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Hypoxia and the pH level of the tumor microenvironment have a great impact on the treatment of tumors. Here, the tumor growth
is controlled by regulating the oxygen concentration and the acidity of the tumor microenvironment by introducing a two-
dimensional multiscale cellular automata model of avascular tumor growth. The spatiotemporal evolution of tumor growth and
metabolic variations is modeled based on biological assumptions, physical structure, states of cells, and transition rules. Each cell
is allocated to one of the following states: proliferating cancer, nonproliferating cancer, necrotic, and normal cells. According to
the response of the microenvironmental conditions, each cell consumes/produces metabolic factors and updates its state based
on some stochastic rules. The input parameters are compatible with cancer biology using experimental data. The effect of
neighborhoods during mitosis and simulating spatial heterogeneity is studied by considering multicellular layer structure of
tumor. A simple Darwinist mutation is considered by introducing a critical parameter (Nmm) that affects division probability of
the proliferative tumor cells based on the microenvironmental conditions and cancer hallmarks. The results show that Nmm
regulation has a significant influence on the dynamics of tumor growth, the growth fraction, necrotic fraction, and the
concentration levels of the metabolic factors. The model not only is able to simulate the in vivo tumor growth quantitatively and
qualitatively but also can simulate the concentration of metabolic factors, oxygen, and acidity graphically. The results show the
spatial heterogeneity effects on the proliferation of cancer cells and the rest of the system. By increasing Nmm, tumor shrinkage
and significant increasing in the oxygen concentration and the pH value of the tumor microenvironment are observed. The
results demonstrate the model’s ability, providing an essential tool for simulating different tumor evolution scenarios of a
patient and reliable prediction of spatiotemporal progression of tumors for utilizing in personalized therapy.

1. Introduction

The cellular metabolism within a solid tumor is considerably
different from the metabolism of the corresponding normal
tissue [1]. Most nonproliferating tissues primarily metabolize
glucose to pyruvate by glycolysis in the presence of oxygen.
Then, during the process of mitochondrial oxidative phosphor-
ylation (OXPHOS), nearly all of the pyruvate generated by
glycolysis are completely oxidized to carbon dioxide (CO2).
In contrast, in the absence of adequate oxygen, cells can redi-
rect the glycolysis-derived pyruvate away from mitochondrial
OXPHOS by generating lactate (anaerobic glycolysis) [2]. Can-

cer cells tend to convert a large amount of glucose to lactate
even in the presence of sufficient oxygen (aerobic glycolysis)
rather than oxidative phosphorylation for energy production
(Warburg effect) [3, 4]. Clinical observations in cancer cells
by fluorodeoxyglucose-positron emission tomography have
led to a hypothesis known as the acid-mediated tumor invasion.
This hypothesis proposes that tumor-derived acid facilitates
tumor invasion by promoting normal neighborhood cell death
and extracellular matrix degradation of the parenchyma sur-
rounding growing tumors. In other words, it results in altered
glucose metabolism and increased glucose uptake, which is
critical for the development of the invasive phenotype [5].
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Understanding the cancer energy metabolism will help
develop new approaches in cancer therapy [6]. Tumor acidity
blunts the immune system, mediates cancer chemotherapy
resistance [7], facilitates tumor invasion, and develops metas-
tasis [8]. Therefore, effective use of metabolic inhibitors may
lead to overcome resistance to chemotherapy or radiotherapy
and thus become a very promising target for anticancer treat-
ment [9].

Over the past decades, experimental and computational
studies have been reported significant advances in understand-
ing cancer metabolism that support growth and proliferation
[10–12]. Vander Heiden [13] reviewed evidences supporting
the therapeutic potential of targeting the metabolic adaptations
that are characteristic of cancer cells. He discussed the associ-
ated challenges and limitations of this as an anticancer strategy,
and how it might be used to limit cell proliferation. According
to [14] which is another comprehensive review of conditional
drug screening aimed at targeting nutrient starvation, hypoxia,
and accumulation of acidic metabolites, Kigamicin D, arcti-
genin, efrapeptin F, and pyrvinium pamoate are examples of
drugs that have been identified with preferential antiprolifera-
tive activity on tumor cells grown under nutrient-deprived
conditions.

There are still many questions that remain unanswered in
tumor growth researches. For example, no model fully
explains the reason of tumor metastasis or the tumor cells sur-
vive in completely different environments or different therapy
results in individual patients. One hypothesis suggests that
cells metastasize because of oxygen constraints in the primary
tumor [15]. However, if oxygen depletion was themost impor-
tant inducer of metastatic behavior, why would a tumor cell
ever leave the highly-oxygenated environment of the lung
and move to the brain in some cases? Clearly, there may be
other factors besides hypoxia that can affect tumor evolution.
Researches proposed some other hypotheses such as the con-
centration of iron as the key nutrient in tumor development
and proliferation [16].

One of the factors that contributes in the complex behav-
ior of tumors is the intratumor heterogeneity. Solid tumors
may comprise of subpopulations of cells with distinct geno-
mic alterations within the same tumor [17]. Scientists believe
that understanding clonal heterogeneity and the evolution of
tumor subclonal architecture may provide important insight
into the emergence of different drug resistance on tumor cells
during systemic therapy [18].

In silicomodeling and the simulation of cancer growth can
help understand the tumor microenvironment and play an
important role in both experimental and clinical researches.
However, a major difficulty in developing realistic models
(mathematical, computational, or both) of tumor growth is
the complex nature of cancer system biology as well as the
limited understanding of tumor growth mechanisms. Compu-
tational models in the literature have shown that glycolysis
would lead to lactate gradients due to increased secretion
and to steep drops in pH, but they do not pay much attention
on the effect of spatial, temporal, and phenotypic heterogene-
ity on metabolic modification. In fact, many of these models
neglect the fact that tumor growth occurs in a heterogeneous
environment. Besides, in vivo manipulations are technically

challenging, and in vitro models often neglect important
features such as spatial heterogeneity.

