
����������
�������

Citation: Hong, G.-K.; Tew, K.S. The

Advantages of Inorganic Fertilization

for the Mass Production of Copepods

as Food for Fish Larvae in

Aquaculture. Life 2022, 12, 441.

https://doi.org/10.3390/

life12030441

Academic Editors: Mingwei Lu

and Mi Zhao

Received: 24 February 2022

Accepted: 14 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

The Advantages of Inorganic Fertilization for the Mass
Production of Copepods as Food for Fish Larvae in Aquaculture
Guo-Kai Hong 1 and Kwee Siong Tew 1,2,3,4,*

1 Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan;
810663002@gms.ndhu.edu.tw

2 National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan
3 Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
4 International Graduate Program of Marine Science and Technology, National Sun Yat-sen University,

Kaohsiung 80424, Taiwan
* Correspondence: tewks@nmmba.gov.tw

Abstract: Copepods are commonly used as live feed for cultured fish larvae, but the current mass pro-
duction method using organic fertilizers cannot meet the market demand for copepods. We evaluated
the feasibility of applying an inorganic fertilization method, which is currently in use in freshwater
and marine larviculture, to the mass production of copepods. For 30 days, and with five replicates
of each treatment, we made comparative daily measurements of various parameters of (1) copepod
cultures fertilized with commercially available condensed fish solubles (organic fertilization) and
(2) other cultures in which the concentration of inorganic phosphorus was maintained at 100 µg P L−1

and that of inorganic nitrogen at 700 µg N L−1 (inorganic fertilization). With inorganic fertilization,
pH fluctuated over a smaller range and much less filamentous algae grew in the tanks. The mean
production of copepod nauplii over the course of the study was similar between the two treatments,
but the combined density of copepodites and adult copepods was significantly higher with inorganic
fertilization. Compared to commercial zooplankton products, copepods cultured with inorganic
fertilization were smaller, were mixed with fewer (almost none) non-copepod contaminants, were
also pathogen-free, and could be produced at the cheapest cost per unit output. Based on these
results, we conclude that the inorganic fertilization method can profitably be adopted by commercial
copepod producers to meet the demand from fish farmers, especially for small-sized copepods.

Keywords: copepod; fertilization method; aquaculture; Pseudodiaptomus annandalei; feed for larvicul-
ture; pathogens

1. Introduction

Aquatic organisms have become an increasingly important source of food protein for
humans over the last few decades [1]. Per capita food fish consumption doubled from
9.0 kg (live weight equivalent) in 1961 to 20.5 kg in 2018 [1]. Because fish resources in the
wild are quickly being exhausted, aquaculture is seen as the best way to meet growing
demand. Total aquaculture production averaged a mere 14.9 million tons between 1986
and 1995 but reached 82.1 million tons in 2018 [1].

The provision of suitable prey items to fish larvae is a key factor for the success of
aquaculture because undernutrition causes irreversible stunting [2]. Feeding them with
a variety of naturally occurring live food items should enhance their survival rate in
the early stages of development [3]. Artificial feeds have been developed, but for most
fish larvae, live feed is still irreplaceable [4,5]. Various zooplankters, such as rotifers [6],
copepods [7,8], and Artemia nauplii [9], attract the attention of fish larvae because of their
movements [10,11].

Copepods are one of the most common live feeds for fish larvae [7]. They are
widespread in the wild, and various indoor techniques for intensive culture have been
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developed [12,13]. Due to the high cost of indoor intensive culture [14,15], however, feed
copepods are currently mainly sourced from the wild, from extensive culture outdoors, or
as a by-product from aquaculture ponds [16–18]. Extensive culture of copepods outdoors
often relies on traditional fertilization methods whereby different kinds of organic mat-
ter, such as animal manure [19], soybean meal [20], or alfalfa meal [21], are added to the
culture pools to promote the growth of phytoplankton, which is then consumed by the
copepods [19,22]. Such organic material varies in its nutrient content, sometimes resulting
in the accumulation of excess nitrogenous waste when the pools are over-fertilized [23,24],
or in low phytoplankton density when they are under-fertilized. Consequently, the or-
ganic fertilization method has not proven reliable in producing enough copepods to meet
market demand.

