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Abstract: The present study aims to highlight the therapeutic potential of Asphodeline lutea (AL),
a wild edible plant of the Mediterranean diet. Roots, aerial parts, and flowers of AL at two different
phenological stages were collected from three locations in Italy. The inhibitory activities of extracts on
strategic enzymes linked to human diseases were assessed. The antioxidant properties were evaluated
in vitro, using six standard bioassays. The phenolic and anthraquinone profiles were also established
using HPLC-PDA. Zinc, cadmium, lead, and copper contents were also determined. All the samples
inhibited acetylcholinesterase (from 1.51 to 2.20 mg GALAEs/g extract), tyrosinase (from 7.50 to
25.3 mg KAEs/g extract), and α-amylase (from 0.37 to 0.51 mmol ACAEs/g extract). Aloe-emodin
and physcion were present in all parts, while rhein was not detected. The phenolic profile and the
heavy metals composition of specimens gathered from three different regions of Italy were different.
It can be argued that samples collected near the street can contain higher concentrations of heavy
metals. The experimental data confirm that the A. lutea species could be considered as a potential
source of bioactive metabolites, and its consumption could play a positive and safe role in human
health maintenance.

Keywords: Asphodeline lutea; HPLC-PDA; heavy metals; tyrosinase; diabetes; neurodegenerative disease

1. Introduction

Asphodeline lutea (AL) Reichenb (synonym: Asphodelus luteus L., family Xanthorrhoeaceae),
also known as King’s Spear or Yellow Asphodel, is a perennial landscaping plant native to
South-eastern Europe, North Africa and Turkey, characterized by a single stem with semi hollow leaves
and yellow-orange flowers [1,2]. The stems and leaves are traditionally consumed in the Mediterranean
region as an edible plant due to their nutritional protein quality of [3,4].

The chemotherapeutic value of Bulgarian and Turkish AL root extracts has been evidenced only in
recent years, revealing the presence of different therapeutically useful compounds. The anti-microbial
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and anti-mutagenic activities of methanol root extracts of AL have been reported [5], while the
hepatoprotective and antioxidant capacity of the ethanol root extracts of AL both in vivo and in vitro
has also been evidenced in an animal model of CCl4-injured liver [6]. Moreover, the methanol and
chloroform extracts from AL roots caused a marked inhibition of multidrug resistance in mouse tumour
cells transfected with the human MDR1 gene [7], whereas methanol, acetone and aqueous extracts
of different Asphodeline spp. parts were reported to moderately inhibit elastase, collagenase and
hyaluronidase enzymes at 100 µg/mL [8]. Other studies have reported the use of extracts of A. lutea
among local populations for skin diseases and haemorrhoids [9,10].

The methanol root extracts of AL of Bulgarian origin were found to be rich in caffeic acid,
catechin and epicatechin [11]. Anthraquinones (1,5,8-trihydroxy-3-methylanthraquinone, 1-hydroxy-
8-methoxy-3-methylanthraquinone, chrysophanol, 1,1′,8,8′,10-pentahydroxy-3,3′-dimethyl-10,7′-
bianthracene-9,9′,10′-trione) [12], naphthalenes and naphthoquinones [13] were also previously
isolated from AL. The antioxidant activity of AL chloroform extracts in lard and sunflower oil was
attributed to 2-acetyl-1-hydroxy-8-methoxy-3-methylnaphthalene [14]. However, little is known about
the chemical variability and the potential therapeutic ability of AL of Italian origin.

Based on these considerations, we aimed to evaluate the antioxidant activities, the enzyme
(acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, and α-glucosidase) inhibitory
potential of extracts from different anatomical regions of AL, collected in diverse sites in the Italian
Central Apennines, at different phenological stages, as well as the determination of anthraquinones,
phenolics and heavy metal profiles.

2. Results

After extraction, each sample was fully characterized to establish a comprehensive chemical
fingerprint of total phenolic and flavonoid content (Table 1), specific content of phenolics (Table 2),
and anthraquinones (Table 3) and heavy metals bioaccumulation (Table 4). Then, the AL extracts were
tested in order to assess their pharmacological properties such as antioxidant, metal chelating and
enzyme inhibition.

Table 1. Total phenolic and flavonoid content of different parts of A. lutea collected from three different
locations in Italy.

Location Stage/Parts Total Phenolic Content
(mg GAE/g Extract) *

Total Flavonoid Content
(mg RE/g Extract) *

Perugia

PF-R 12.5 ± 0.2 a 5.4 ± 0.7 a

PF-AP 24.7 ± 0.9 a 19.8 ± 0.3 a

F-R 17.7 ± 0.4 a 4.8 ± 0.1 a

F-AP 27.7 ± 0.6 b 22.1 ± 0.2 b

F-Fl 19.4 ± 0.6 b 11.4 ± 0.1 b

Novele

PF-R 12.4 ± 0.7 a 3.7 ± 0.2 b

PF-AP 23.8 ± 0.3 a 14.8 ± 0.5 b

F-R 12.7 ± 0.2 b 4.6 ± 0.1 a

F-AP 23.9 ± 0.3 c 17.3 ± 0.1 c

F-Fl 17.5 ± 0.7 c 11.0 ± 0.4 b

Pescosansonesco

PF-R 9.8 ± 0.2 b 2.9 ± 0.2 c

PF-AP 24.0 ± 0.8 a 19.3 ± 0.2 a

F-R 10.7 ± 0.4 c 3.2 ± 0.1 b

F-AP 38.2 ± 0.8 a 28.0 ± 0.3 a

F-Fl 24.7 ± 0.5 a 13.5 ± 0.3 a

* Values expressed are means ± S.D. of three simultaneous measurements. GAEs, gallic acid equivalents; REs, rutin
equivalents. PF: preflowering plant, F: flowering plant, R: roots, AP: aerial parts, Fl: flowers. Data marked with
different letters within the same column indicate statistically significant differences in the same stages/parts for
each location (p < 0.05).
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Table 2. Phenolic profile of different parts of A. lutea collected from three different locations in Italy *.

