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Abstract: Cells are the basic units of all organisms and are involved in all vital activities, such
as proliferation, differentiation, senescence, and apoptosis. A human body consists of more than
30 trillion cells generated through repeated division and differentiation from a single-cell fertilized
egg in a highly organized programmatic fashion. Since the recent formation of the Human Cell Atlas
consortium, establishing the Human Cell Atlas at the single-cell level has been an ongoing activity
with the goal of understanding the mechanisms underlying diseases and vital cellular activities at the
level of the single cell. In particular, transcriptome analysis of embryonic stem cells at the single-cell
level is of great importance, as these cells are responsible for determining cell fate. Here, we review
single-cell analysis techniques that have been actively used in recent years, introduce the single-cell
analysis studies currently in progress in pluripotent stem cells and reprogramming, and forecast
future studies.

Keywords: single-cell mRNA sequencing; pluripotent stem cell; somatic cell reprogramming; in-
duced pluripotent stem cell; heterogeneity

1. Introduction

The human body consists of trillions of cells that actively coordinate with each other
to perform various vital functions [1]. To understand these complicated interactions, one
must determine the transcriptional expression dynamics in the cells constituting each tis-
sue [2]. Human tissues are made up of a variety of cells, each of which undergoes genomic
variation through thousands of differentiation and division cycles, and can therefore be
quite heterogeneous. Dynamic molecular mechanisms in cells can be altered depending on
the cell environment [3,4]. Therefore, cell fate may be explored by investigating mRNA
expression at the single-cell level. As transcriptional expression levels can be successfully
investigated by refining and amplifying mRNAs from single cells, technological advance-
ments have occurred in rapid succession. In particular, next-generation sequencing (NGS)
technology, developed in the early 2000s, enables the simultaneous analysis of tens of
thousands of genes [5]. As a result, tissues or cell populations consisting of millions of cells
could be feasibly studied at the single-cell level [6].

Such technological developments led to the establishment of a global consortium that
initiated the Human Cell Atlas project to identify transcriptome and gene expression of
all human tissues at the single-cell level and create a network atlas [7]. This single-cell
transcriptome analysis project not only focused on a tissue cell atlas, but also extended to
single-cell transcriptome analysis of various diseases as well as the development of a single
cell fertilized egg, from differentiation to its growth into diverse tissues [8–10]. As single-
cell analysis has important applications in stem cell research, single-cell transcriptome
analysis has since been widely adopted. Analysis of single-cell transcriptomes can answer
many questions regarding the characteristics of stem cells in an in vitro environment,
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the trajectory of cell fate during differentiation into mature somatic cells, and how gene
expression induces somatic cell differentiation or somatic cell reprogramming [11–13].

Pluripotent stem cells have a self-renewal capacity and the ability to differentiate
into the three germ layers, ectoderm, mesoderm, and endoderm. Pluripotent stem cell
lines include embryonal carcinoma cells derived from teratocarcinomas, embryonic germ
cells derived from germ cells, and embryonic stem cells (ESC) from the inner cell mass
of the post-fertilization blastocyst stage [14]. Here, induced pluripotent stem cells (iPSC),
established by introducing four transcription factors, and SCNT cells, established through
somatic cell nuclear transfer, are also considered as pluripotent stem cell lines [15,16]. Vari-
ous pluripotent stem cell (PSC) lines have been developed for laboratory research [17,18].
Despite being cultured in a undifferentiation environment, these lines include sponta-
neously differentiated cells with different cell statuses. Such heterogeneity in cell status
can become a critical variable when attempting to understand the trajectory of differenti-
ation. In terms of the development of PSC-induced therapeutics, the fact that cells with
tumorigenic potential are always intermingled within a population remains a potential
risk factor [19–22]. It is therefore very important to distinguish between the functional
population and that with tumorigenic potential in the heterogenous PSC pool.

Until recently, transcriptome analysis of PSCs has been at the level of profiling tran-
scriptomes based on bulk NGS data [23,24]. Such bulk transcriptomics has limitations
regarding analysis of the heterogeneous characteristics of PSCs. Therefore, to cluster
pluripotency-regulating factors and the unique expression status of differentiation poten-
tial, it is necessary to understand how different cells constitute PSC, through single-cell
mRNA sequencing (scRNA-seq), and what are the interactions at the single-cell transcrip-
tome level. Based on these data, we can understand pluripotency, simulate the development
process in vitro, establish patient-customized reprogramming of stem cells, and identify the
causes of genetic disorders. In this review, recent studies using single-cell transcriptomics
on PSCs and factors determining cell fate since the reprogramming process are discussed.