An alternative method based on inorganic fertilization was first used in freshwater
aquaculture in the 1990s [25–27]. It has since proved to be a reliable method for rearing
freshwater percid larvae [28,29]. More recently, it has been applied to the larviculture of
marine fish such as groupers and various coral-reef fish larvae, with some success [3,30,31].
In this method, liquid inorganic fertilizers are used to increase the nitrogen (N) and phos-
phorus (P) concentrations in the water. With regular monitoring to maintain constant
nutrient concentrations and N:P ratios, it has proven possible to suppress the growth of
filamentous blue-green algae while instead promoting the growth of small unicellular
algae, which in turn enhanced zooplankton growth [25,28,30,31]. Analyses of the culture
tank water and the stomach contents of newly hatched larval groupers grown under such
an inorganic fertilization regime showed that copepods were the most abundant form of
zooplankton and that they were actively consumed by fish larvae [30].

In the present study, we evaluated the feasibility of using this inorganic fertilization
method for the mass production of copepods, by comparing it to the commonly used
organic fertilization method. The objective was to develop a reliable method for providing
live food to fish larvae and thus promote the large-scale rearing of other species of fish in
aquaculture facilities in the future.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted at the National Museum of Marine Biology and
Aquarium (NMMBA), Taiwan. Ten 1000 L round fiberglass tanks were placed outdoors
and filled with unfiltered natural seawater from the adjacent coastal area. The time of
sunrise and sun3set was about 0550 h and 1745 h, respectively. The light intensity at noon
was about 2800 µmol m−2s−1. Five tanks (N = 5) were supplied daily with NH4NO3 and
H3PO4 (Sigma-Aldrich, St. Louis, Missouri, USA) sufficient to maintain the following
concentrations of inorganic nutrients: N, 700 µg L−1; P, 100 µg L−1. Commercially available
condensed fish solubles (SINON Corporation, Taichung, Taiwan) were added daily as
organic fertilizer to the other five tanks (N = 5) in quantities of 60, 30, 30, 30, and 30 mL per
1000 L over five successive days at the start of the experiment (a common procedure in local
copepod production farms), but not thereafter. Adult calanoid copepods (Pseudodiaptomus
annandalei, the dominant species in the local coastal area), were added to each tank at a
density of 1 ind L−1 on Day 3. The experiment continued for 30 days.

2.2. Physicochemical Analyses

During the experiment, the temperature, salinity, dissolved oxygen (DO), and pH
were monitored daily using a water quality instrument (YSI Professional Plus handheld
multiparameter meter, YSI, Yellow Springs, OH, USA).

The nitrogen (NH3-N, NO2-N, and NO3-N) and phosphorus (PO4-P) concentrations
were determined daily using HACH water analysis products (HACH, Loveland, CO, USA),
including the NH3 kit (salicylate method 8155), NO2 kit (diazotization method 8507, with
NO3 being reduced to NO2 beforehand [32]), and PO4 kit (ascorbic acid method 8048).
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Measurements were done using a spectrophotometer (Synergy H4 Hybrid Reader, BioTek
Instruments, Winooski, VT, USA).

2.3. Biological Analyses

Water samples (200 mL) were collected daily from each tank and filtered through
0.45 µm membrane filters (Advantec, Tokyo, Japan) to obtain the phytoplankton. Each
membrane was then extracted with 10 mL 90% acetone [33] and the chl a concentration
was measured with a spectrophotometer (Hitachi U-5100, Hitachi, Tokyo, Japan).

Copepods as well as other zooplankton were collected daily by filtering 1 L of water
from each tank through a 25 µm mesh plankton net. Zooplankters were categorized into
two size groups (50–100 µm and > 100 µm), whereas copepods were classified into nauplii
and adults (the latter including copepodites), and the respective densities were enumerated
under a compound microscope.

After counting the copepods, each sample was placed in an oven at 70 ◦C for three
days to obtain the total copepod dry weight (adults + nauplii), which was measured
using a 6-digit digital analytical microbalance (XP2U Ultra Micro Balance, Mettler-Toledo,
Columbus, OH, USA). Commercially available frozen zooplankton bricks were purchased
from four local fish farms (3 bricks per farm, total N = 12) to compare their zooplankton
composition with our cultured samples, based on 500 individuals from each brick or each
culture tank, and to compare their size distributions (total body length was measured),
based on 50 randomly selected individuals from each sample, as well as the cost per unit
dry weight (accumulation of total money spent on fertilizer/total dry weight).

