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Abstract
1.	 Estimating the impacts of anthropogenic disturbances requires an understand-
ing of the habitat-use patterns of individuals within a population. This is es-
pecially the case when disturbances are localized within a population's spatial 
range, as variation in habitat use within a population can drastically alter the 
distribution of impacts.

2.	 Here, we illustrate the potential for multilevel binomial models to generate 
spatial networks from capture–recapture data, a common data source used in 
wildlife studies to monitor population dynamics and habitat use. These spatial 
networks capture which regions of a population's spatial distribution share simi-
lar/dissimilar individual usage patterns, and can be especially useful for detect-
ing structured habitat use within the population's spatial range.

3.	 Using simulations and 18 years of capture–recapture data from St. Lawrence 
Estuary (SLE) beluga, we show that this approach can successfully estimate the 
magnitude of similarities/dissimilarities in individual usage patterns across sec-
tors, and identify sectors that share similar individual usage patterns that differ 
from other sectors, that is, structured habitat use. In the case of SLE beluga, 
this method identified multiple clusters of individuals, each preferentially using 
restricted areas within their summer range of the SLE.

4.	 Multilevel binomial models can be effective at estimating spatial structure in 
habitat use within wildlife populations sampled by capture–recapture of individ-
uals, and can be especially useful when sampling effort is not evenly distributed. 
Our finding of a structured habitat use within the SLE beluga summer range 
has direct implications for estimating individual exposures to localized stressors, 
such as underwater noise from shipping or other activities.
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1  |  INTRODUC TION

An understanding of the spatial and temporal distribution of a spe-
cies of concern is of central importance to conservation and manage-
ment (Evans & Hammond, 2004). The existence of spatial structuring 
within populations can have important ecological and management 
implications. If a population as a whole can be considered as highly 
mixed, that is, with individuals showing no strong patterns of home 
range use or substructuring within the wider population, then all in-
dividuals are equally likely to feel the impacts of local changes in the 
environment. In contrast, if the population cannot be considered to 
be highly mixed, and shows strong substructuring and site fidelity 
patterns, local stressors might have a disproportionate impact on 
segments of the population. For example, if noise pollution increased 
in only one sector, in a highly mixed population all individuals would 
be lightly impacted, but in a spatially structured population a subset 
of the population would be highly impacted. These differences in 
spatial structuring of populations can lead to biased estimation of 
the likelihood and magnitude of impacts from local stressors both at 
the individual and population levels (DeFur et al., 2007).

Capture–recapture methods are commonly used to monitor in-
dividuals within populations, providing information on vital rates, 
demography, and insights into within-population social mixing and 
habitat use (e.g., Koivuniemi et al., 2016). Photo identification is a 
long-recognized method to “capture” individuals with distinct mark-
ings (hereafter photo-ID data) (Urian et al., 2015), and digital photog-
raphy along with high-resolution video and machine learning models 
to identify individuals has led to large capture–recapture datasets 
(Schneider et al., 2019). Novel statistical and computational meth-
ods applied to these capture–recapture datasets have enhanced the 
potential for quantifying within-population structures through the 
use of social network analysis (Perryman et al., 2019; Schilds et al., 
2019; Silk et al., 2021).

It is often the case, however, that efforts when collecting 
capture–recapture data are not evenly distributed. This is especially 
the case when the population under study occupies a large spatial 
extent, and where capture methods are not static as in the case with 
fixed camera traps. This variation in sampling effort can heavily bias 
estimates of social and spatial networks (Farine & Whitehead, 2015; 
Hupman et al., 2018; Whitehead, 2008). Datastream permutations 
have been used to assess potential biases in network estimates from 
capture–recapture data when estimating networks directly from 
counts of individuals seen together or in the same regions (Farine, 
2017; Silk et al., 2021). Alternatively, state-space models have been 
applied to capture–recapture data to include potential sampling 
biases in estimated networks when based on counts of individuals 
seen together (Gimenez et al., 2019). Both of these approaches build 
networks where individuals are the nodes, and the edges represent 

links between individuals. Here, we propose a multilevel binomial 
model approach that uses capture–recapture data to estimate spa-
tial networks, that is, where the nodes are spatial regions and the 
edges between nodes represent the magnitude of similarity in the 
individual using those regions. By taking this approach, it then be-
comes possible to quantify spatial structure in habitat use within a 
population's spatial distribution.