Phenolic Components Perugia Novele Pescosansonesco

PF-R PF-AP F-R F-AP F-Fl PF-R PF-AP F-R F-AP F-Fl PF-R PF-AP F-R F-AP F-Fl

Gallic acid nd nd 0.9 ± 0.1 nd 0.52 ± 0.05 nd nd 1.1 ± 0.1 0.31 ± 0.05 1.1 ± 0.8 1.96 ± 0.04 nd 1.09 ± 0.02 1.1 ± 0.6 nd

Catechin nd 0.84 ± 0.03 0.54 ± 0.05 nd nd 0.57 ± 0.04 nd nd nd nd 1.8 ± 0.1 1.1 ± 0.03 0.51 ± 0.01 nd nd

p-OH benzoic acid nd nd nd nd nd nd nd nd 0.43 ± 0.07 nd 0.42 ± 0.05 nd nd nd 0.41 ± 0.02

Epicatechin nd nd 0.35 ± 0.03 nd nd nd nd nd nd nd nd nd nd nd nd

3-OH benzoic acid 0.36 ± 0.04 nd 0.40 ± 0.05 nd nd nd nd nd nd nd nd 1.9 ± 0.5 nd nd nd

p-Coumaric acid nd nd nd nd nd 2.2 ± 0.2 nd 0.32 ± 0.05 nd nd 0.24 ± 0.03 0.46 ± 0.03 nd nd 0.42 ± 0.02

Rutin nd 1.6 ± 0.9 nd 1.1 ± 0.1 9.0 ± 0.1 3.0 ± 0.3 0.28 ± 0.02 0.67 ± 0.08 nd 5.6 ± 0.4 10.0 ± 0.9 8.9 ± 0.7 0.31 ± 0.07 nd 0.9 ± 0.1

Naringin nd nd nd nd nd nd nd nd nd 0.24 ± 0.03 nd 1.5 ± 0.2 0.28 ± 0.02 nd nd

2,3-diMeOBA nd nd 0.33 ± 0.09 nd nd nd nd nd 0.37 ± 0.02 nd nd 53.0 ± 5.0 nd nd nd

Benzoic acid nd 1.2 ± 0.6 nd 0.50 ± 0.05 2.4 ± 0.2 0.56 ± 0.04 nd 0.26 ± 0.09 0.35 ± 0.01 nd 0.33 ± 0.02 18.0 ± 3.0 nd 0.4 ± 0.1 0.87 ± 0.09

Quercetin 0.31 ± 0.07 2.3 ± 0.3 nd 0.52 ± 0.05 2.3 ± 0.24 2.6 ± 0.2 0.31 ± 0.05 nd 2.7 ± 0.4 3.0 ± 1.0 12.0 ± 1.0 0.7 ± 0.1 0.63 ± 0.04 0.3 ± 0.8 5.0 ± 1.0

Naringenin nd nd nd nd 0.63 ± 0.03 nd nd nd nd nd nd 0.79 ± 0.08 nd nd nd

Total (µg/mg) 0.67 6.01 2.54 2.12 14.88 8.94 0.59 2.31 4.20 10.29 27.32 86.15 2.81 1.89 7.66

* Values expressed are means ± S.D. of three simultaneous measurements. nd: not detected, PF: preflowering plant, F: flowering plant, R: roots, AP: aerial parts, Fl: flowers. 2,3-diMeOBA
= 2,3-dimethoxy- benzoic acid. Chlorogenic acid, trans-cinnamic acid, o-coumaric acid, sinapinic acid, trans-ferulic acid, syringic acid, vanillic acid, and 3-OH-4-MeO-benzaldehyde were
not detected in any sample.
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Table 3. Anthraquinone profiles of different parts of A. lutea collected from three different locations in Italy *.

Location Stage/Parts Aloe-emodin Emodin Chrysophanol Physcion Total (µg/mg)

Perugia

PF-R 3.10 ± 0.30 nd 0.51 ± 0.06 15.0 ± 2.0 18.3
PF-AP 0.82 ± 0.08 nd 1.60 ± 0.70 1.70 ± 0.90 4.12

F-R 0.72 ± 0.07 nd 2.00 ± 1.00 0.77 ± 0.09 3.47
F-AP 0.81 ± 0.06 nd nd 5.00 ± 1.00 6.20
F-Fl 2.70 ± 0.30 nd 0.69 ± 0.04 2.40 ± 0.50 5.81

Novele

PF-R 2.00 ± 1.00 nd nd 18.0 ± 3.0 19.5
PF-AP 0.85 ± 0.07 nd 1.51 ± 0.9 5.00 ± 1.00 7.57