On day 30, after we had collected all the zooplankton and drained the tanks, we also
collected the filamentous yellow-green algae growing on the walls of the tanks, measured
its wet weight, and after oven drying at 70 ◦C for three days, also measured its dry weight.

2.4. Statistical Analysis

The effects of different fertilization methods on physicochemical parameters, chl a
concentration, total zooplankton density, copepod density, and total dry weight were
analyzed with one-way repeated measures analysis of variance (RM-ANOVA) by treating
sampling date as a repeated factor. The zooplankton sizes and cost per unit dry weight
among different treatments and commercial products were analyzed with one-way ANOVA.
Wet and dry weights of the filamentous algae produced as a by-product of inorganic and
organic fertilization were compared using a t-test. All data were ln-transformed when
necessary to meet the assumptions of normality and homogeneity of variance. Statistical
computations were completed using SigmaPlot 12.5 (SPSS 1997); α = 0.05 was considered
statistically significant.

3. Results

During the experiment, the water temperature in both treatments fluctuated essentially
in tandem between 24 and 32 ◦C (p < 0.05), and the salinity similarly fluctuated in tandem
between 32 and 35 psu (p > 0.05). Daily average pH increased from 8.2 at the start to 8.7–8.8
by Day 8 in both treatments, thereafter continuing to increase with organic fertilization
to 9.0 after 10 days and almost 9.5 after 20 days, while remaining rather steady at 8.5–8.7
under inorganic fertilization until a slight rise at the end. Overall, the mean pH under
inorganic fertilization was 8.56 ± 0.15, significantly lower than the mean of 8.91 ± 0.42
observed under organic fertilization (p < 0.05). DO measurements were similar overall
between the two treatments (p > 0.05) (Figure 1).
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Figure 1. Daily records (mean ± SD) of (A) temperature, (B) salinity, (C) pH, and (D) dissolved
oxygen in the inorganic (N = 5) and organic (N = 5) fertilization tanks during the 30-day experimental
period. The p-value in each panel indicates the significance level (*, α = 0.05) of the treatment effect
based on repeated measures ANOVA.

The initial nutrient concentration was very low in both treatments (Figure 2). After
fertilization had begun, the mean concentration of NH3-N in the inorganic treatment tanks
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rose overnight to 105 ± 4 µg L−1, then to 152 ± 6 µg L−1 on Day 2, but after just one more
day at 84 ± 19 µg L−1, dropped to less than 50 µg L−1 (usually not exceeding 20 µg L−1)
for the remainder of the experiment. In the organic treatment tanks, on the other hand,
NH3-N rose to 358 ± 24 µg L−1 overnight and remained higher than 100 µg L−1 through
Day 12, after which it never again exceeded 10 µg L−1 (Figure 2A).
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Figure 2. Daily records (mean ± SD) of (A) ammonium-nitrogen (NH3-N), (B) nitrite-nitrogen
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The NO2-N concentration was initially low in the organic treatment tanks but gradu-
ally increased to more than 70 µg L−1 (Figure 2B) by the end of the study. The NO3-N con-
centration was maintained at a mean of 450 ± 102 µg L−1 in the inorganic treatment tanks
during the course of the experiment, significantly higher than with the organic treatment
(10 ± 13 µg L−1) (Figure 2C). The mean PO4-P concentration throughout the experiment
was significantly (about 15 times) lower with the inorganic treatment (74 ± 18 µg L−1) than
the organic treatment (1009 ± 179 µg L−1) (Figure 2D).

Phytoplankton started to bloom in the tanks three days after the first fertilization in
both treatments (Figure 3A). The chl a concentration peaked in the organic treatment tanks
on Day 9 (102 ± 41 µg L−1), then declined gradually to less than 10 µg L−1 after Day 17.
In the inorganic treatment tanks, the chl a concentration attained 29 ± 7 µg L−1 on Day 3
and remained higher than 10 µg L−1 for the remainder of the experiment (Figure 3A). The
mean wet and dry weights of the filamentous algae (Tribonema sp.) collected from all the
tanks on Day 30 were 2464 ± 164 and 184 ± 12 g tank−1, respectively, for the organic
fertilization treatment, but only 1.4 ± 0.2 and 0.10 ± 0.02 g tank−1, respectively, for the
inorganic fertilization treatment.

Zooplankton abundance (excluding copepods) in the 50–100 µm size range was signif-
icantly higher with organic fertilization, especially between Days 6 and 11 (Figure 3B). This
size class consisted primarily (>90%) of ciliates, i.e., Euplotes spp. As for the > 100 µm size
range, tintinnid ciliates and Strombidium spp. thrived under inorganic fertilization during
Days 5–9 (Figure 3C).