Building models of complex biological systems is an
iterative process that requires considerable attention to
detail. In tumor growth modeling, it is important to charac-
terize the model as simply and comprehensively as possible
by considering necessary experimental or clinical details
influencing on tumor growth. Using Ordinary or Partial Dif-
ferential Equations (ODEs or PDEs) are helpful in under-
standing important features of tumor growth. ODE based
modeling is the most common simulation approach in com-
putational systems biology. ODE models do not address the
spatial spread of the tumor cells; they provide a simpler
framework to show the temporal dynamics of the growth.
PDE models capture more complexity than ODE models.
Many of the spatial models in cancer modeling are based
on PDEs. However, solving higher-order PDEs are difficult
and time consuming.

Many authors have applied simulation methods like
individual and agent-based modeling approaches and cellular
automata (CA) with the aim to model spatiotemporal evolu-
tion of tumor growths. These methods treat cells as discrete
objects with predefined rules of interaction, which may offer
an improvement over differential equation methods [19]. A
Cellular Automata is a simple computer simulation tool that
may be considered as a method for modeling discrete dynamic
systems. A CA consists of a discrete system of lattice sites (cells)
having various initial values. These cells evolve in discrete time
steps as each cell assumes a new state based on the rules, i.e., the
states of its local neighborhood and a finite number of previous
time steps. The neighborhood is described by specifying a set of
cells that is the neighbor of a given cell [20].

We have previously introduced a two-dimensional
stochastic agent-based model for avascular tumor growth
[21]. We have used cellular automaton formalism as an
approach linking the microscale (the interaction between cells
(agents)) to the macroscale structure of a tumor without the
intermediate passage offered by the kinetic theory approach.
The model considered a simple Darwinist mutation by intro-
ducing a parameter, which affects the division probability of
the proliferative tumor cells based on the microenvironmental
conditions. The model had a probabilistic nature and an
agent-based structure. It did not include any metabolic factors
and the effect of tumor metabolic alteration on tumor growth.
In contrast, the present paper specifically focuses on these
aspects of cancer biology. Therefore, it is necessary to expand
the traditional CAmodels in order to incorporate the nonlocal
effects of nutrients to obtain a comprehensive model of tumor
growth. This expansion is the essence of the Modified Cellular
Automata (MCA) framework. Here, a multiscale model is
developed to capture spatially explicit dynamics of biological
processes involved in tumor development.

The impact of spatial, temporal, and phenotypic hetero-
geneity on the behavior of the tumor has been considered.
We confine ourselves to a study of the effects of metabolic
factors especially microenvironmental acidification and
oxygen concentration on the efficacy of controlling and
shrinking tumors. A simple Darwinist mutation is consid-
ered as a critical parameter by introducing a parameter that
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affects the division probability of the proliferative tumor cells
based on the microenvironmental conditions and cancer
hallmarks. We discuss how conditions within the tumor
microenvironment shape the metabolic character of tumors
and consequently control the tumor growth. The proposed
model is tested by the verification of the simulation results
using in vivo literature data [22, 23]. It is shown that a
combination of metabolite gradients and differential sensitiv-
ity to lactic acid and spatial heterogeneity are sufficient for
the evolution of tumor. The results demonstrate the model’s
ability, providing an essential tool for simulating different
tumor evolution scenarios of a given patient and reliable
prediction of spatiotemporal progression of tumors. Target-
ing the environmental cues that regulate tumor plasticity
may be the best approach for effective cancer treatments.

1.1. Previous Works of Tumor Growth Models. Numerous
computational models have been published to tumor-
related topics. Here are some reviews that have focused on
avascular tumor growth [24], angiogenesis [25], vascular
tumor growth [26], invasion [24], metastasis [27], studying
the effect of microenvironmental factors on tumor growth
[28], and even treatment [29]. Some scientists [30] separately
reviewed mathematical and computational models of tumor
growth or invasion. A brief review of mathematical models
with a history of them can be found in an article written by
[31]. Besides, comprehensive reviews of hybrid models and
multiscale models have been published in [32, 33], respec-
tively. Metzcar and coworkers [34], Warner et al. [35], and
Magi et al. [36] briefly reviewed recent mathematical model-
ing of cancer biology, i.e., computational (cell-based and
multiscale) models and modeling some hallmarks of cancer
such as abnormalities in cell division and proliferation, resis-
tance to cell death, angiogenesis, invasion and metastasis,
evading immune destruction, and metabolic changes.

Zuleyha and coworkers [37] introduced a two-dimensional
Ising model applied on Creutz cellular automaton algorithm to
observe a GBM growth. The authors modeled the transitions
between nontumor cells and cancer cells as phase transitions
in physical system. Anderson [38] proposed a hybrid mathe-
matical model of the invasion of healthy tissue by a solid tumor.
As the tumor grows, genetic mutations lead to a heterogeneous
tumor cell population. Robertson-Tessi and coauthors [39] also
investigated the heterogeneity mechanisms as a spatially and
temporally distributed system using a hybrid multiscale math-
ematical model of tumor growth in vascularized tissue. They
studied the effects of metabolic heterogeneity on tumor
progression and treatment outcome and suggested that therapy
might change the phenotypes aggressiveness of a tumor due to
drug-mediated selection and degradation of the tumor micro-
environment. Another quantitative model of an avascular
tumor growth is proposed by Romero-Arias and his coauthors
[40]. They considered the basic biological principles of cell
proliferation, motility, death, transport of nutrients, and gene
mutation dynamics (in order to define the diversity and hetero-
geneity of the tumor) and established a tumor malignant-
benign diagram.

Some models examined the environmental factors on the
growth of tumors [41]. However, oxygen perfusion became

less relevant than other metabolic factors in Patel and his
coworkers’ study [42], since they especially focused on the
effects of microenvironmental acidification on the efficacy
of tumor invasion. Besides, Milotti and coworkers [43]
presented a mathematical model of oxygen distribution and
studied the role of blood vessel size and the distribution of
blood vessel density.