F-R 0.65 ± 0.09 nd 1.10 ± 0.50 1.00 ± 0.40 2.72
F- AP 0.65 ± 0.08 nd nd 3.00 ± 1.00 4.07
F-Fl 0.71 ± 0.05 nd 0.39 ± 0.04 0.84 ± 0.08 1.94

Pescosansonesco

PF-R 1.00 ± 0.20 0.82 ± 0.09 2.00 ± 1.00 6.00 ± 1.00 10.6
PF-AP 1.00 ± 0.30 nd nd 4.00 ± 1.00 5.39

F-R 1.10 ± 0.20 nd 2.00 ± 1.00 5.00 ± 1.00 5.81
F- AP 2.00 ± 1.00 nd 0.44 ± 0.04 4.87 ± 2.00 7.41
F-Fl 2.00 ± 1.00 nd 0.60 ± 0.07 8.00 ± 1.00 11.0

* Values expressed are means ± S.D. of three simultaneous measurements. nd: not detected, PF: preflowering plant, F: flowering plant, R: roots, AP: aerial parts, Fl: flowers. Rhein was not
detected in any sample.

Table 4. Heavy metals (Zn, Cd, Pb and Cu) content of different parts of A. lutea collected from three different locations in Italy *.

Location Stage/Parts Zn (ppm) Cd (ppm) Pb (ppm) Cu (ppm)

Perugia

PF-R 1100 ± 300 <LoD <LoD 1100 ± 350
PF-AP <LoD <LoD <LoD <LoD

F-R 500 ± 100 90 ± 30 <LoD <LoD
F-AP 53 ± 5 <LoD <LoD 35 ± 6
F-Fl 300 ± 50 <LoD <LoD <LoD

Novele

PF-R 460 ± 90 700 ± 200 <LoD <LoD
PF-AP <LoD <LoD <LoD <LoD

F-R 140 ± 40 <LoD <LoD <LoD
F-AP 250 ± 20 50 ± 10 180 ± 40 <LoD
F-Fl 190 ± 50 130 ± 30 70 ± 30 <LoD

* Values expressed are means ± S.D.; <LoD = below limit of detection; PF: preflowering plant, F: flowering plant, R: roots, AP: aerial parts, Fl: flowers. For Pescosansonesco samples (PF-R,
PF-AP, F-R, F-AP, F-Fl) all values are <LoD.
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From the data in Table 1 it is possible to state that both phenolic and flavonoid contents reached the
maximum in the flowering stage with respect to the preflowering one. Aerial parts were the richest in
these metabolites (AP > Fl > R) disregarding the sampling site. For the phenolic content, the following
order was observed: aerial parts of AL collected in Pescosansonesco > Perugia > Novele. A similar
pattern was observed for the flavonoid content. The lowest amount of phenolics was recorded in
the roots of the preflowering plant. The phenolic content in whole plant increases evidently during
blooming, and this aspect is mainly related to the flowers development, while the amount of phenolics
in roots and aerial parts were constant. The contribution of the flavonoid fractions, which represent
more than fifty percent of the floral phenolic content, is particularly evident. The distribution of
phenolics mainly in the aerial parts is consistent with the physiological function of such class of
metabolites, and could support their nutraceutical value when used as edible parts. These data showed
some differences with total phenolic content (13.02 mg GAE/g DW) and total flavonoid content
(7.63 mg RE/g DW) found in the roots of A. lutea from Syrian origin [15].

The detailed phenolic profiles of the tested extracts of AL are summarized in Table 2. The aerial
part of preflowering AL (86.15 µg/mg) collected in Pescosansonesco contained the highest amount of
phenolic compounds, with a high quantity of 2,3-dimethoxybenzoic acid. Benzoic acid and quercetin
were present in the aerial parts of flowering AL collected in all the three locations. Aerial parts
of preflowering AL (0.588 µg/mg) collected in Novele contained the lowest amount of phenolic
compounds (rutin 0.28 ± 0.04 µg/mg and quercetin 0.31 ± 0.05 µg/mg). Chlorogenic acid, vanillic
acid, syringic acid, 3-hydroxy-4-methoxybenzaldehyde, sinapic acid, trans-ferulic acid, o-coumaric
acid, and trans-cinnamic acid were not detected in any sample. Naringenin was found only in
aerial parts and only in two samples (Fl from Perugia and AP from Novele at the preflowering
stage). On the other hand, epicatechin was detected only in roots from plants collected in Perugia
in full bloom. Naringin, naringenin, benzoic acid and its derivatives (2,3-dimethoxybenzoic acid,
3-hydroxybenzoic acid, 4-hydroxybenzoic acid), gallic acid, catechin and epicatechin, p-coumaric acid
and rutin were identified and quantified in this species for the first time. This information could
enhance the knowledge about the nutritional and medical value of this plant.

The quantification of anthraquinones in the extracts of AL collected from different spontaneous
growing sites in Italy is presented in Table 3. Aloe-emodin and physcion were present in all the extracts,
whereas rhein was not detected. Emodin was present only in the roots collected before flowering in the
samples from Pescosansonesco. The roots proved to be the plant part with the highest anthraquinone
content. This quantity was higher in samples of non-flowering plants. The data are consistent with the
general rules indicating the preferred harvest time for hypogeous organs is during the vegetative stage.