In both the organic and inorganic treatment tanks, copepod nauplii started to appear
on Day 6, peaked on Day 21, and declined thereafter (Figure 4A). Under both treatments,
the combined copepodites and adults peaked 5 days after the nauplii, and while the
combined density of copepodites and adults in the organic treatment tanks then declined,
their density remained significantly higher in the inorganic treatment tanks (Figure 4B).
Copepod dry weight, including nauplii, showed a similar pattern to copepodite/adult
density (Figure 4C).

The zooplankton in the organic and inorganic treatment tanks was composed almost
entirely of calanoid copepods, whereas the commercial products were mixtures of cy-
clopoid copepods, calanoids, cladocerans, and ostracods (Figure 5A). The zooplankton size
distributions in both the inorganic and organic treatment tanks were similar to each other
on Day 21, but significantly smaller than in all four of the commercial products (Figure 5B),
which were similar among themselves. The cost per dry weight of zooplankton from the
inorganic treatment tanks was the lowest among all samples, being significantly cheaper to
produce than zooplankton from the organic treatment tanks (the second most expensive)
and less than the cost of two of the commercial products (Figure 5C).
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Figure 3. Daily records (mean ± SD) of (A) phytoplankton chlorophyll a concentration and (B,C)
zooplankton abundance in the inorganic (N = 5) and organic (N = 5) fertilization tanks during the
30-day experimental period. The p-value in each panel indicates the significance level (*, α = 0.05) of
the treatment effect based on repeated measures ANOVA.
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Figure 4. Daily records (mean ± SD) of abundance (density) of (A) copepod nauplii and (B) cope-
podites/adults and (C) copepod dry weight in the inorganic (N = 5) and organic (N = 5) fertilization
tanks during the 30-day experimental period. The p-value on each panel indicates the significance
level (*, α = 0.05) of the treatment effect based on repeated measures ANOVA.
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Figure 5. Comparison of (A) composition (N = 500 each), (B) size distribution (N = 50 each), and
(C) cost per dry weight among zooplankton samples from the experimental inorganic (N = 5) and
organic (N = 5) fertilization tanks and four commercial products (N = 3 each). Bars in a panel that
share the same lower-case letters indicate no statistical difference among sources (p > 0.05).

4. Discussion

Providing larval fish with a suitable selection and quantity of live feed is essential to the
survival of marine and freshwater fish in aquaculture [34,35]. Various zooplankters, such
as rotifers [6], copepods [7,8], and Artemia nauplii [9], are commonly used in larviculture.
Some other larger zooplankton such as mysids, amphipods, and ostracods are sometimes
very abundant in the natural environment and are thus eaten by fish larvae. Artificial feeds
have been developed but are less successful than live food for culturing most species of
fish larvae [4,5].
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Among the different types of live feed currently available for larval fish aquaculture,
copepods have been shown to be excellent for the larvae of many fish species [35–38].
Nonetheless, no standard procedure has yet been adopted in the aquaculture industry for
the mass production of copepods. Commercially available copepods, at least in Taiwan,
are mostly produced by extensive culture outdoors or as a by-product in aquaculture
ponds [16–18]. Our results show that the density, as well as the composition and size
distribution of such commercial copepod products vary from pond to pond and from time
to time, as well as among different farms.

In this study, we used inorganic fertilizer to grow copepods and we compared the
results to those obtained using condensed fish solubles, a more commonly applied organic
fertilizer. During the 30 days of the study, fluctuations in dissolved oxygen concentration
were similar between the inorganic and organic treatments, whereas pH was significantly
higher in the latter. The highest recorded pH value of about 9.5, which persisted in the
organic treatment tanks during the last week of the study, could represent a danger to
copepods, some species of which produce no eggs at pH 9.5 [39]. In some other copepod
species, the mortality of nauplii gradually increases with an increase in pH from 9.0 to
9.5 [39]. A pH of 9.5 also significantly reduced the protozooplankton biomass and diversity,
and thus the potential food supply for copepod larvae in a natural marine planktonic
community [40]. Failure of many nauplii to grow into copepodites and adult copepods in
the organic treatment tanks might be attributed to high pH.