The multilevel binomial modeling approach that we propose 
to use here does not have a large body of literature to draw on for 
use with capture–recapture data, but presents unique advantages 
(Koster & McElreath, 2017). If sampling efforts varies by region 
within a population's spatial distribution, sighting probability of indi-
viduals could be greatly inflated or deflated. The use of a multilevel 
structure, however, allows for sighting probabilities to be nested per 
region and expressed in relative terms, that is, as deviations from the 
mean probability of sighting. This allows the approach to identify 
the relative magnitude of use of a particular region for each individ-
ual. This generates a particular usage profile for each region, that is, 
which individual highly/lowly use that region (“high users” and “low 
users” hereafter). It is then possible to quantify how correlated the 
usage profiles between regions are, providing information about 
which regions share similar/dissimilar usage profiles. This approach 
essentially quantifies the extent to which regions share the same in-
dividuals while correcting for differences in sampling effort over the 
course of the study. We suggest that this approach can successfully 
generate effort-corrected spatial networks within populations, and 
can help identify differential patterns in habitat use among individ-
uals and regions.

To evaluate the performance of multilevel binomial models at 
identifying spatial structuring within animal populations, we first 
tested the approach with simulated datasets with and without pop-
ulation spatial structuring. We then applied the method to observed 
data, using a long-term (18 years) photo-ID dataset of beluga from 
the St. Lawrence Estuary (SLE), Canada, and quantified spatial struc-
turing within the population's summer range in the SLE. Finally, we 
discuss how these estimates of population spatial structuring pro-
vide important information for understanding current local stressors 
and their potential impacts on this endangered and declining popu-
lation (Lesage, 2021).

2  |  MATERIAL AND METHODS

2.1  |  Study population

The SLE beluga population resides in the lower St. Lawrence during 
the winter and moves into the upper St. Lawrence in the summer. 
As this population is endangered and occupies a busy marine traffic 
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area in the summer, there has been considerable effort to under-
stand their distribution and habitat use among other things. In par-
ticular, a lot of work has been done to identify hot spots of use and 
how habitat use varies by age and sex to better mitigate threats to 
this population (Gosselin et al., 2017; Lefebvre et al., 2012; Lemieux 
Lefebvre et al., 2018; Michaud, 2005; Ouellet et al., 2021). These 
studies focused largely on population-level patterns, such as identi-
fying which areas are used the most. In this study, we use individual-
level data to better understand whether these areas of high use form 
as a result of nonmobile individuals or of multiple clusters of mobile 
individuals.

2.2  |  Data

Individual photo-identification boat surveys were conducted from 
June to October between 1989 and 2007 as part of an ongoing 
long-term study on beluga social organization. The choice of sur-
vey area on a given day was selected in a way to avoid resampling 
areas covered the previous days, and also according to weather 
conditions. This resulted in approximately 1–4  sectors and 
2–5 herds observed on each survey, with only 2% of the individu-
als captured in two different herds on the same day. When beluga 
were encountered, the GPS position of the research vessel was 
noted, and a herd follow was undertaken to photograph as many 
individuals as possible within the herd using a handheld camera. 
A herd follow was limited to 3 h, with GPS location noted at least 
every 30 min. A detailed description of the photo-ID survey pro-
tocol is available in Michaud (2014). Surveys were neither system-
atic nor random in design, but covered various sectors of a large 
portion of the population's summer distribution and a broad range 
of habitats. Sampling effort was unevenly distributed across the 
summer range divided into three sectors (or stratum), each sub-
divided into four equal size zones (Figure 1). These sectors were 
delineated with the marine and middle estuary limits and islands 
dividing the estuary into south and north channels with respect to 
prior knowledge of beluga age–sex segregation at the start of the 
data collection (i.e., 1989).