Table 4 reports the extrapolated concentrations of Zn(II), Cd(II), Pb(II), and Cu(II) in all the
extracts. The AL samples collected in Pescosansonesco showed contents of all metals lower than the
limit of detection (LoD) or too low to be detectable by the polarograph (whose LoD is usually on the
order of 10 ppb). The Perugia samples showed the presence of Zn(II) in almost all parts of the plant,
both before and after flowering, and a low amount of Cd(II) and Cu(II) in post-flowering parts of the
plant. The samples collected in Novele, instead, showed a significant content of Zn(II), Cd(II) and
Cu(II), mostly in post-flowering aerial parts and flowers.

This higher concentration of metals in the plants of Novele can be explained by the fact that
their sampling sites were closer to vehicular traffic. Thus, it is conceivable that the AL collected in the
proximity of main roads can contain high amounts of heavy metals due to car traffic and anthropogenic
factors, but it could be important to consider the possibility of potential correlation of pollutants,
as external stressors, that can act as modulator of plant secondary metabolism.

Table 5 summarizes the radical scavenging, reducing, antioxidant, and metal chelating properties
of the plants parts of AL collected in Perugia, Novele, and Pescosansonesco. The following order
was observed for DPPH radical scavenging of samples collected from the three locations: aerial parts
of flowering A. lutea > aerial parts of preflowering A. lutea > flowers of flowering A. lutea > roots of
flowering A. lutea > roots of preflowering A. lutea. Similar promising results were also reported by
other authors regarding A. lutea species from different origin [15,16]. The aerial parts of flowering



Molecules 2018, 23, 461 6 of 14

A. lutea collected from Perugia and Pescosansonesco showed potent reducing capacity against FRAP
(84 and 128 mg TEs/g extract, respectively) and CUPRAC (108 and 160 mg TEs/g extract, respectively).
The roots of flowering A. lutea collected in Perugia showed the highest antioxidant activity. Conversely,
aerial parts of A. lutea harvested in Novele showed the most potent metal chelation ability (Table 5).

Table 5. Antioxidant evaluation and metal chelating activity of different parts of A. lutea collected from
three different locations in Italy *.

Location Stage/Parts DPPH
Scavenging **

ABTS
Scavenging ** FRAP ** CUPRAC ** Phosphomolybdenum

Assay ‡
Metal Chelating

Activity †

Perugia

PF-R 39.8 ± 0.5 a 56.0 ± 2.0 a 37.0 ± 1.0 b 57.5 ± 1.5 a 0.91 ± 0.05 a 12.8 ± 0.7 a

PF-AP 68.0 ± 1.0 b 74.0 ± 3.0 c 64.0 ± 2.0 b 86.0 ± 2.0 b 0.87 ± 0.07 b 16.0 ± 2.0 b

F-R 43.8 ± 0.1 a 75.0 ± 4.0 a 52.0 ± 4.0 a 71.0 ± 0.9 a 1.03 ± 0.07 a 8.5 ± 0.1 a

F-AP 86.5 ± 1.5 b 102 ± 3 b 84.0 ± 2.0 b 108 ± 1 b 0.93 ± 0.09 b 18.0 ± 2.0 a

F-Fl 52.0 ± 1.0 b 63.0 ± 2.0 b 50.0 ± 1.0 b 65.0 ± 1.0 b 0.73 ± 0.04 b 15.2 ± 0.6 a

Novele

PF-R 30.4 ± 0.3 b 57.0 ± 4.0 a 42.0 ± 2.0 a 52.0 ± 2.0 b 0.71 ± 0.04 c 7.3 ± 0.1 b

PF-AP 58.6 ± 0.5 c 121 ± 3 a 65.0 ± 1.0 b 82.0 ± 3.0 b 0.99 ± 0.06 a 19.7 ± 0.4 a

F-R 32.0 ± 1.0 b 56.0 ± 2.0 b 42.8 ± 0.9 b 60.0 ± 2.0 b 0.92 ± 0.04 c 5.8 ± 0.1 c

F- AP 75.5 ± 0.3 c 97.0 ± 1.0 c 68.0 ± 1.0 c 86.7 ± 0.6 c 0.79 ± 0.01 c 13.1 ± 1.5 c

F-Fl 44.0 ± 1.0 c 54.0 ± 2.0 c 45.5 ± 0.4 c 59.0 ± 1.0 c 0.77 ± 0.05 b 12.9 ± 0.3 b

Pescosansonesco

PF-R 20.5 ± 0.3 c 36.0 ± 1.0 b 29.0 ± 1.0 c 40.4 ± 0.3 c 0.80 ± 0.04 b 6.5 ± 0.7 c

PF-AP 70.9 ± 0.4 a 85.0 ± 1.0 b 75.0 ± 1.0 a 92.2 ± 0.6 a 1.00 ± 0.10 a 15.4 ± 1.5 b

F-R 26.0 ± 0.8 c 53.6 ± 0.8 c 38.0 ± 1.0 c 46.0 ± 1.0 c 0.99 ± 0.07 b 6.9 ± 0.9 b

F-AP 90.4 ± 0.4 a 180 ± 1 a 128 ± 4 a 160 ± 1 a 1.43 ± 0.01 a 16.3 ± 0.1 b

F-Fl 64.0 ± 1.0 a 89.0 ± 1.0 a 62.0 ± 1.0 a 86.0 ± 1.0 a 0.96 ± 0.06 a 14.5 ± 0.7 a

* Values expressed are means ± S.D. of three simultaneous measurements. ** mg TE/g extract (TE = Trolox
equivalents); ‡ mmol TE/g extract; † (mg EDTAE/g extract) (EDTAE = EDTA equivalents). Data marked with
different letters within the same column indicate statistically significant differences in the same stages/parts for
each location (p < 0.05).