Since hypoxia and the pH level of the tumor microenvi-
ronment have a large impact on a treatment, here, we focused
on regulating the oxygen concentration and the acidity of
tumor microenvironment in order to control the tumor
growth rate. The novelty of the proposed model lies in the
fact that hypoxia and the pH level of the tumor microenvi-
ronment have a large impact on a treatment. Therefore, we
need to observe the spatial tumor growth along with the
tumor microenvironment metabolic variations in order to
choose a better therapy protocol for a given patient. Here,
we assumed the formation of a new cell population (apart
from hypoxic or quiescent and necrotic), namely nonmutant
proliferating cells, with a different metabolic profile. More-
over, this model includes innovative variation of particular
factors, such as the local cell proliferation rate and the
nutrient-dependent thresholds of mitosis. The model is
validated by the verification of the simulation results with
specific experimental results available in the literatures. We
discussed the results and show how the model can propose
a hypothesis for slowing down cancer growth by watching
the effects of hypoxia and the pH level of the tumor microen-
vironment and regulating a Darwinist type dynamics, namely
mutations followed by selection and evolution as well as
some random heterogeneity.

2. Materials and Methods

A stochastic two-dimensional CA can be represented as a 5-
tuple: a countable infinite lattice consisting of sites (cells), a
finite state set (S) for each cell of the lattice, neighborhood,
probabilistic transition rules for updating the state of each
cell, and initial values for beginning the simulation [44]. Each
cell transforms from its current state to a new state based on
the rules, i.e., the states of its local neighborhood and a finite
number of previous time steps.

In our previous work, we focused on Darwinist mutation
and cancer hallmarks in order to shrink the tumor size. Here,
we investigate the effects of metabolic factors on controlling
the tumor growth. The proposed model is founded on four
bases: (1) states of a cell, (2) biological assumptions, (3) phys-
ical structure, and (4) states transition rules.

2.1. States of a Cell. As in our previous work [21], a cell in the
model placed at the (n,m) coordinate system (0 < n, and m
< ncell) represents some biological cells. Four states (Sn,m)
can be assigned to each cell as follows (Table 1):

2.2. Biological Assumptions. The multicellular layer (MCL)
structure has been considered (Figure 1). Cells that have died
through the process of apoptosis have been shown as empty
spaces. The stochastic rules have been followed to update
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the lattice, and each cell updates its state based on the con-
centration of metabolic factors and further relevant rules.

Metabolic factors are necessary to maintain cell survival
and cell mitosis. An average cell cycle time is used as the
selected time step in the following simulations. The model
starts by adding glucose (denoted as “gl”) and oxygen
(denoted as “O2”) to the tissue and removing the acid
produced by tumorous cells at each time step. Therefore, at
each time step, the tumor metabolic factors (i.e., oxygen,
glucose, lactic acid, growth factors (Gf), and inhibition factors
(If)) have been reported, and their effects on tumor prolifera-
tion have been studied. Each cell consumes O2 and gl depend
on its type. The concentrations of these metabolic factors
depend on time, the spatial position, and the type of the cell.
The model is initialized admitting background parameters in
all cells. As tumor cells start consuming oxygen, glucose, and
producing acid within the simulation domain, a simple model
of diffusion will transport metabolic factors from high concen-
tration cells to less concentrated ones.

In this paper, the diffusion (propagation and redistribu-
tion) of metabolic factors has been simulated relying on
Block Cellular Automata (BCA) paradigm [45–47] which
implements simple rules. First, the lattice is split up into 3
× 3 nonoverlapping blocks (Figure 2). A transition rule is
then applied to the whole block at a time rather than a single
cell. The procedure of choosing the blocks are shown by
black, green, and red colors in different time steps. The red
arrows on the lattice point to the blocks chosen in the next
iteration. In this paper, the Moore neighborhood (the eight
cells surrounding a central cell) and periodic boundary
conditions are considered. All nine sites in each block have
equal probability to be occupied, and there is no limitation
on the number of nutrient molecules in each site. Each cell
has five state variables utimn, where m, n, and t denote the
column number of the spatial position, row number of the
spatial position, and the time step, respectively. Besides, i
refers to the five main metabolic factors. Then, in each block,
the average of each different type of metabolic factors is
replaced and redistributed in the whole block. In the next
time step, each block will be shifted down one row and right
one column, and the operation will be continued.

ui
t+1
mn = αi × At

mn + 1 − αið Þ × ui
t
mn − f i n,m, tð Þ, ð1Þ

where At
m,n = ð∑ j=1

j=−1∑
k=1
k=−1ui

t
m−j,n−kÞ/9 and f iðn,m, tÞ

=
0 No tumor cell

cri × f ðn,mÞ tumor cell

(
.

The parameter αi ϵ (0,1) is estimated and characterizes
the diffusion coefficient (the greater is the diffusion coeffi-
cient, the higher is the parameter). cri is the base consump-
tion/production rates, and f ðn,mÞ is the modulation energy
function [48] and is used to report the differences for the
energy consumptions among different cell types.

The first conditions of decision-making to update the state
of a cell are determined by checking the metabolic factors (O2,
gl, pH = −log 10½H+�), which are shown in Figure 3. The result

WP

Rt

Rn

Figure 1: Physical structure of the model as a square lattice. (a) The
considered tumor is composed of three layers: necrotic cells (dark
gray layer), quiescent cells (middle shaded layer), and proliferating
cells (dotted layer). The average radius of the tumor, necrotic
layer, and the average thickness of the outer proliferating
cancerous cells layer are shown by, Rt , Rn, and WP , respectively.

Figure 2: Simulation of metabolic factors diffusion in proposed
model. See text for details.

Table 1: Four assumed states of a cell in the proposed model.

State
(Sn,m)

Type of cell Symbol Color

0
Normal (healthy) cell or

empty space
N or
Em

1 Proliferating tumor cell PC

2 Quiescent tumor cell
QC or
NT

3 Necrotic cell NeC
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of this part is used as input parameters to decide on altering
the states of cells.

The conditions of changing the state of a cell in cellular
space described above are necessary but not sufficient. The
control parameters used in the model are listed along with
descriptions in Table 2. Deductions from biological literature
[49–51], we assumed that 50% of the threshold values of O2
and Glucose in O2_thre2 and gl_thre2 are satisfactory values
for triggering cell death and apoptosis.