Nutrient concentrations, especially of NH3-N and PO4-P, increased dramatically after
fertilization with concentrated fish solubles. Previous work has shown that the hatching
success of eggs of the calanoid copepod Acartia clausi decreased by 50% after a 9-day
exposure to 98 µg L−1 NH3-N [41], while the LC50 of NH3-N was 1035 µg L−1 (48 h) for
larvae of A. tonsa, and 800 µg L−1 (48 h) and 634 µg L−1 (72 h) for adults of that species [42].
Excess phosphate has been reported to enhance the growth of the benthic filamentous algae
Tribonema spp. [43,44], and a very low N:P ratio reportedly favors the growth of filamentous
algae in freshwater aquaculture ponds [25,26,28]. In the present study, in which the PO4-P
concentration remained 10 times higher under organic fertilization than under inorganic
fertilization through the entire course of the experiment and N was very low after Day
12, the tanks into which organic fertilizer was applied (but not the others) indeed became
overgrown with such algae. Overgrowth of filamentous algae may have also suppressed
the growth of phytoplankton in those tanks, thereby possibly contributing to the relative
failure of development of nauplii to adult copepods under organic fertilization by reducing
the copepods’ supply of food. The precisely adjusted nutrient concentrations and N:P ratio
afforded by the inorganic fertilization method probably inhibited the filamentous algae
and encouraged the growth of unicellular algae in those tanks [3,30,31], thereby providing
better conditions for the growth of copepod nauplii.

Phytoplankton serves as an intermediary between nutrients and copepods in terms
of energy transfer. A continuous supply of the right amount and ratio of nutrients will
sustain a stable density of phytoplankton, which then supports the growth of copepods.
We thought it odd, therefore, that with inorganic fertilization, the densities in culture of
both the phytoplankton and the copepodite/adult copepods rose a second time near the
end of the experiment while the density of nauplii continued to decline. At that time,
large numbers of Nitzschia sp. growing in clusters were present in the inorganic treatment
tanks. The exudates of this diatom consist of high-molecular-weight carbohydrates [45]
that can inhibit grazing by predators. Furthermore, excessive consumption of diatoms has
a negative effect on the reproduction of zooplankton [46,47]. In the present case, the nauplii
that were already present continued to grow into adults, but recruitment of new offspring
was impaired [46]. Occasional inoculation of other types of phytoplankton during the
culturing period might forestall or prevent such inhibition of copepod recruitment. An
experiment to test this idea should be carried out in the future.

After the addition of fertilizer, many non-copepod zooplankters such as ciliates grew
in both sets of experimental tanks, with Strombidium spp. (~100–120 µm) in the inorganic
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fertilizer series and Euplotes spp. (~50–100 µm) in the organic fertilizer series. These con-
taminant zooplankton must be monitored because they may compete with copepods for
phytoplankton [48,49]. Since ciliate community composition is correlated with aquatic
habitat conditions, and particular species thrive only in an environment that is favorable
for them [50], similar ciliates will likely dominate the culture-tank population whenever a
similar fertilization method is used for growing the copepods. Strombidium spp. have the
potential to become biological control agents in aquaculture because they actively remove
bacterial pathogens [51]. In fact, when we checked for disease organisms and pathogens in
the final products from our experimental treatments and compared them to commercial
zooplankton products, we found only in the latter a microsporidian parasite, Enterocyto-
zoon hepatopenaei (EHP) [52], and the bacterium Vibrio parahaemolyticus that causes Acute
Hepatopancreatic Necrosis Disease (AHPND) in cultured shrimp [53] in the commercial
products but not in our samples (data not shown). The fact that our experimental tanks
were pathogen-free, in contrast to the commercial products, suggests that there may be a
benefit to the presence of at least certain ciliates, especially Strombidium spp., that develop
along with copepods as a result of employing the inorganic fertilization method.

In summary, after 15 days of cultivation, the composition of the zooplankton cultures
resulting from our two different fertilization methods were uniformly almost 100% calanoid
nauplii and small calanoid copepodites and adults, whereas the commercial products
were mixtures of larger crustaceans such as adult cyclopoids, calanoids, cladocerans, and
ostracods. The production cost of using inorganic fertilization was the lowest among
all options, with little development of filamentous algae in the tanks and no bacterial
pathogens. Inorganic fertilization may, therefore, be more than an effective method for fish
larviculture, but also potentially very useful for the mass production of live feed such as
copepods for fish larvae.
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