Each photograph was treated using standard protocols for image 
selection, scoring, and matching (Urian et al., 2015). Each uniquely 
identified individual was attributed a resightability index ranging 
from 1 to 3 based on the degree of distinctiveness of markings. This 
resulted in a photo-identification collection of 821 unique individu-
als that were recaptured on average 9 times over the study period 
(range 1–90), and which were each associated with a GPS position 
and sector of initial encounter with the beluga herd. Genetically 
determined sexes were available for only 29% of the individuals 
included to the catalog. From individuals with known sex, females 
had an estimated mean of 12 photo-IDs and males 17 photo-IDs, 
suggesting some bias in terms of capturability (Table S1). Given, age 
classes were not available for most individuals, and the low percent-
age of individuals with known sex, the remaining analysis focused on 
the population as a whole.

2.3  |  Multilevel binomial model

The probability of seeing an individual in each delineated sector of 
the SLE was estimated using a series of binomial models with cor-
related random effects. In these models, the dependent variable 
was the number of times an individual was captured photographi-
cally (i.e., photo identified) in a sector. The multilevel structure of 
the models allowed for the estimation of both the mean probability 
of photo identifying an individual in each sector and the individual-
level differences in this probability by using individual ID as a ran-
dom intercept. Furthermore, by allowing for correlation between 
the individual differences of the sectors it is possible to estimate 
the similarities in users between the sectors (e.g., if two sectors are 
highly correlated, this suggests that the individuals in each have the 
same usage profiles – i.e., individual differences in being seen). If we 
take, as an example, a case where the study area comprises only two 
sectors, then the probability of finding individual i in a sector can be 
modeled using a series of multilevel binomial models as:

where p1,i is the probability of seeing beluga i  in sector 1, p2,i is the 
probability of seeing beluga i  in sector 2, �1 and �2 are the inter-
cepts, that is, the mean probability of seeing a beluga in sectors 1 
and 2, and �1i and �2i are the estimated individual differences (i.e., 
random intercepts) from the mean probability of capture in sectors 
1 and 2, respectively. The mean probabilities �1 and �2 represent 
preference/avoidance of the specified sector, while �1i and �2i are 
the sector-specific individual deviations from the mean probability 
of capture. As a result, it is possible to model the covariance of the 
individual differences between two sectors using a multivariate nor-
mal distribution (Koster & McElreath, 2017):

This multivariate normal distribution has a mean of 0 and a cova-
riance matrix Ωv. Here, the diagonal entries in the covariance matrix 
(�1,1 and �2,2) represent the magnitude of individual differences within 
a sector. This magnitude of individual differences identifies whether 
there are individual differences in the probability of being seen in a 
sector (i.e., high values of �1,1 and �2,2), or whether all individuals are 
equally likely to be seen (i.e., low values of �1,1 and �2,2). The off-
diagonal entries (�2,1 and �1,2) are the covariance estimates between 
sectors, that is, identifying sectors that share similar user profiles. By 
converting covariance of individual differences between sectors and 
correlations, this multilevel modeling approach quantifies how much 

logit
(
p1,i

)
=�1+ �1i

logit
(
p2,i

)
=�2+ �2i

⎡
⎢⎢⎣
�1i

�2i

⎤
⎥⎥⎦

∼ MultiNormal(0, Ωv )

Ωv =

⎡
⎢⎢⎣
�1,1�1,2

�2,1�2,2

⎤
⎥⎥⎦



4 of 10  |     BONNELL et al.

information individual differences in the probability of being seen in 
one sector can provide about another sector. Positive correlations sug-
gest that the high/low users in one sector are similarly high/low users 
in another sector, while negative correlations suggest high/low users in 
one sector are the low/high users in another sector.