Necrotic cells are assumed to produce H+ without con-
suming oxygen or nutrient since they are dead. Metabolism
in proliferating cells differs from quiescent cell metabolism
by high rates of glycolysis, lactate production, and biosynthe-
sis of lipids and other macromolecules. Therefore, following
Patel [42], the values of H+ production rate and oxygen and
glucose consumption rate for quiescent tumor cells are
assumed to be smaller than the similar rates for proliferating
tumor cells, because quiescent cells are essentially metaboli-
cally inactive. It should be noted that proliferating tumor
cells, which use the anaerobic metabolism, produce much
more metabolic waste.

2.3. Physical Structure. Host tissue is assumed as a two-
dimensional square (2D; ncell × ncell) lattice. We assume
that a tumor consists of three layers (Figure 1 [21]): (1) the
outer layer of proliferative tumor cells (dotted region) that
have the capability to replicate and to participate in mitosis;
(2) the middle layer of nonproliferating or quiescent tumor
cells (dashed gray region) that lose their ability to be prolifer-
ative; however, it can be recovered with accessing sufficient
nutrients [63]; and (3) the inner layer of necrotic cells (dark
gray core) that produces lactate.

The average overall necrotic layer radius (Rn) which is a
function of time steps and the thickness of the layer of prolif-
erative tumor cells (Wp) is obtained using the equation (2)
[21].

WP = b × R2/3
t , Rn = Rt − a + bð Þ × R2/3

t ð2Þ

where a and b are constant parameters and Rt is the aver-
age radius of the tumor calculated by obtaining the external
edge of the tumor.

2.4. State Transition Rules. At each time step, the microenvi-
ronmental conditions are checked to update the state of every
cell in the cellular lattice. Then, according to the achieved
response, the probability of division of proliferating tumor
cells and the rules of updating the states of cells will be
checked. We summarize below the main rules of our multi-
scale model.

2.4.1. State 1 Transition Rules. For compatibility with cancer
biology and including the role of environmental conditions
on cancer cells’ division, two types of proliferating tumor
cells (PC) with different division probabilities are considered:
mutant proliferating tumor cell and nonmutant proliferating
tumor cell. Phenotypic heterogeneity arises from the fact that
various types of tumor cells are assumed in this model.
Special and temporal heterogeneity arises during tumor
growth procedure from different cells. Therefore, different
therapeutic manners can be seen as a result of this heteroge-
neity. The cell division of the mutant proliferating tumor cell
is assumed independence from the environmental conditions
of the cellular lattice. While in the nonmutant proliferating
tumor cell, the cell division is a function of the number of

Check the micro-environmental conditions for each tumor cell

QC QC

N

N

N

Y

pH< 
pH_thre_Ne? Apoptosis

pH< 
pH_thre_q?

Y

YO2>
O2_thre?

O2>
O2_thre2?

PC

gl>
gl_thre?

Y

gl>
gl_thre2?

Y

Aerobic 
metabolis

N

N

Y

Anaerobic 
metabolis

Aerobic 
metabolis

Aerobic 
metabolis

QC

Anaerobic 
metabolis

NeC

gl>
gl_thre2?

Y

N N

PC

Figure 3: Calculating the response of a cell according to microenvironmental conditions.
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the healthy cells (free spaces) surrounding the tumor cell.
Therefore, when there are more healthy cells around a non-
mutant proliferating tumor cell, the probability of division
of that PC is greater due to accessing sufficient oxygen and
nutrients. Equation (3) designates that PC may divide (cellu-
lar mitosis) with the probability ρPC .

ρPC =
p1 = constant mutant PT cell

p2 = function of NoC non −mutant PT cell

(

ð3Þ

The proliferation rate depends on the radial location of
the dividing cell, in a way that the model is biased to reach
saturation as the tumor grows, resembling the Gompertz
curve. Therefore, the dynamics of the model is considered
such that the division probability in the radii greater than
Rmax (i.e., maximum external radius of tumor) is zero. This
indicates the dynamic pressure effects of the environment
on tumor growth. Thus, the tumor growth will be stopped
in this radius due to the lack of nutrients [63, 64]. The prob-
abilities p1 and p2 can be expressed by equation (4).

p1 = p0 × 1 −
r

Rmax

� �
,

p2 = φ0 × Number of N cells in the neighborhoodð Þ
× 1 −

r
Rmax

� � ð4Þ

where p0 and φ0 are the base probabilities of the division of
PC and r reflects the location of the dividing cell.

At each time step, a proliferating tumor cell of any type
(with aerobic or anaerobic metabolism) is checked to see if
it can attempt to divide. In this case, it should be assured that
there is an empty place or a normal cell in its neighborhood.
The PC should choose one of the empty or normal neighbors,
and it will eventually divide. Therefore, one of the daughter
cells will remain in the same position of its parent. The other
daughter cell will place in that empty or normal neighbor. If
the proliferating tumor cell could not find an empty place to
put the second daughter cell or it could not proliferate by
probability ρPC , it can stay as proliferating tumor cell up to
a certain time (as a function of the number of time steps).
Then, it can turn into a quiescent tumor cell which is an
unstable and intermediate state. In other words, its mode will
be changed from 1 to 2.

2.4.2. State 2 Transition Rules. If a quiescent tumor cell (QC)
is placed at a radial distance less than the radius of the
necrotic core (Rn in Figure 3), then it will turn to a necrotic
cell at the next time step. However, if the QC is in a specific
distance Wp of the average tumor radius or achieves suffi-
cient metabolic factors, it will turn to PC due to accessing
sufficient nutrient.

2.4.3. State 3 Transition Rules. The necrotic cells accumulate
in the inner part of the tumor and form a mass of dead cells.
Once a tumor cell is diagnosed as a necrotic cell based on
metabolic factors, it will remain necrotic in cellular space
and will not change to any other type of cells. Producing
lactic acid without consuming oxygen and glucose is an
important feature of necrotic cells.

Table 3 shows the crucial parameters used in the model.

Table 2: Summary of control parameters used in the simulations with their references.