2. The Single-Cell mRNA Sequencing (scRNA-Seq) Technique

Various scRNA-seq techniques have been developed to date [25–28]. Since the ini-
tial introduction of platforms by different companies, the use of scRNA-seq has become
commonplace [29,30]. There are three main steps for obtaining useful information through
single-cell transcriptome analysis. The first step is to dissociate live single cells from tissues
or cell lines in culture and retain them in their living status. This is relatively easy in
cell culture; however, it is difficult to achieve in tissues or organoids without causing any
cellular damage. Using mechanical and enzyme-based methods in parallel, single cells
may be dissociated from a complex biological specimen to obtain live cells. The single
cells need to be selected based on the expression of specific membrane proteins using
fluorescence-activated cell sorting. Expert handling of single-cell dissociation or treatment
can influence cell viability, which can, in turn, affect gene expression and the transcriptome
(Figure 1a).

Once cells have been dissociated at high viability, they need to be captured as sin-
gle cells. The two most commonly used methods of single-cell capture are microwell-
and droplet-based [31,32]. Microwell-based single-cell capture involves the placement
of cells one by one in a chip with a microwell, followed by reverse transcription and
cDNA amplification. Various microwell-based protocols have been developed [33–35].
Regardless of the method used, the size of the cells should be uniform, and the number
of cells analyzed at a single time remains limited. A typical commercial platform using
microwell-based single-cell capture is Fluidigm C1 (https://www.fluidigm.com, accessed
on 20 March 2021).

https://www.fluidigm.com
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Figure 1. Generation of single-cell transcriptomic data using microfluidic technology. Overview of 
the workflow for single-cell transcriptomic analysis using microfluidics. (a) Cultured stem cells are 
initially dissociated enzymatically to generating live single cells. (b) Overview of the droplet-based 
microfluidic system. Individual cells are encapsulated in an oil droplet with a barcoded bead and 
captured cells are lysed within the droplets. (c) Microbeads coated with DNA probes that comprise 
a PCR handle, cell barcode, unique molecular identifiers, and poly-dT sequence. (d) Sequencing of 
cDNA yields the library of transcriptomes from individual cells, counted as unique reads per gene, 
and analyzed/visualized. 

Once cells have been dissociated at high viability, they need to be captured as single 
cells. The two most commonly used methods of single-cell capture are microwell- and 
droplet-based [31,32]. Microwell-based single-cell capture involves the placement of cells 
one by one in a chip with a microwell, followed by reverse transcription and cDNA am-
plification. Various microwell-based protocols have been developed [33–35]. Regardless 
of the method used, the size of the cells should be uniform, and the number of cells ana-
lyzed at a single time remains limited. A typical commercial platform using microwell-
based single-cell capture is Fluidigm C1 (https://www.fluidigm.com, accessed date 20 
March 2021). 

Microdroplet-based single-cell capture methods have been the primary drivingforce 
for the rise in single-cell transcriptomics. This method involves the preparation of a tiny 
oil droplet containing a single cell and a single oligo-dT primer-conjugated gel bead fol-
lowed by capture and lysis of the cells within the droplet to generate a cDNA library 
[36,37]. The greatest strength of this method is the simultaneous processing of thousands 
of cells to identify a rare cell type in a heterogeneous cell population, and to track the 
gradual progress of cell fate through trajectory analysis. A typical commercial platform 
using microdroplet-based microfluidics is the Chromium of 10X Genomics 
(https://www.10xgenomics.com, accessed date 20 March 2021) (Figure 1b,c). 

The second step in scRNA-seq is to reverse-transcribe mRNA selectively to synthe-
size a cDNA library. Even though the first step of single-cell capture is variable, the pro-
cess of synthesizing a cDNA library is generally uniform. Usually, specific selection and 
reverse transcription of mRNA with a poly(A) tail are made with oligo-dT primers to ob-
tain a cDNA library [38]. In this case, a short, unique barcode sequence is inserted into the 
middle of the primer [39]. The barcode is used in the sequencing step to identify the cell 

Figure 1. Generation of single-cell transcriptomic data using microfluidic technology. Overview of
the workflow for single-cell transcriptomic analysis using microfluidics. (a) Cultured stem cells are
initially dissociated enzymatically to generating live single cells. (b) Overview of the droplet-based
microfluidic system. Individual cells are encapsulated in an oil droplet with a barcoded bead and
captured cells are lysed within the droplets. (c) Microbeads coated with DNA probes that comprise a
PCR handle, cell barcode, unique molecular identifiers, and poly-dT sequence. (d) Sequencing of
cDNA yields the library of transcriptomes from individual cells, counted as unique reads per gene,
and analyzed/visualized.