This model can be fit with a Bayesian approach using brms 
(Bürkner, 2018) with a multilevel syntax: for example, bf(sector 1|tri-
als(n) ~ 1 + (1|q|ID)) + bf(sector 2|trials(n) ~ 1 + (1|q|ID)) + binomial(). 
Here, sector 1 indicates how many times each individual was seen in 
sector 1. While n is the total number of times an individual was cap-
tured photographically, and allows for the estimation of the proba-
bility of being seen when individuals have not all been captured the 
same number of times. Finally, q represents an arbitrary character 
choice that allows correlations between the estimates of random in-
tercepts for each sector (Bürkner, 2018).

2.3.1  |  Dealing with biases in 
capture–recapture datasets

This multilevel modeling approach accounted for repeated sampling 
of individuals, and provided an estimate of whether some individuals 
were seen more or less often than the mean probability of capture 
in each sector (i.e., �1i and �2i). Unlike the mean probabilities �1 and 
�2 that represent preference/avoidance of a specified sector, these 
estimates of individual differences from the mean probability of cap-
ture were not impacted by differential sampling among sectors. This 
was not the case for estimates of the mean probability of capture for 
each sector (i.e., �1 and �2), which were expected to increase in highly 
sampled sectors. For example, the oversampling of the Saguenay 
River compared to other sectors (SAG in Figure 1) increased the 
mean probability of capturing individuals in that sector. However, 

F I G U R E  1 Spatial distribution of each 
of the 7525 photo identifications (red 
dots) with the 821 uniquely identified 
beluga from the St. Lawrence Estuary, 
Canada (red square in the inset map) 
over our study period (1989–2007). The 
14 sectors are outlined and labeled in 
white, and cover the summer range of the 
population
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oversampling of this sector was unlikely to affect the relative prob-
ability of being captured among individuals given that all individuals’ 
chances of being captured were likely to go up or down equally.

Similarly, potential biases due to ease of recognition, for example, 
some individuals or age classes might bear more distinctive mark-
ings than others, are minimized using a multilevel binomial approach 
as it focuses mainly on differences in the probability of being seen 
between sectors. For example, if juveniles are 5 times less likely to 
be successfully photo identified than adults, then they might be less 
often represented in the photo-ID database compared to other age 
classes. However, the difference in distribution of these fewer photo-
identified juveniles across sectors is unlikely to be impacted. For in-
stance, if we successfully photo identified all adults 15 times and all 
juveniles 3 times, and if both spent twice as much of their time in 
the Saguenay River compared to all other sectors, then the photo-ID 
distribution (seen in vs. outside of the Saguenay River) for adults 
and juveniles would be expected to be 10:5 and 2:1, respectively. 
In this example, the capturability varies by age class, but in both age 
classes the probability of being captured in the Saguenay River would 
be twice that of the remaining sector. The adaptive partial pooling 
properties of multilevel models, however, leads individuals with few 
photo-IDs, and thus which contain less information, to be less likely 
to show measurable deviations from the mean probability of being 

captured. This means that if an age or sex class has very little chance 
of being identified by photo-ID (e.g., newborn calves or very young 
individuals), then they are likely to contribute less to the estimated 
spatial structures estimated by the multilevel binomial approach.

By using a multilevel modeling approach, we also reduced the 
chance of false positives when making comparisons between many 
different individuals in many different sectors (i.e., problem of mul-
tiple comparisons). For example, if we were to estimate the differ-
ences in the probability of being seen in each sector separately for 
each individual, the risk of false positives, that is, detecting differ-
ences where there is none, would be increased. Instead, if a mul-
tilevel approach is used to estimate the differences in probability 
of being seen it is possible to make effective use of partial pooling 
to reduce extreme values, especially in cases where the number of 
recaptures is not equal between individuals. Finally, by running this 
analysis in a Bayesian framework, we were able to place priors on 
the individual differences within sectors. In our case, the model was 
initiated assuming that there were no differences between individ-
uals in their use of each sector, that is, student_t(3,0,1), and as a 
result no similarity in usage profiles between sectors. These prior 
choices are particularly useful in sectors with low sampling effort 
as a form of regularization to avoid overstating conclusions where 
data are sparse.