Symbol Description Value Units Ref.

pH_thre_q Critical pH: PC ➔ QC 6.4 — [52]

pH_thre_Ne Critical pH: QC ➔ NeC 6 — [53]

O2_thre O2 threshold value: PC ➔ QC 0.02 mMol [54]

gl_thre Glucose threshold value: PC ➔ QC 0.06 mMol [54]

O2_thre2 O2 threshold value: QC ➔ NeC O2_thre/2 mMol —

gl_thre2 Glucose threshold value: QC ➔ NeC gl_thre/2 mMol —

Do2 O2 diffusion coef. 1:82 × 10−5 cm2 s-1 [55]

Dgl Glucose diffusion coef. 9:1 × 10−5 cm2 s-1 [56, 57]

DGf Growth factor diffusion coef. 1 × 10−6 cm2 h-1 [48]

DIf Inhibition factor diffusion coef. 1 × 10−6 cm2 h-1 [48]

DH H+ diffusion coef. 1:1 × 10−5 cm2 s-1 [57, 58]

Cr_o2 Base consumption rate of O2 2:3 × 10−16 Mol.cells-1.s-1 [59, 60]

Cr_gl Base consumption rate of gl 3:8 × 10−17 Mol.cells-1.s-1 [48, 61]

Cr_Gf Base consumption rate of Gf 0.5 cm3.h-1 [48]

Cr_If Base production rate of if 1 cm3.h-1 [48]

Cr_H Base production rate of H+ 1:5 × 10−18 Mol.cells-1.s-1 [42, 62]
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2.5. Simulation Design. The initial concentrations of meta-
bolic factors are assigned in each grid with a uniform proba-
bility distribution. It is assumed that the medium provides
100% of growth factor and no inhibitory factor at the begin-
ning of the simulation. The periodic boundary condition is
set across the solid boundaries for metabolic space.

The model is simulated using background concentrations
of oxygen (c0) [48], glucose (g0) [65], H+ (Ph0) [42, 48],
medium growth factor level (Gf0), and medium inhibitory
factor level (If 0) as follows:

c0

g0

pH0

Gf0
If 0

2
666666664

3
777777775
=

0:8mMol

5:5mMol

7:4

1

0

2
666666664

3
777777775

ð5Þ

The concentrations of glucose, oxygen, and H+ ions in
the medium never decrease by more than 5% of the initial
value in the fresh medium over the growth period [59, 60].
The normal cells consume metabolic oxygen and glucose.
Therefore, at each time step, the lattice updates with uniform
distributions of metabolic factors. Nutrients and oxygen
diffuse and the lattice is updated to initial medium concen-
trations i each iteration. While acid diffuses to blood vessel
in each time step. The blood vessel is responsible for the
distribution of nutrients across the tissue.

In growth tumor lattice, we consider whole cells of the tis-
sue as normal with state 0. Therefore, the entire tissue is ini-
tially covered with healthy cells or empty spaces. Then, at the
initial time (t = 0), a proliferative tumor cell is placed in the
central grid. Therefore, its state changes from 0 to 1. All other
cells are supposed as nontumorous. This is taken from the cen-
ter of the lattice to ensure better visualization. The cells follow
the rules explained in the Materials and Methods section.

Table 4 shows the parameters with their initial values
used in the growth tumor lattice of the model [21].

The whole simulation algorithm is summarized below:

(1) Initialization. Above values are assigned to all param-
eters (see the parameter values in Table 2). The stud-
ied spatial domain is discretized, and the spatial
distribution of the nutrients is initialized in the met-
abolic lattice. Then, proliferative tumor cells are
placed in the center of the cellular lattice. All other
cells are supposed as nontumorous

(2) Nutrient and H+ Diffusion. Simple BCA described
earlier is used in the studied spatial lattice to obtain
the renewed metabolic factors distributions

(3) Determine Necrosis. If the updated metabolic factors
concentration (oxygen, glucose, and pH) in the grid
are lower than the critical thresholds, all of the onsite
cells in cellular lattice will enter the necrotic status. If
not, the cell fate will remain to be judged in the next
step

(4) Determine Other Cell Types. Cell proliferation or qui-
escence state is determined according to Figure 3 and
state transition rules

3. Results and Discussion

Here, we show that our microscopic model can reflect macro-
scopic dynamics of a tumor growth system. Figure 4 shows the
simulated tumor volume of our result (calculating the average
radius of the tumor and using acceptable approximation of a
spherical growth) comparison with a set of experimental data
[23]. The circles are experimental data collected from male
nude BALB/cmice between the ages of 6 and 8 weeks obtained
from Vital River Laboratories (VRL; Beijing, China). Tumors
were established by the subcutaneous injection of 5 × 106
TFK-1 cells into the flanks of the mice. Tumor size of the
in vivo model was measured every 2 days, and tumor volume
was calculated using the following equation: tumor volume =
length × ðwidthÞ2 × π/6. The dashed line indicates the result
of the present model. The volume of tumor is normalized for
simplicity in Figure 4, and each time step in our simulation
is considered as 0.1 days. Figure 4 indicates that the proposed
model can significantly simulate experimental tumor evolu-
tion since the results show the same growth dynamics.

The number of PC, QC, NeC, and nonhealthy cells in
200-time iterations is indicated in Figure 5(a). As it can be
seen, due to the lack of nutrients in an avascular tumor, the
number of necrotic cells increases, and the number of prolif-
erative tumor cells—which has exponentially increased at an
early stage of cancer development—follows Gompertzian
dynamics and reaches a saturation of almost 750 cells. Simi-
larly, Figure 5(b) shows the changes in growth fraction (GF)
and necrotic fraction (NF). After the tumor reaches 18.5mm,
necrosis arises and lets the necrotic fraction increase. It indi-
cates that because of the loss of nutrients, the GF decreases to
0.27 and the NF increases to 0.64. It can be seen that adding
the effects of metabolic factors to the model increases the
final value of GF while decreases the final value of NF com-
pare to the similar values of GF and NF reported in [21].

The time evolution of tumor growth and the process of
formation of layers of MCL of the proposed model are shown
in Figure 5(c).