Microdroplet-based single-cell capture methods have been the primary drivingforce
for the rise in single-cell transcriptomics. This method involves the preparation of a tiny oil
droplet containing a single cell and a single oligo-dT primer-conjugated gel bead followed
by capture and lysis of the cells within the droplet to generate a cDNA library [36,37]. The
greatest strength of this method is the simultaneous processing of thousands of cells to
identify a rare cell type in a heterogeneous cell population, and to track the gradual progress
of cell fate through trajectory analysis. A typical commercial platform using microdroplet-
based microfluidics is the Chromium of 10X Genomics (https://www.10xgenomics.com,
accessed on 20 March 2021) (Figure 1b,c).

The second step in scRNA-seq is to reverse-transcribe mRNA selectively to synthesize
a cDNA library. Even though the first step of single-cell capture is variable, the process of
synthesizing a cDNA library is generally uniform. Usually, specific selection and reverse
transcription of mRNA with a polyA tail are made with oligo-dT primers to obtain a cDNA
library [38]. In this case, a short, unique barcode sequence is inserted into the middle
of the primer [39]. The barcode is used in the sequencing step to identify the cell from
which each RNA originated. Synthesizing cDNA through reverse transcription requires
amplification of the genome, similar to a general PCR method. Since noise is inevitable in
amplification, recently short sequences named unique molecular identifiers (UMIs) have
been added to the primers [40]. The UMI is inserted into the primer to identify the original
transcriptome from which the amplified cDNA originated. With the use of a UMI, the
number of specific transcriptomes can be quantified more accurately by calibrating the
noise accompanying the amplification process [41]. In all processes involving single-cell
transcriptome analysis, the construction of a cDNA library is critical in determining the

https://www.10xgenomics.com
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quality of the final result. Approximately, 20% of the transcriptome is synthesized as a
cDNA library [42]; therefore, it is difficult to detect low-expressing mRNAs by scRNA-seq.
The capture and amplification steps, therefore, aim to classify and capture live single cells
one by one, thereby creating a high quality library. If damaged cells are captured, or if a
low quality library is obtained, the result can be low total read counts, few expressed genes,
and a high fraction of mitochondrial genes. If dead cells with damaged cell membranes
are captured, the mRNAs are already leaking out and the total read counts would be
reduced significantly; genes in mitochondria leak to a relatively lesser extent, and the
proportion of mitochondrial genes among the total reads would be increased. A high rate
of mitochondrial genes can also indicate the capture of more than two cells in a microwell or
droplet [43]. If poor cell lysis occurs and the RNA is not liberated, the number of expressed
genes would sharply decrease. If this were to be combined with results from normal cells,
accurate analysis would be difficult. Therefore, the process of selecting normal cells is
important for the analysis.

The third step in scRNA-seq is to sequence and analyze the cDNA library obtained
from the single cells. A small amount of synthesized cDNA is additionally amplified by
conventional PCR and then sequenced using a commercial sequencing platform [42]. The
library is sequenced at the 3′-end. Genetic identity is determined by the approximately
100 bp adjacent to the polyA tail [44]. For this reason, the use of such sequencing in
scRNA-seq is limited. To overcome this limitation, 5′-RNA sequencing has been used
more recently [45]. In this case, the oligo-dT primer and polyA tail are used in the soluble
form, and barcodes and UMI sequences are attached to the 5′-oligonucleotide [45]. In
this strategy, much more transcript sequence information can be obtained, and the bias
generated in PCR analysis is effectively removed, thereby improving accuracy.

After QC, the data must be normalized since, as with bulk RNA-seq, scRNA-seq may
have different total read counts per cell. As in bulk RNA-seq, the total read count per cell is
divided by fragments per kilobase per million or transcripts per kilobase per million [46,47]
to produce a library of equal size per cell. After QC and normalization, the resulting data
undergo dimension reduction, clustering, visualization, and trajectory analysis to produce
a fully transformed data set. Since tens of thousands of cells are captured, and thirty
thousand gene expressions per cell are processed, scRNA-seq generates a large amount of
data and high-dimensional information.