F I G U R E  2 Similarity and dissimilarity between sectors in the simulated datasets: (a) randomly permuted data, where there is no 
population spatial structure and (b) spatially structured data, where there are four distinct clusters within the population. In (b) the simulated 
clusters are represented by color codes for each of their sectors (Note: CTN is part of the orange and yellow clusters). The green edges (lines) 
between two sectors signify that the sectors share high/low users, while red edges (lines) signify that they have opposite high/low users. The 
lack of an edge signifies that the high/low users of one sector do not provide information about the high/low users of other sectors
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2.4  |  Network analysis

Social networks are often used when visualizing and quantifying so-
cial structures within populations, with individuals often represented 
as nodes and their interactions as edges between these nodes (Croft 
et al., 2008; Farine & Whitehead, 2015). In our case, we used sectors 
as nodes, and the similarities in user profiles between sectors as edges 
(i.e., �1,2 and �2,1). The correlations between sectors estimated from 
the multilevel binomial model can be used to create a network where 
the posterior predictions of each correlation parameter correspond to 
an edge weight in the network. In this way, each edge has a posterior 
distribution of edge weights and can be used to create many networks 
from which a distribution of network metrics can be generated. The 
advantage of having distributions of network measures is that the 
measures can be readily compared, for example, does one sector have 
a higher node strength than another? It is also possible to use the dis-
tribution of edge weights, and a chosen threshold (e.g., 95% credible 
interval), to highlight only the edges where the sign of the correlation 
is known with a particular range of certainty. In this paper, we used 
this latter approach to generate a signed network (i.e., a network with 
positive and negative edges). In other words, we created a network 
where the edges were formed from correlations where the sign was 
relatively certain, that is, the 95% credible interval does not include 
zero and was either all positive or negative. We then used a simple 
signed edge rule to define network communities: where a distinct 
network community was a set of nodes that shared positive edges 
but no negative edges. We also made use of signed blockmodeling, an 
algorithm that can also be used to identify blocks of nodes, and that 
maximized within-block positive edges and minimized within-block 
negative edges (Doreian & Mrvar, 2015). While the signed edge rule 
generally provides relatively intuitive results with simple networks, 
signed blockmodeling is likely to be particularly advantageous when 
dealing with more complex networks. The network communities de-
tected using these two algorithms were then interpreted as spatial 
clusters of individuals and not as biological communities.

2.5  |  Testing the modeling approach

The accuracy of the multilevel binomial modeling approach was as-
sessed by generating test datasets from the observed photo-ID data. 
We ensured that the test datasets contained the same number of 
unique individuals, distribution of sightings (i.e., some individuals were 
seen more than others), and overall number of photo-IDs as the ob-
served dataset. We, however, varied the spatial location of individual 
photo-ID captures in two ways. First, to test if the proposed method 
correctly detected no pattern when none existed, we created a com-
pletely random test dataset by permuting the sector associated with 
each photo-ID in the observed dataset. The expected result was to 
find no correlations between sectors, given that the sectors for each 
photo-ID had been randomly permuted. To then test whether the pro-
posed method could also correctly identify patterns when a known 
pattern existed, we generated a structured test dataset by randomly 

assigning each uniquely identified individual to four equally populated 
spatial clusters with the following and hypothetical home range of 
adjacent sectors: cluster 1 – BSM, SAG, CTN; cluster 2 – CTN, CTO, 
AMN; cluster 3 – AVO, AVS, AVN; and cluster 4 – AME, CTS, CTE. 
Following this, we altered the sector of where the individual photo-
IDs were taken so as to fall within sectors associated with an individ-
ual's clusters, that is, one of their home range sectors. We did this by 
choosing a sector for each photo-ID based on the individual's assigned 
clusters 80% of the time; a random sector was chosen for the other 
20% of the time, introducing noise in the assignment of sectors. We 
then tested whether the model correctly identified the correlations 
between sectors that defined the home range of each clusters.