As it can be seen in Figure 5(a), the number of prolifera-
tive tumor cells is equal to the number of necrotic cells at
around iteration time m = 94. We have introduced a critical
point (CP) where the values of GF and NF become equal in
our previous paper [21]. It has been discussed there that by
controlling CP, it is possible to control damage time of the
tissue surrounding the tumor and prolonging the life of
patients as well. Figure 5 shows that considering the mutual
effects of metabolic factors and tumor growth in the model
increases the CP time compare to the result reported in [21].

It is suggested to observe central cross-sections of the
tumor as an output of our simulation to graphically follow
the growth of the tumor over time. Figure 6(a) shows a
snapshot of simulated tumor growth along with a graphical
representation of the concentration of oxygen, glucose, and
lactic acid. Necrotic cells, quiescent tumor cells, proliferative
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Table 4: Input parameters and their initial values used in the growth tumor lattice.

Parameter Brief explanation Value

p0 Base probability of division of non-mutant PC 0.7

φ0 Base probability of division of mutant PC 0. 6

a Base necrotic thickness, controlled by nutritional needs 0.42

b Base proliferative thickness, controlled by nutritional needs 0.11

Rmax Maximum tumor extent, controlled by pressure response 37.5
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Figure 4: Tumor volume of the simulated model vs. in vivo tumor volume reported in [23]. The volume of tumor is normalized. The same
dynamic in both in silico and in vivo results can be seen.
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Figure 5: (a) Rate changes in the number of proliferating tumor, quiescent tumor, necrotic, and nonhealthy cells labeled by PC, QC, NeC, and
“Tumor,” respectively. (b) Rate changes of growth and necrotic fractions in 200 iterations run (Nmm= 0:2). (c) Time evolution of tumor
growth (each step of the simulation holds the time of a complete life cycle).
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tumor cells, and normal cells are labeled with their state
values, respectively. The pH degradation shows a homoge-
neous layer pattern dependent on the distance of a cell from
the core (this is named effective radius of a cell) of the tumor.

Due to the limited resources in the growth of avascular
tumors, the necrotic core and quiescent tumor layer have
been formed. The figure shows different levels of oxygen
and hypoxic areas inside the tumor (upper right panel) and
the limited penetration of the glucose into hypoxic zones
(bottom left panel). The bottom right panel shows the effects
of the tumor growth on the acidity of the host tissue: the pH
outside the tumor is about 7.4. However, the immediate envi-
ronment around cancer cells and especially the center of the
tissue have become more acidic. The pH range between 6.8
and 7.4 in our simulations corresponds to the experimental
findings in [66]. As it was expected, the core of the tumor
shows the most acidity, which contains the necrotic cells. In
addition, it shows the relationship between oxygen and acid
in the studied tissue. As you can see, hypoxia has induced
changes in cancer cell metabolism. Cancer cells will produce
energy by lactate production. It, therefore, increases acidity
(decreases pH) and decreases oxygen levels. In fact, the lower
the oxygen level, the more acidic the tissue is. A similar trend
is observed in glucose consumption. Although, the graphical
display of oxygen consumption is slightly different from the
glucose consumption due to an anaerobic respiration.

The results of our model are comparable with the ones
reported by Anderson [62]. He considered four tumor phe-
notypes, each progressively more aggressive (in terms of
invasiveness) than before. Each phenotype has its own O2
uptake. He assumed that O2 uptake, increase as the tumor
cell phenotype becomes increasingly aggressive.

The displays of time changes of metabolic factors are
indicated in Figure 6(b). As expected, the core of the tumor

is more acidic than the edge of it. The pH value of the tumor
is inversely dependent on the effective radius of a tumor cell.

A common feature of tumors that has been linked to
increased tumor aggressiveness and treatment resistance
[67] is acidosis caused by hypoxia (low oxygen tension).
Hypoxia is responsible for inducing acidosis through a shift
in cellular metabolism that generates a high acid load in the
tumor microenvironment [9]. Our results show the acid
levels will decrease along with a drop in oxygen levels. This
is another proof that the lower the oxygen level, the more
protons (H+) accumulate.

The results of the time evolution of oxygen in Figure 6(b)
are qualitatively compatible with the development of hypoxia
and anoxia in tumor spheroids reported by Grimes et al. [22]
(Figure 7). They introduced a new method for estimating
rates of oxygen consumption from spheroids, validated using
stained spheroid sections. Tissue sections taken from tumor
spheroids grown over 17 days were stained for the prolifera-
tion marker Ki-67 (which is shown in green) and hypoxia
(which is shown in red). A distinct progression was observed:
(a) day 4 of growth, with central hypoxia; (b) day 6 with
beginnings of an anoxic core; (c) day 15 of growth, with
distinct core; and (d) day 17 of growth, distinct core and
the degradation of spheroid integrity apparent [22].

They introduced “diffusion limit” [22] as the greatest
radius of the spheroid where the partial pressure of oxygen
just reaches zero at the center. In our model, the “diffusion
limit” is similar to the immediate time of producing a
necrotic cell, which was happened at the 23rd iteration.

Experimental studies have demonstrated that partial
pressure of oxygen is near zero between 100 and 200μm
from a vessel, at the variance of glucose exhaustion which is
longer, due to the higher diffusion rate of glucose [66]. Since
we did not consider a vessel in the studied tissue, partial

Cellular lattice
3

2

1

0

0
× 10–9

× 10–8

4

8

–1

7.4

7.2

7

6.8

6.6

–0.5

0
Oxygen

Glucose pH

(a)

× 10–8

× 10–8

× 10–9

O
2

gl
Ac

id

–1

–2
–4
–6
–8

4
6
8
10
12

–0.5

0
t = 10 t = 30 t = 60 t = 100

(b)

Figure 6: (a) A snapshot of simulated tumor growth along with graphical representations of the concentration of oxygen (mMol), glucose
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pressure of oxygen is near zero at the center of the tumor.
The layer structure of the oxygen concentration in our model
is also similar to Grimes’ model, which shows anoxic core at
the center of the tumor (dark blue in our simulations in
Figure 6(b)).

Figure 8 shows the changes in the concentration of met-
abolic resources and pH level at the center and edge of the
tumor. It is observed that the concentration of oxygen and
glucose at the center of the tumor is far less than the concen-
tration seen at the edge of the tumor, and the tumor center is
far more acidic than its edges. This figure is a quantitative
analysis of Figure 6(b) that was reported qualitatively (graph-
ically). Another important finding extracted from this figure
is the constant concentration of oxygen and glucose observed
after the formation of the necrotic core, because dead cells do
not consume any nutrients. The findings in this section are
consistent with [68].

