbohydrate antigen 19-9. ∗Postoperative blood samples.

Table 2: Comparisons of selected features between different MMR status.

No. Radiomics feature Sequence
dMMR median

(interquartile range)
pMMR median

(interquartile range)
Z

value†
p

value
Coefficients∗∗

1
Wavelet-LLH∗_ GLSZM_ zone

variance
DWI 5.131 (4.378-5.300) 3.388 (2.950-3.968) 3.521 <0.001 -0.075

2
Wavelet-HLH∗_ GLSZM_ zone

variance
DWI 6.244 (5.800-8.000) 5.000 (4.350-5.200) 2.312 0.021 -0.059

3
Wavelet-HLH∗_ GLSZM_ large area

high gray level emphasis
CE-
T1WI

4458.739 (3441.205-
5718.022)

2524.119 (2098.914-
3682.686)

2.505 0.012 -0.052

4 Gradient_ first order_ kurtosis T2WI
175982.000
(92672.000-
213782.500)

85442.833 (31509.800-
107171.778)

2.955 0.003 -0.032

GLSZM: gray level size zone matrix. ∗The wavelet transform decomposes the tumor area image into low-frequency components (L) or high-frequency
components (H) in the x, y, and z axes. †Mann–Whitney test. ∗∗The coefficients in LASSO algorithm.
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65 (16.9%) in the Ruijin cohort (p = 0:854). Subsequently, 78
(70.3%) and 33 (29.7%) cases in the Changhai cohort were
assigned to the training and test sets, respectively.

3.2. Radiomics Features. Totally 1409 radiomics features
were obtained from T2WI, DWI, and CE-T1WI data.
Totally, 1270/1409 (90.1%), 1232/1409 (87.4%), and 1268/
1409 (90.0%) of them had inter- and intraobserver ICCs
above 0.8, respectively, from T2WI, DWI, and CE-T1WI,
and were further examined. Totally, 429, 466, and 406 fea-
tures were selected in subsequent variance threshold and
the select-K-best algorithm, respectively. Eventually, two,
five, and ten optimal features associated with MMR status
were determined with the LASSO algorithm from T2WI,
CE-T1WI, and DWI data, respectively (Supplemental
Table 3). Then, the combination of T2WI, CE-T1WI, and

DWI resulted in four screened features from 3770 features
for predicting MMR status. Details are presented in
Table 2. A heat map showed the discrepant distribution of
the selected features between the dMMR and pMMR
groups (Figure 3).

3.3. Radiomics Models. In the training population, Mod-
elT2WI, ModelDWI, ModelCE-T1WI, and Modelcombination had
diagnostic performances reflected by AUCs between 0.670
and 0.910 (Figure 4(a)). Modelcombination achieved the best
diagnostic performance (AUC = 0:910; accuracy = 85:9%).
In the test set, the four models had diagnostic performances
reflected by AUCs between 0.568 and 0.901 (Figure 4(b)).
Modelcombination had the best performance (AUC = 0:901;
accuracy = 93:9%).
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While validating the radiomics models, Modelcombination
had the best diagnostic performance (AUC, 0.874; sensitiv-
ity, 90.9%; specificity, 81.5%; accuracy, 83.1%) in the valida-
tion set (Figure 4(c)). These findings indicated
Modelcombination had improved discrimination performance
in comparison with other models (p < 0:05) in all datasets.
Table 3 presents the detailed findings.

3.4. Decision Curve Analysis. DCA demonstrated an ade-
quate performance for Modelcombination in distinguishing
dMMR lesions from pMMR counterparts in the validation
cohort. Modelcombination had clinical superiority over the
other models for net benefit within a large threshold proba-
bility (Figure 5), suggesting the multiparametric MRI
approach had significantly improved power in comparison
with other models.

4. Discussion

Here, a machine learning model based on the combination
of multiple MRI sequences constituted an effective, noninva-

sive, novel imaging approach for evaluating MMR status in
RC cases, with an external validation set examined by differ-
ent MRI scanning equipment and conditions.