Table 6 presents the inhibitory activity of extracts from different parts of the plant (aerial part,
flowers, and roots) of AL collected from three separate accessions from Central Italy. All the studied
samples inhibited AChE, with values ranging from 1.51 to 2.20 mg GALAEs/g extract. Conversely,
other authors found a very low AChE inhibition for both leaves and bulb extracts of A. lutea from
Palestinian flora [16]. Similarly, the studied plant samples inhibited tyrosinase (ranging from 7.50 to
25.30 mg KAEs/g extract) and α-amylase (ranging from 0.37 to 0.51 mmol ACAEs/g extract). The aerial
parts of preflowering AL collected in Perugia and those of flowering AL collected in Pescosansonesco
showed no activity against BChE. The best α-glucosidase inhibitory effects (44.2 mmol ACAEs/g
extract) was observed in the roots of flowering AL collected in Novele.

Table 6. Enzyme inhibitory effects of different parts of A. lutea collected from three different locations
in Italy *.

Location Stage/Parts AChE
Inhibition **

BChE
Inhibition **

Tyrosinase
Inhibition †

α-Amylase
Inhibition ‡

α-Glucosidase
Inhibition ‡

Perugia

PF-R 1.74 ± 0.07 c 2.03 ± 0.06 a 12.0 ± 2.0 a 0.39 ± 0.01 a na
PF-AP 1.59 ± 0.01 c na 7.5 ± 0.3 c 0.45 ± 0.01 a 14.0 ± 0.1 b

F-R 2.20 ± 0.40 a 1.90 ± 0.20 b 14.0 ± 0.2 a 0.45 ± 0.03 a 2.1 ± 0.4 b

F-AP 1.77 ± 0.09 b 0.31 ± 0.06 b 7.0 ± 2.0 c 0.41 ± 0.04 c na
F-Fl 1.65 ± 0.05 a 0.77 ± 0.03 b 23.0 ± 2.0 a 0.45 ± 0.01 b 32.1 ± 0.2 b

Novele

PF-R 1.88 ± 0.08 b 2.02 ± 0.04 a 12.0 ± 1.0 a 0.39 ± 0.01 a 15.8 ± 0.3 b

PF-AP 1.82 ± 0.04 a 1.10 ± 0.10 b 15.0 ± 2.0 b 0.41 ± 0.01 b 0.25 ± 0.02 c

F-R 1.92 ± 0.04 b 2.05 ± 0.02 a 21.0 ± 1.0 a 0.39 ± 0.01 b 44.2 ± 0.4 a

F-AP 1.77 ± 0.06 b 1.06 ± 0.01 a 21.0 ± 2.0 b 0.43 ± 0.01 b 2.01 ± 0.01 b

F-Fl 1.71 ± 0.04 a 1.37 ± 0.07 a 12.0 ± 2.0 c 0.45 ± 0.01 b 42.7 ± 0.3 a

Pescosansonesco

PF-R 1.92 ± 0.02 a 1.83 ± 0.05 b 12.0 ± 1.0 a 0.37 ± 0.01 b 19.3 ± 0.2 a

PF-AP 1.67 ± 0.05 b 1.36 ± 0.04 a 20.0 ± 2.0 a 0.46 ± 0.03 a 37.4 ± 0.9 a

F-R 1.88 ± 0.02 c 1.60 ± 0.20 c 14.0 ± 2.0 b 0.38 ± 0.02 b na
F-AP 2.10 ± 0.60 a na 25.3 ± 0.5 a 0.51 ± 0.01 a 34.1 ± 0.4 a

F-Fl 1.51 ± 0.08 b 0.58 ± 0.07 c 18.8 ± 0.8 b 0.48 ± 0.01 a na

* Values expressed are means ± S.D. of three simultaneous measurements. ** mg GALAE/g extract
(GALAE = galantamine equivalents); † mg KAE/g extract (KAE = kojic acid equivalents); ‡ mmol ACAE/g extract
(ACAE = acarbose equivalents); na: not active. PF: preflowering plant, F: flowering plant, R: roots, AP: aerial parts,
Fl: flowers. Data marked with different letters within the same column indicate statistically significant differences
in the same stages/parts for each location (p < 0.05).
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3. Discussion

Chronic pathologies, such as type II diabetes and neurodegenerative diseases such as Alzheimer’s
disease (AD) are pandemics affecting every segment of the population. Existing therapies alleviate
the trauma caused by these pathologies, but harbour several side effects. The concern of the scientific
community is to find novel therapeutic agents with a minimum of side effects, to manage type II
diabetes and AD. Plants possess a large array of phenolic compounds endowed with numerous
therapeutic properties.