3  |  RESULTS

3.1  |  Testing the modeling approach

When the multilevel binomial model was fit to the data with sec-
tors randomly permuted between all photo-IDs, the model found as 
expected no evidence for positive/negative correlations between 
sectors (Figure 2a), and when we artificially created spatially distinct 

TA B L E  1 Parameter estimates from the multilevel binomial 
model predicting the probability of capturing an individual by 
sector

Parameter Estimate l−95% CI
u-95% 
CI

sd(mu_CTN) 0.6 0.52 0.69

sd(mu_AVS) 0.92 0.78 1.07

sd(mu_CTE) 1.01 0.89 1.14

sd(mu_AMN) 1.15 0.48 1.87

sd(mu_AVO) 1.17 1.05 1.3

sd(mu_CTS) 1.28 1.05 1.53

sd(mu_SAG) 1.41 1.24 1.58

sd(mu_BSM) 1.45 1.23 1.7

sd(mu_CTO) 1.45 1.13 1.8

sd(mu_AVE) 1.48 1.01 2.04

sd(mu_AVN) 1.6 1.19 2.07

sd(mu_AMS) 2.34 1.63 3.21

sd(mu_AME) 2.55 2.04 3.16

sd(mu_AMO) 2.92 1.4 5.34

Notes: Estimated magnitudes of within-sector individual differences 
in usage (sd; e.g., �1,1) are presented for each sector. Higher estimates 
indicate higher contrast between high users and low users of that 
sector, whereas lower estimates indicate a greater homogeneity in 
usage. To facilitate interpretation, we have ordered the table by lowest 
to highest estimates of individual differences in usage, and provide the 
lower and upper 95% credible intervals for each estimate (e.g., l–95% 
CI, u-95%CI). As the number of parameters in the model is large, the 
overall mean by sector (i.e., �i), and estimated correlations between 
individual differences (e.g., �2,1) are presented in the supplementary 
section (Table S2).
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clusters, the model accurately estimated the correlations between 
sectors that defined these artificial population spatial structures 
(Figure 2b). The simple signed edge rule and blockmodeling algorithm 
applied to the simulated datasets both revealed the four artificially 
generated spatial clusters, though the blockmodeling algorithm had 
difficulty with the multimembership node, as it could not assign a 
node to two blocks (i.e., the CTN node that was shared between 
clusters 1 and 2).

3.2  |  Quantifying individual variation in habitat use 
among sectors from observed data

The model, when applied to the 18  years of observed photo-ID 
data, indicated differences between high and low users in all sec-
tors, though the magnitude of these individual differences varied 
(Table 1). The model also found that these individual differences 
were correlated between sectors (Table S2), indicating a high mag-
nitude of similarity/dissimilarity between sectors in terms of which 
beluga used those sectors heavily or rarely. Taking two sectors as 
examples, for example, the SAG and CTE sectors, the top 10 esti-
mated high users of the SAG (i.e., individuals with a relatively high 
probability of being found there, blue dots in Figure 3a), were low 
users of the CTE sector (blue dots in Figure 3b).

Our model indicated that the CTN sector was relatively uni-
formly used by all individuals (i.e., low “sd” value; Table 1) compared 
to other sectors. In contrast, individual differences in usage were 

the largest in the AME, AMO, AMS sectors, with some very high/
low users of those sectors (Table 1).