High microsatellite instability (MSI) results from mal-
function of the dMMR system and is responsible for about
3–5% metastatic colorectal cancers (mCRCs) [22–25].
Detecting MMR in rectal cancer is important in clinical deci-
sion making, identifying individuals with differential treat-
ment response and prognosis. Studies have shown that
standard nCRT might be less effective in dMMR RC patients
than in patients with proficient mismatch repair (pMMR)
[24]. It might lead to the modification of clinical practice
in avoidance of unnecessary nCRT with poor response and
dMMR can be used as a biomarker to guide clinical
immunotherapy.

Although it is recommended to perform neoadjuvant
CRT for most patients with locally advanced RC according
to the NCCN guideline. However, in clinical practice, deter-
mination of whether to receive perioperative CRT was at the
discretion of the surgeon, oncologist, and patient. If CRT
was not performed before operation, the postoperative
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Figure 4: ROC curves for the SVM models. The performance of Modelcombination was better than those of other models (p < 0:05). (a) In the
training set. (b) In the test set. (c) In the validation set.
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Table 3: ROC analysis of the radiomics models.

ModelT2WI ModelDWI ModelCE-T1WI Modelcombination

Training set

AUC 0.768 0.670 0.718 0.910

95% CI 0.659-0.856 0.554-0.772 0.605-0.814 0.823-0.963

Sensitivity 0.844 0.328 0.844 0.844

Specificity 0.643 1.000 0.643 0.929

Accuracy 0.808 0.449 0.808 0.859

NRI∗ 0.285 0.444 0.285 /

p value∗ 0.028 0.043 0.002 /

Test set

AUC 0.707 0.568 0.691 0.901

95% CI 0.523-0.852 0.385-0.738 0.507-0.840 0.746-0.977

Sensitivity 0.407 0.667 0.926 1.000

Specificity 1.000 0.667 0.500 0.667

Accuracy 0.515 0.667 0.848 0.939

NRI∗ 0.260 0.334 0.241 /

p value∗ 0.019 0.042 0.042 /

Validation set

AUC 0.721 0.603 0.702 0.874

95% CI 0.595-0.825 0.474-0.722 0.576-0.809 0.768-0.943

Sensitivity 0.909 0.364 0.909 0.909

Specificity 0.667 0.926 0.704 0.815

Accuracy 0.708 0.831 0.738 0.831

NRI∗ 0.148 0.434 0.111 /

p value∗∗ 0.004 0.025 0.001 /

Modelcombination: based on the combination of multisequences. ∗NRI: net reclassification improvement, Modelcombination compared with other models. ∗∗

Compared with Modelcombination by DeLong test.
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Figure 5: Decision curve analysis of the prediction model in the validation set. The light gray line represents the assumption that all patients
had dMMR. The dark gray line represents the hypothesis that no patients had dMMR. The red curve shows that with the probability of
MMR ranging from 0.06 to 0.86, using the radiomics Modelcombination to predict MMR of RC would be beneficial than other radiomics
models.
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CRT could be considered. The management and treatment
strategies could be tailored after identification of LARC
patients who would benefit from adjuvant therapy or are
not likely to exhibit a good response to nCRT, if MMR status
was detected in the pretreatment approach.

Universal immunohistochemical testing for evaluating
MMR status is recommended. However, due to this relatively
costly and time-consuming approach, some patients remain
untested [26]. Therefore, broadly available, low-cost, and non-
invasive methods are urgently needed to help select patients
for evaluation. More importantly, since different parts of the
tumor could have distinct MMR expression levels, imaging
approach may better capture this heterogeneity as a whole
rather than a needle biopsy of a single tumor component. This
study investigated a machine learning-based model for auto-
matically predicting MMR directly from MR images.