Neurodegenerative disorders encompass more than 600 diseases involving progressive and
irreversible deterioration of the nervous system, subsequently resulting in neuronal cell death [17].
The most prevalent form of neurodegenerative disorder afflicting the global population is AD. AD is
believed to occur because of the accumulation of amyloid-beta protein and the alteration of tau proteins
in the brain, and an apparent oxidative stress [18]. A hypothesis has been suggested that AD is related
to type II diabetes, though the association is complex and not fully understood. Notwithstanding,
conditions are interlinked by inflammatory response, insulin resistance, glycogen synthase kinase
3β signalling mechanism, insulin growth factor signalling, oxidative stress, neurofibrillary tangle
formation, acetylcholinesterase activity regulation, and amyloid beta formation. Thus, the inhibition
of acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase, and α-glucosidase has been
considered to mitigate the deleterious effects of type II diabetes and AD or as adjunctive treatment
modalities [19]. Additionally, scientific interest is gradually shifting towards enzymes which have
not yet been considered by the pharmaceutical industries. The inhibition of such enzymes, so far
considered as non-pharma target, can be of potential relevance and can proved to be a promising
strategy for the management of these debilitating complications [20].

AChE has attracted much attention for the management of this devastating irreversible disorder,
owing to its ability to hydrolyse acetylcholine, a neurotransmitter [21]. The activity of BChE was found
to increase in areas of the brain most affected by AD [22]. Furthermore, in the late stage of Alzheimer’s
disease, the level of AChE was found to drop to 55–67% of normal value, while BChE activity increases
up to 120% [23]. Finding cholinesterase inhibitors having different specificities might help to allay the
trauma associated to the different stages of AD.

In the present study, the aerials parts of flowering AL collected from Pescosansonesco showed
potent inhibition of AChE, but no activity against BChE. Wang and co-workers previously reported
that aloe-emodin was a potent inhibitor of AChE [24]. Interestingly, aerials parts of flowering AL from
Pescosansonesco contained significant amount of aloe-emodin and physcion. A. anatolica, another
species of the genus Asphodeline, was reported to contained physcion and also inhibited AChE [19].
The roots of AL at the preflowering stage collected at Perugia and Novele demonstrated potent BChE
inhibitory activity. These plant samples contained high level of physcion. This anthraquinone was
also previously reported to exert moderate to strong inhibition on tyrosinase [25]. Tyrosinase is
a multifunctional copper-containing metalloenzyme required for the production of melanin pigment in
humans [26]. Melanin plays a vital role by shielding ionizing radiation and absorbing free radicals [27].
Additionally, depletion of neuromelanin, which is structurally related to melanin, present in the
substantia nigra, was associated to Parkinson’s disease [28]. The inhibition of tyrosinase might prevent
the aggravation of neurodegenerative disorders, such as Parkinson’s disease. It was observed that
mostly the aerial parts of AL possessed pronounced tyrosinase inhibitory potential. The aerial parts
contained the highest amount of phenolic compounds. AL was used traditionally for the management
of skin ailments. This virtue might be ascribed to its tyrosinase inhibitory potential, as reported in the
present study.

Chrysophanol was identified in all the investigated samples. This anthraquinone was shown
to inhibit mammalian intestinal α-glucosidase activity [29], thus delaying glucose surge. Most of
the studied plant samples were potent inhibitors of α-glucosidase, showing higher acarbose
equivalent values, compared to α-amylase inhibition. Indeed, mild α-amylase inhibition versus
marked α-glucosidase inhibition was requested, since a pronounced activity of the former enzyme
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advocated the event of gastrointestinal problems [30]. Specifically, the roots of flowering AL collected
in Novele showed high α-glucosidase inhibitory activity and low inhibition against α-amylase.
This sample contained the highest amount of gallic acid, previously reported to possess α-amylase
and α-glucosidase inhibitory activity [31], while p-coumaric acid was shown to be inactive [32].
Among the detected antraquinones, aloe-emodin, crysophanol and physcion can contribute to
α-glucosidase inhibition [29,33]. The antioxidant potential of different parts of AL collected from
different locations was also evaluated. Indeed, oxidative stress has been associated to the onset
and/or worsening of various pathologies, including type II diabetes and AD. FRAP, CUPRAC and
phosphomolybdenum assay are methods suitable to measure the reducing abilities of the samples.
FRAP is based on the reduction of Fe3+–TPTZ (2,4,6-tri(2-pyridyl)-s-triazine) complex, to produce
coloured Fe2+–TPTZ [24], Cu(II)–Nc (neocuproine) is reduced to coloured Cu(I)–Nc in the CUPRAC
assay, while the phosphomolybdenum assay is based on the reduction of molybdenum (VI) to
molybdenum (V) producing a green phosphomolybdenum (V) complex [34]. Aerial parts of AL
collected in Pescosansonesco at flowering stage showed the highest reducing potential against the
three reducing methods used. Indeed, this sample contained the highest amount of phenolics and
flavonoids, known to possess strong reducing potential.

From the reported results is important to highlight that the activities obtained from
phosphomolybdenum assay for the Italian AL roots (from 0.71 to 1.03 mmol TE/g extract) were
lower than the corresponding Asphodeline spp. from Turkey [35–37] (from 1.18 to 2.94 mmol TE/g
extract). No differences were observed for metal chelating activity assay.

Our CUPRAC and FRAP results are in accordance with the data reported in literature [35–37],
even if is important to highlight that slightly lower values were observed for the Novele PF-R root
samples. On the other hand, ABTS and DPPH assays measure the ability of the plant samples to
scavenge free radicals. DPPH is a protonated free radical, which is reduced to a stable diamagnetic
molecule [38]. The data collected in the present investigation demonstrated that aerial parts of
flowering AL were the most potent scavengers of DPPH radical compared to the other extracts,
irrespective of the sampling site. The herein reported DPPH and ABTS results are in accordance with
the data reported in literature for root samples [35–37], even if the sample Perugia F-R shows on DPPH
test the higher value (43.8 mg TE/g extract) respect to the other Asphodeline spp.