3.3  |  Characterizing the population spatial network

Spatial patterns emerged from using the between sector correla-
tions to generate a signed network overlaid on top of the sectors in 
the SLE. Applying the simple signed rule and the blockmodeling al-
gorithm to delineate network communities, both indicate that there 
are three distinct spatial clusters of individuals within the beluga 
summer range: the lower SLE (AVO, AVS, AVE, AVN), the Saguenay 
River and mouth (BSM, SAG, CTN), and the upper Estuary and east-
ern portion of the lower SLE (CTE, CTS, CTO, AME, AMS, AMO, 
AMN) (Figure 4). In the case of AVS, however, the simple signed rule 
suggested multimembership for this sector, while the blockmodeling 
algorithm found AVS to be either: (a) part of the cluster containing 
(AVO, AVN, AVE) or (b) that the two clusters (orange and purple in 
Figure 4) merged into one depending on the choice of weighting pa-
rameter (i.e., emphasizing positive or negative edges).

4  |  DISCUSSION

Here, we have shown that using capture–recapture data it is pos-
sible to estimate spatial networks that can identify spatial struc-
tures within populations while controlling unequal sampling effort. 

F I G U R E  3 Estimate of the relative use of the (a) SAG and (b) CTE sectors by each photo-identified individual (i.e., deviation from mean 
use, �SAGi and �CTEi). The values are deviations (black points) from the mean probability of recapturing individuals within a sector (red dashed 
line) and are on a logit scale. The horizontal gray lines represent the 95% credible interval. The estimated top 10 users of the SAG sector 
are represented by blue dots (panel a), and those same individuals are also highlighted in blue in the CTE sector (panel b), illustrating how 
correlations between sectors were estimated
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Applying this approach to data from beluga in the SLE suggests a 
non-random habitat use within the summer range of this population.

In particular, the use of the multilevel binomial model provided 
information about within-sector usage patterns of individual beluga. 
Our results showed that some sectors were predominantly used 
by a subset of individuals, while other sectors were used more uni-
formly by all individuals in the population. The CTN sector for in-
stance appeared as a potential high mixing zone for the population, 
whereas the AME sector seemed to be used by a specific subset of 
the population. These findings align well with a recent study on hab-
itat connectivity in this population exploiting a different dataset, and 
suggesting that the CTN sector interconnects strongly with other 
sectors (Ouellet et al., 2021).

The use of the multilevel binomial model also provided infor-
mation about the similarity in usage profiles across sectors. Our 
results across sectors add to the evidence that the beluga popula-
tion cannot be assumed to be randomly mixing within its summer 
habitat, suggesting instead the existence of multiple spatial clusters 

of individuals that make use of particular sectors of the SLE and the 
Saguenay River. This result suggests, for example, that individuals 
that are repeatedly seen in the SAG sector are also repeatedly seen 
in the BSM and CTN sectors, but are seen very little in the CTE and 
CTS sectors (Figure 4). It should be noted that the identified clus-
ters should not be seen as hard boundaries. For example, we find 
very little difference between high and low users in the CTN, and 
that this sector clusters with the BSM and SAG sectors. In this case, 
the small differences in usage patterns correlated with differences 
in usage patterns of BSM and SAG. Rather than looking at inclusion 
within a cluster as a hard boundary, a more nuanced view of a node 
inclusion within a cluster can be obtained by looking at the amount 
of individual differences observed within a given sector (i.e., the SD 
measure Table 1), and the strength of the correlation between sec-
tors (i.e., Table S1).

Our results provide strong evidence that over a period of 
18 years, there are regions within the beluga summer range that are 
being used more often by particular subsections of the population. 
This suggests that when estimating the impacts of localized stress-
ors on this population, the assumption that individuals are using the 
Estuary in a similar way will lead to misleading estimates of impact 
levels. Rather, our results suggest that local stressors are likely to 
impact certain portions of the population more than others. This un-
equal distribution of impacts is likely to be particularly exacerbated 
in cases where exposure to stressors is chronic and cumulative. With 
the multilevel modeling approach introduced in this paper, it is possi-
ble to use capture–recapture datasets to identify if, and to what ex-
tent, subsections of the population are using specific areas (Figures 
3 and 4). The results from this approach can then be used to help 
estimate the distribution of impacts within populations as a whole.