In comparison with routine strategies using imaging
methods, radiomics substantially improves disease diagno-
sis, tumor grading, and prognostic evaluation, providing a
comprehensive guidance for treatment planning [16–18]. A
previous study demonstrated that the SVM model showed
good classification performance related to pathological fea-
tures in patients with RC [13]. With continuous technology
progress, the concept of “radiogenomics” has been widely
applied in tumors recently. Via extraction of multiple quan-
titative parameters from imaging findings combined with
genomics data, and performing a deep mining of associa-
tions between both data types, radiogenomics can be used
to retrieve quantitative image information that can reflect
gene expression for deeper understanding of the occurrence
and development of tumors, through noninvasive, conven-
tional imaging methods [27].

Currently, several studies have reported the correlation
between radiomics features and MSI status in colorectal can-
cer based on CT images [28–31]. Meanwhile, only limited
recently published studies have developed MRI-based radio-
mics models for predicting MSI status preoperatively in rec-
tal cancer [32, 33]. Although the latter reports found that
radiomics models show great potential in predicting MSI
status, there is currently no correlation study with external
validation between MMR prediction and multiparametric
MRI-based radiomics in RC.

The most valuable aspect of the present study is the mul-
tiparametric approach that enhances the MRI-based radio-
mics model by mining complementary information
provided by multiparametric MRI and considering the het-
erogeneity of tumors for predicting differential features
involved in MMR status [33]. By extracting radiomics fea-
tures hardly detectable visually from the preoperative MR
scans of the segmented VOIs of whole primary tumors, we
developed four predictive models with T2WI sequence
alone, DWI sequence alone, CE-T1WI sequence alone, and
the combination of these three sequences, respectively. Mod-
elT2WI contained phenotypic features, while ModelDWI and
ModelCE-T1WI contained heterogeneous data describing
microcirculation for the entire rectal tumor. Heat map anal-
ysis revealed a correlation between MMR status and features,
suggesting the chosen multiparametric features had rele-
vance to MMR status preferably.

The combined radiomics model achieved the overall best
performance in predicting MMR status among all models in
both cohorts, showing superiority over single-sequence models.
Good clinical utility was demonstrated by decision curve analy-
sis. CombiningmanyMRI sequences and deepmining of corre-
lations among distinct radiomics features could allow a
comprehensive assessment of tumor heterogeneity, which
might increase predictive efficiency and potentially guide in dis-
tinguishing cases who need individualized treatment.

The second vital aspect of this study is that we had an
actual external validation dataset, adding value to existing
reports. Machine learning models raise high concern for
overfitting. Using an external cohort is very helpful for over-
coming the weakness that the developed model has no expo-
sure to a validation cohort in the training phase in any form.

However, this project is still in its infancy, with many
limitations. First, an important limitation of the current ret-
rospective trial was its relatively small sample size and
unbalanced distribution. This implies selection bias and
low generalizability of the results, although we used an exter-
nal validation cohort and the SMOTE algorithm to reduce
the effect of unbalanced sample distribution. Consequently,
large multicenter studies are warranted for reducing the
effects of selection bias on model accuracy. Secondly, the
imaging segmentation approach was manual rather than
automatic, which may suffer from subjective errors and
could be unsuitable for data processing in case of large sam-
ple size [34, 35]. Thirdly, a study previously developed and
validated deep learning models for the prediction of MSI sta-
tus in RC based on MRI data [36]. In future research, deep
learning model with feature map may show more advantages
over other approaches to visualize heterogeneous distribu-
tion. It provides a possibility that the deep learning can be
used to predict which tumor area is most likely to show
dMMR to guide biopsy.

5. Conclusions

Overall, based on preoperative rectal MRI, the established
multiparametric machine learning model demonstrated
good performance in predicting MMR status in RC patients.
This radiomics approach could better the current strategy
for the pretreatment of patients, with the advantage of being
noninvasive and cost-effective, potentially helping select
patients suitable for individualized therapy.
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