The mean concentration values of nutrients and the pH
value of the tumor compared to tumor radius are shown in
Figure 9. The mean concentration values through tumor
growth are calculated by dividing the sum of each metabolic
factor by the number of tumor cells in each iteration. As the
tumor grows and the radius of the tumor increases, the met-
abolic factors are consumed/produced and the pH value
decreases. The figure shows the direct relationship between
oxygen and pH (consequently the acidity) levels of the
microenvironment.

The oxygen and glucose levels per the number of tumor
cells have slightly increased in small tumors (when Rt < <2
mm). This is partly due to the small number of tumor cells
and the highest levels of resources at the start of the growth
process. A decrease in the pH level of the microenvironment
is observed, which supports the hypothesis in [69] that a
small number of malignant cells can sufficiently alter the
microenvironment to form amass (assuming that the cellular
metabolism is sensitive to very small changes in the concen-
tration of oxygen and hydrogen ions). Then, a reduction in
the concentration of metabolic resources occurs. Hence, the
levels of oxygen and glucose in the microenvironment will
greatly decrease through avascular tumor growth with
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Figure 7: Time evolution of hypoxia and anoxia in stained cross-sections of DLD1 tumor (human colorectal cancer) spheroids [22] observed:
(a) day 4 of growth, with central hypoxia; (b) day 6 with beginnings of an anoxic core; (c) day 15 of growth, with distinct core; and (d) day 17
of growth.
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limited resources. Reducing the oxygen, in turn, leads to an
increase in the acidity of the tissue in the tumor site.

Heterogeneity arises from considering various types of
tumor cells (different types of proliferating tumor, quies-
cent tumor, and necrotic cells) that consume different
amounts of nutrients and produce different values of acids.
Therefore, different therapeutic manners can be seen as a
result of this heterogeneity. The Nmm parameter (i.e., the
production probability of a nonmutant PC from the mitosis
of a mutant PC) has been also introduced for generating
special heterogeneity of the model. The dependence of the
growth process on environmental conditions through the
Nmm is discussed here.

Nmm is a bifurcation parameter of the model that causes
a sudden “qualitative” change in its behavior. The effect of
changing the values of Nmm from 0 to 1 in 0.1 increments
on the changes of different types of cells were discussed in
[21]. The increment of Nmm means more dependency of
cancerous growth on environmental conditions. We have
shown in [21] that changing Nmm will affect the number
of PC, QC, and NeC and thus the tumor size and growth
speed in our previous model. Here, we added metabolic
factors to the model and we focus on the effect of changing
the value of Nmm on tumor growth. As it can be seen in
Figure 10(a), slopes and the final values of the number of
PC, QC, NeC, and nonmutant PC can be changed by varying
the value of the Nmm parameter. This shows how the neigh-
borhood affects the proliferation of cancer cells, and how
these cancer cells affect the rest of the system, especially the
number of necrotic cells. Considering Nmm > 0:3 does not
show any significant change in the number of cells. This fig-
ure also shows the direct relationship between mutant PCs
and NeCs, i.e., the more the number of mutant PCs is, the
more the number of NeCs is.

Similarly, Figures 10(b) and 10(c) shows the effect of
Nmm on the tumor growth, growth fraction, and necrotic

fraction. As it can be seen, the tumor volume can be regulated
and controlled by varying theNmm. Although increasing the
value of Nmm above 0.3 will not show any significant
changes in the tumor volume and the number of different cell
types.

Figure 11(a) indicates the effect of changing the values of
Nmm from 0 to 1 in 0.1 increments on the graphical displays
of tumor growth and metabolic factors at the end of the sim-
ulation. The glucose concentration is not reported here. As
expected, the oxygen concentration has obviously changed
by varying the Nmm. The effect of increasing Nmm on
shrinking tumor can be seen in this figure. Besides, it seems
that for Nmm > 0:3, no significant changes in tumor growth
and the concentration values of metabolic factors can be
seen. In fact, the most obvious difference can be seen when
Nmm < 0:3.

We considered four layers of different pH values in the
studied tissue in order to discuss our results in Figure 11(a),
quantitatively. Therefore, we decided to count down the
number of cells in each layer in order to compare each
lattice in Figure 11(a). Figure 11(b) shows the number of
cells in each layer to the whole number of cells in the lat-
tice. As it can be seen the microenvironment is less acidic
when Nmm > 0:3.

Figure 12(b) displays the differences in the pH values in
the metabolic lattice at different Nmm in comparison with
considering just mutant PC in simulations. Since the effect
of Nmm on the acid concentration was not obvious in
Figure 11(a), the oxygen concentration and the pH values
at different positive Nmm (Nmm> 0) is subtracted from
the oxygen concentration and the pH values at Nmm= 0. It
can be seen that the pH value has obviously changed by vary-
ing the Nmm. Focusing on Nmm > 0:3, it seems that the
most differences with Nmm = 0 is observed. It can be seen
that the oxygen concentration and the pH level are almost
symmetric around the center of the lattice.

We considered three layers of different oxygen concen-
trations in the studied tissue in order to discuss our results
in Figure 12(a), quantitatively. Therefore, we decided to
count down the number of cells in each layer in order to
compare each lattice in Figure 12(a). Figure 12(c) shows the
number of cells in each layer to the whole number of cells
in the lattice. As it can be seen, when Nmm > 0:3, more cells
of the lattice are located in the Ox3 which is the layer with
less oxygen concentration.

With regard to the above results, it seems that the Nmm
has a significant influence on the dynamics of tumor growth.