A greater understanding of the sex and age segregation in be-
luga and this population in particular would be beneficial as it would 
allow spatial networks of these subsections of the population to be 
estimated, and a better assessment of impacts experienced by these 
subsections of the population. This is crucial given that juveniles and 
adult females tend to show less distinctive markings compared to 
adult males, making captures by photo ID more difficult for these 
age/sex classes and reducing the amount of information they pro-
vide when estimating spatial networks of the population as a whole. 
Similarly, if the goal is to better estimate the impacts of disturbances 
within a particular time span, spatial networks can be estimated over 
shorter time scales (i.e., other than over 18 years used in this study) 
(e.g., Figures S1 and S2), and can account for the potential of shifts in 
population habitat use within years (e.g., Figure S5). Both estimating 
within sub-subsections of the population and over more targeted 
time spans will require continued data collection. In this regard, pho-
togrammetric and machine learning work to identify sex, estimate 
age, and facilitate individual identification is currently underway to 
refine already collected data and facilitate future data collection.

Properly accounting for animal movements and within-
population site fidelity patterns can lead to drastically different 
results about impacts of individual stressors or their cumulative ef-
fects. For instance, predictions from an agent-based model of beluga 

F I G U R E  4 Population spatial structure characterized by 
similarity and dissimilarity in user profiles between sectors in the 
SLE beluga population. The green edges between two sectors 
signify that the sectors share high/low users, while red edges 
signify that they have opposite high/low users. The lack of an 
edge signifies that the high/low users of one sector do not provide 
information about the high/low users of other sectors. Nodes 
represent sectors, and are colored based the cluster they belong 
to: that is, shared green edges and no shared red edges. Node sizes 
represent the magnitudes of individual differences in use within the 
sector, that is, larger nodes suggest specialized use by a subset of 
the population
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and marine traffic in the STE found that if beluga spend more time 
within the Saguenay River Sector they likely experience reduced 
exposure to noise pollution (Chion et al., 2021). This suggests that 
subsets of individuals within the larger population that use this sec-
tor will have reduced noise exposure. This refuge effect, however, is 
predicted to be lost under scenarios where additional marine traffic 
is added to the Saguenay River (Chion et al., 2021).

Finally, when implementing multilevel binomial models on other 
capture–recapture datasets, the use of test datasets should hold a 
prominent role in the analysis. The use of permutation/simulation 
methods to both generate spatially structured and unstructured 
datasets, while maintaining the sample size distribution of the orig-
inal datasets, can be very valuable in helping to set model priors 
and to interpret the final model results. The use of permutation ap-
proaches is common in social network analysis (Croft et al., 2011; 
Farine, 2017), and similarly, the use of simulated datasets is becom-
ing more common in statistical workflows more generally (Gelman 
et al., 2013; McElreath, 2020).

5  |  CONCLUSIONS

We have introduced the use of multilevel binomial models to es-
timate spatial networks from a capture–recapture approach that 
is gaining in applicability, that is, photo-ID data. We have shown, 
using test datasets, that the proposed method is effective at detect-
ing population spatial structures – quantifying the extent to which 
subsections of the population make use of specific regions of the 
populations spatial range. When applied to 18  years of photo-ID 
data from an endangered population of beluga in the SLE, our results 
provide evidence that the population is composed of multiple spatial 
clusters of individuals with distinct habitat-use patterns. We suggest 
that the ability to estimate habitat-use patterns within animal popu-
lations monitored by capture–recapture sampling will contribute to 
better impact assessments with direct implications for conservation 
and management.
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