Additional comparisons could be done considering another edible plant, as just reported in
literature [37,39]. Also in this case for Asphodeline root samples very similar biological activities respect
to phosphomolybdenum, CUPRAC, FRAP, DPPH and ABTS assays were observed, and it is further
confirmed that Asphodeline spp. had lower activity compared to Potentilla spp. [39–41].

The increased interest in the use of ABTS radical arises from its ability to act in both organic
and aqueous conditions and its stability in a wide range of pH [42]. The aerial parts of flowering AL
collected in Perugia and Pescosansonesco showed strong ABTS radical quenching abilities compared
to the other plant parts as also reported by Karandeniz et al. [43]. Interestingly, the phenolic and
flavonoid contents were the highest in the same samples. Previous studies have appraised the potent
scavenging capacities of phenolics and flavonoids on ABTS [44].

Transition metals, especially Cu and Fe, act as catalysts in the production of reactive oxygen
species, which react with other molecules resulting in oxidative stress and cell damage/death [45].
In vitro techniques used to assess the ability of phytochemicals to chelate these potentially toxic
transition metals offer the scope for the development of nutraceuticals. In the present study,
the different plants parts of AL showed variable degree of metal chelating potential. The preflowering
aerial parts of AL collected in Novele showed the highest metal chelating ability. This sample contained
rutin and quercetin, previously reported to exert metal chelating properties [46,47]. Comparing the
chemical composition and activities of different parts of the same plant, as well as the parts from
plants in different phenological stages, an evident quantitative and qualitative variability was recorded.
Ecological, climatic, and genetic factors are probably involved in the variation of secondary metabolite
profiles observed from samples of AL of different geographical origin [48,49].
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4. Conclusions

The present study could be considered as the first comparative investigation on chemical
composition (phenolics, anthraquinones and heavy metals) and biological activities of extracts from
different parts of A. lutea collected from three different wild populations in Central Italy. Owing
to the key role of oxidative stress and heavy metals in the onset/progression of large number of
diseases, the antioxidant and chelating potential of the plant was also assessed. The phenolic and
anthraquinone profile of A. lutea extracts evidenced qualitative and quantitative differences that,
at least in part, are coherent with the presence of anthraquinones mainly in roots and phenolics in the
aerial parts. The dynamics of production and accumulation of selected active metabolites during the
floral induction phase are still not clear, apart from the quantity of phenolics in the aerial part that
resulted strongly increased. Similarly, their enzyme inhibitory and antioxidant potential also varied.
However, the potent enzyme inhibitory activity and antioxidant properties observed are worth further
scientific consideration. The experimental data confirm that the A. lutea species could be rationally
considered as a potential source of bioactive metabolites, and its consumption could play a positive
role in human health maintenance.

5. Materials and Methods

5.1. Plant Materials

Plant material was collected from wild populations in three different locations in Central Italy,
Perugia (43◦06′39.2′ ′N 12◦20′53.6′ ′E, 350 m a.s.l., in the surroundings of a residential building, probably
subspontaneous), Novele (42◦45′50.6′ ′N 13◦20′35.0′ ′E, 550 m a.s.l., AP, close to the main road) and
Pescosansonesco (42◦14′31.4′ ′N 13◦52′29.8′ ′E, PE, 530 m a.s.l., on a calcareous cliff). From each site
a representative sampling (at least ten plants) was done, taking care to avoid causing damage to the
wild population. Sampling was performed on March and May 2016, in order to collect plants during
the vegetative phase (PF—pre-flowering stage) and in full bloom (F—flowering). The botanical identity
was confirmed by a senior taxonomist (Prof. F. Tammaro) and voucher specimens are conserved in
the Herbarium of the Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara (Italy).
Each plant was manually separated in root (R), aerial parts (AP, consisting in stem and leaves) and
flowers (Fl) and air-dried in an oven at 40 ± 1 ◦C, until achievement of constant weight. Then plant
material was ground using a mixer grinder to a fine powder, passing through a 40 mesh sieve to
obtain a uniform granulometry and stored in a vacuum box in the dark at 4 ◦C until use. Methanol
extracts were obtained by maceration with 250 mL of organic solvent at room temperature (25 ± 1 ◦C)
overnight, as previously reported [50].

5.2. Chemicals

All the phenolic chemical standards (gallic acid, catechin, chlorogenic acid, p-hydroxybenzoic acid,
vanillic acid, epicatechin, syringic acid, 3-hydroxybenzoic acid, 3-hydroxy-4-methoxy-benzaldehyde,
p-coumaric acid, rutin, sinapic acid, trans-ferulic acid, naringin, 2,3-dimethoxy-benzoic acid, benzoic
acid, o-coumaric acid, quercetin, trans-cinnamic acid, naringenin) (purity > 98%) were purchased from
Sigma Aldrich (Milan, Italy). Methanol (HPLC-grade), formic acid (99%), nitric acid (65%, supra-pure
metal grade) and sulfuric acid (98%, ultrapure grade) were obtained from Carlo Erba Reagents (Milan,
Italy). Double-distilled water was obtained using a Millipore Milli-Q Plus water treatment system
(Millipore Bedford Corp., Bedford, MA, USA). Standard metal solutions of Cd(II), Cu(II), Pb(II) and
Zn(II) (1000 mg L−1, suprapure grade), hydrochloric acid (30%) and sodium acetate (anhydrous,
analytical grade) were purchased by Merck (Darmstad, Germany). Anthraquinone chemical standards
(all >99%) were purchased from Extrasynthese (Genay, France).
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5.3. Total Bioactive Components (Phenolics and Flavonoids)

Total phenolic content was determined using the Folin-Ciocalteu colorimetric method [51],
and expressed as gallic acid equivalents (GAEs/g extract). Total flavonoid content was determined by
previously reported method [52] and expressed as rutin equivalents (REs/g extract).