4. Conclusions

In this paper, we tried to predict the evolution of tumor
growth using biological hypotheses and findings in the form
of simple mathematical equations. Since cellular automata is
capable of producing complex patterns by applying simple
rules, it is appropriate for expressing many features of self-
organizing complex systems like tumors. One of the factors
that contributes in the complex behavior of tumors is the
intratumor heterogeneity. The spatial distribution metabolic
factors such as oxygen, glucose, and lactic acid also play a
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fundamental role in tumor growth. As an example, the com-
mon feature of tumors that has been linked to increase tumor
aggressiveness and treatment resistance [67] is acidosis
caused by hypoxia (low oxygen tension). Therefore, a two-
dimensional CA model of tumor growth emphasizing the
effects of metabolic factors is introduced in order to consider
the nonlocal effects of metabolic factors. The model starts by
adding nutrients and oxygen to the tissue and removing the
acid produced by tumorous cells (especially by necrotic cells)
at each step. Then, it uses unique diffusion models for
oxygen, nutrients, and acid. Thus, according to the response
of the microenvironmental conditions, each cell consumes
nutrients and updates its state based on stochastic rules and
its neighborhood. In order to simulate heterogeneity, multi-
cellular layer structure of tumor growth is considered. Two
types of proliferating tumor cells have also been considered:
nonmutant and mutant tumor cells. The probability of
proliferation in the former one depends on the density of
nonnormal cells as an effective factor on mitosis. This means
more cancerous cells are in the neighborhood of the cell and
so that tumor cell is less likely to proliferate [70]. Further-
more, each cell can perform aerobic or anaerobic glycolysis
based on the oxygen concentration in the tumor microenvi-
ronment. Therefore, hypoxia that is responsible for inducing
acidosis in the tumor microenvironment [9] is also studied in
this model.

The link between acid level, oxygen level, spatial neighbor-
hood, and the time evolution of tumor growth is discussed in
this paper. Due to introducing mutant and nonmutant prolif-
erative tumor cells, a critical parameter (Nmm) is explored
that has a significant influence on the dynamics of tumor
growth, the growth fraction, necrotic fraction, and the concen-
tration levels of the metabolic factors. Concentrating on this

bifurcation parameter, the model can propose a hypothesis
for controlling the growth rate, shrinking the tumor growth,
and reducing the aggressive behavior of the tumor by focusing
on the oxygen and acid concentration in the tumor microen-
vironment of a given patient.

Our model proposed a neoadjuvant personalized therapy
that cannot remove the tumor entirely. Therefore, we need to
remove the tumor by surgery or another therapy like radio-
therapy. Chemotherapy or radiation is directly related to
the level of tumor hypoxia. Hypoxic tissue is more radio-
resistant than well-oxygenated tissue, and this factor has a
large impact on a treatment, requiring higher levels of
radiation to elicit the same cell kill. In order to effectively plan
irradiation of a tumor based on macroscopic scale images, it
is important to understand oxygen gradients within a tumor.
Therefore, this model may present opportunities to generate
antitumor therapeutic agents that are more tumor-specific by
understanding the metabolic adaptations that cancer cells
make under acidosis [23]. Besides, pH regulation controls
many cellular functions involved in energy production, cell
survival, proliferation, and migration. It seems necessary to
understand the fundamentals of pH regulation to use strate-
gies taking advantage of changes in the oxygen level and
increasing in the extracellular pH (pHo) to target primary
tumors and metastases [9].

In this paper, we showed that we have to observe the acid-
ity and the oxygen concentration of the tissue and find an
appropriate Nmm to reduce the size of the tumor along with
increasing the oxygen concentration and pH value of the
studied tissue. In fact, we can consider Nmm as a bifurcation
and Darwinian mutation parameter of the model. As it can
be seen in Figure 11(a), our goal is to find an Nmm, which
reduces the size of the tumor while avoiding the oxygen
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Figure 10: (a) The effect of changes of Nmm on the changes of the number of diverse cell types. (b) The effect of changes of Nmm on the
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concentration and pH value of the studied tissue reduction
for the purpose of future radiotherapy or chemotherapy.
Therefore, it seems from Figures 10–12 that Nmm= 0:3
shows the best results, and we need to find a therapy to vary
the Nmm value of a given patient into 0.3.

It has been shown in [21] that the CP time (when the
number of proliferative tumor cells and dead cells are equal
in a cancerous system) increases approximately linearly with
Nmm [21]. We have shown in this paper that we can reduce
the tumor growth rate by choosing a Nmm< 0:4 which leads
to a limitation for the CP time, i.e, if the number of prolifer-
ative tumor cells or necrotic cells does not extend a limitation
in a particular time, we can control the growth rate.

Ignoring the effects of tumor growth/inhabitation factors
on tumor evolution in this study is one of the limitations of
the proposed model. Besides, scientists have found evidence
of the effects of the acidification of the tumor microenviron-

ment on immune escape that can be overcome by drugs
targeting pH-regulatory pathways such as PPIs which can
increase the clinical potential of T cell-based cancer immu-
notherapy [71]. On the other hand, immunotherapy is an
important type of tumor treatment that uses our body’s
own immune system to help fight cancer. Therefore, consid-
ering the effects of the immune system in the model can
significantly improve our model from the point of treatment
in future studies and can help researchers study immuno-
therapy better.

One of the important aspects of mathematical modeling
of the tumor growth and studying the effect of different
parameters (metabolic factors in this paper) is the opportu-
nity to personalized therapy [72] or to introduce novel
therapies and predict their effect on patients. Therefore, con-
sidering the effect of some specific growth/inhibition factors
(such as Fibroblast growth factors (FGFs) or insulin-like
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Figure 11: (a) The effect of changes of Nmm at the end of simulation on the tumor growth, the oxygen, and acid concentration (each step of
the simulation holds the time of a complete life-cycle). The units and color bars are the same previous figures. (b) The effect of changes of
Nmm on the number of cells in each layer of the lattice at the end of simulation. Four layers with different pH values are considered.
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growth factors (IGFs)) with their biological details on tumor
growth and extending the model to study it under the effect
of therapy is the most important future plan of the authors.
Moreover, since there is some evidence that suggests the
relationship between the tissue microenvironmental acidity
and metastasis [73], the model can be developed considering
the migration and metastasis of malignant tumor cells as very
important phenomena. Enhancing the model as a compre-
hensive one that can help our understanding of tumor devel-
opment and progress that can be used later for treatment
purposes is the future goal of the authors.
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