5.4. HPLC Analyses for Phenolics and Anthraquinones

High-performance liquid chromatography with diode array detection (HPLC-PDA) was
employed. Phenolic as well as anthraquinone patterns were evaluated by validated methods reported
in the literature [35,53], using an HPLC Waters liquid chromatography (model 600 solvent pump,
2996 DAD, Waters S.p.A., Milford, MA, USA). Mobile phase was directly degassed on-line using
a Biotech 4CH DEGASI Compact (Onsala, Sweden). Empower v.2 Software (Waters S.p.A., Milford,
MA, USA) was used to collect and analyse data.

For the quantitative analyses on investigated compounds (both anthraquinones and phenolics),
the HPLC-PDA methods were validated using external calibration (for the identification of the
analytes retention times, and UV/Vis spectra) with pure chemical standards at different concentration
levels. Precision and trueness were validated using fortified samples (with pure chemical standard
working solutions) at three different concentration levels and the results fulfil international guideline
references [35,53]. The instrument configurations, using also a column oven for the reproducibility
of the analytes retention times, and the validated methods allow to the correct identification and
quantification of the investigated compounds.

5.5. Heavy Metals Determination

Cd(II), Cu(II), Pb(II) and Zn(II) were determined by differential pulse adsorptive stripping
voltammetry (DPASV). An AMEL Mod. 433 Multipolarograph (AMEL Instrumentation s.r.l.,
Milan, Italy), equipped with a hanging mercury drop electrode (HDME) as working electrode,
Ag|AgCl|KClsatd. as reference electrode and a platinum-wire auxiliary electrode [54], was employed.
The supporting electrolyte was an acetic acid/sodium acetate buffer (1 M, pH = 4.65).

The relevant instrumental parameters were the following. Initial potential: Ei = −1.300 V;
deposition potential: Ed = −1.300 V; final potential: Ef = 0.100 V; electrodeposition time: td = 120 s;
delay time before the potential sweep: tr = 5 s; potential scan rate: dE/dt = 20 mV/s; stirring rate:
r = 600 r.p.m.; the potential values were referred to Ag|AgCl|KClsatd..

Each sample was previously digested by acid attack [55]: 0.25 g of plant sample was put in
a 100-mL Pyrex digestion tube, and 20 mL of a mixture 1:1 of nitric acid and sulfuric acid was added.
The tube, connected to a Vigreux column condenser, was then heated at 180 ◦C for 120 min. For the
analytical measures, 15 mL of buffer solution and 300 µL of the digested solution were put into the
voltammetric cell, and then 3 standard additions of 300 µL of a solution containing all the four metals
at 10 mg L−1 were carried on. For each addition, two replicates were performed. The blank was
obtained by mixing 15 mL of buffer solution and 300 µL of a digested solution containing only the
mixture 1:1 of nitric acid and sulfuric acid. Finally, for each sample a standard addition line for each
metal was computed, using peak areas as dependent variable and the metal content was extrapolated.
The limit of detection (LoD) was calculated using the three-sigma approach, as in previous works [56].

5.6. Antioxidant Activity

The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical and ABTS (2,2’-azino-bis(3-ethyl- benzothiazoline)-
6-sulphonic acid) radical cation scavenging activities were determined, and the results were expressed
as Trolox equivalents (TEs/g extract). The reducing power of the extracts was measured according to
the reported method, using cupric ion reducing antioxidant power (CUPRAC) and ferric ion reducing
antioxidant power (FRAP), and results were expressed as Trolox equivalents (TEs/g extract). Total
antioxidant capacity was determined using phosphomolybdenum method. Metal chelating activity
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of the extracts against ferrous ions was also determined, and the results were expressed as EDTA
equivalents (EDTAE/g extract). All these antioxidant procedures were performed as previously
documented [57].

5.7. Enzyme Inhibitory Activities

Enzyme inhibitory activities (acetylcholinesterase (AChE), butyrylcholinesterase (BChE),
tyrosinase, α-amylase and α-glucosidase) of the extracts were determined using the already published
methodology [58]. Results for enzyme inhibitory activities were expressed as standard compound
equivalents (galantamine for AChE and BChE, kojic acid for tyrosinase, acarbose for both α-amylase
and α-glucosidase).

5.8. Statistical Analysis

All the assays were carried out in triplicate. The results are expressed as mean values and standard
deviation (SD). The differences between some stages/parts in each location were calculated using
one-way analysis of variance (ANOVA) followed by Tukey’s honest significant difference post hoc test
with α = 0.05. This treatment was carried out using SPSS v. 14.0 program (SPSS Institute Inc., Cary,
NC, USA).
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