The information generated by scRNA-seq is too complex to easily visualize initially.
Therefore, dimension reduction and projection are utilized to visualize gene expression data
in as a single dot in 2D space [48]. Principal component analysis (PCA), t-Stochastic Neigh-
bor Embedding (t-SNE), and uniform manifold approximation and projection (UMAP) are
some methods utilized for dimension reduction to allow cells with similar gene expression
to be clustered in the same 2D space [42]. t-SNE can be implemented with the use of Seurat
of Cell Ranger pipeline (https://www.10xgenomics.com/, accessed on 25 March 2021)
and R-package (https://satijalab.org/seurat/, accessed on 25 March 2021). Importantly,
dimension reduction should exclude noise as much as possible, and prevent the loss of
critical biological information. After dimension reduction, each cell is assigned unique
coordinates, and those with similar genetic information are clustered. A classic method
to apply to these linkages is the k-nearest neighbor, in order to simplify a complex shape
with a set of cell points and lines generated by the connection of points [49]. By linking the
nearest points, a well-connected “cell cluster” may be created, which can be used to find
unique expression information in each cluster and hence annotate the cluster. Traditionally,
making single-cell annotations or defining new cell clusters obscures the quantitative evalu-
ation of cell identity based on the expression of the cell type-specific genes previously used.
SingleCellNet, which implements a Random Forest classifier that learns cell-specific gene
pairs from cross-platform and cross-species data sets and thus quantitatively evaluates cell
identity at a single cellular resolution, has been developed to solve these problems and to
analyze them by increasing sensitivity and specificity [50]. Thus, it becomes possible to

https://www.10xgenomics.com/
https://satijalab.org/seurat/


Int. J. Mol. Sci. 2021, 22, 5988 5 of 11

simplify high-dimensional information and find the heterogeneity and subpopulations of a
cell population [48] (Figure 1d).

3. scRNA-Seq in PSCs

ESCs established from the inner cell mass (ICM) of the blastocyst are PSCs that have the
potential to differentiate into a diverse array of cells constituting the human body through
infinite rounds of self-renewal in vitro [51–53]. These ESCs have drawn much attention as a
critical resource, not only in developmental biology, but also in regenerative medicine [54].
An in vitro fertilized egg reaches the blastocyst stage, consisting of an ICM and trophoblast,
through multiple divisions and differentiation. Generally, a human blastocyst is made up
of approximately 100–150 cells. After rapid cell division, blastocysts are differentiated into
a three germ layer by diverse signal transduction pathways. Special culture conditions
proposed by Thomson et al. during the first establishment of human ESCs in 1998 were
designed to allow for infinite self-renewal [51]. Repeated proliferation, however, leads
to genomic variation and spontaneously differentiated cell populations; thus, ESCs are
ultimately cultured into a heterogeneous population [55,56]. Heterogeneity among in vitro
cultured PSCs can be a major obstacle when investigating early developmental stages or
for developing a cell therapy product. Conventional bulk RNA-seq is limited not only in
differentiating the heterogeneity of PSCs or finding small subpopulation cells, but also in
distinguishing the intermingled tumorigenic populations. To define cell clusters that help
explain the characteristics of PSCs and have a high utility as a cell therapy product, it is
necessary to conduct scRNA-seq to profile transcriptomes at the single-cell level. Through
this analysis, the heterogeneity of ESCs may be characterized efficiently.

3.1. scRNA-Seq in Undifferentiated PSCs

Since the publication of scRNA-seq analysis of oocytes in 2009, a variety of cells,
tissues, and pathologic tissues have been analyzed in this manner. The use of scRNA-
seq on human ESCs has been performed in great detail since the advent of Smart-Seq in
2012 [57]. Based on scRNA-seq analysis, hESCs were divided into eight cell clusters and
modules of co-regulated genes could be analyzed [58]. In addition, using human preim-
plantation embryos and ESCs, the first long non-coding RNA (lncRNA) expression maps
were drawn [59]. This was a significant achievement as the first single-cell transcriptome
analysis conducted using hESCs. However, the Smart-Seq technique used in the study had
a high possibility of error owing to sensitivity to enzyme activity and was limited in its
capacity to distinguish between subpopulations, owing to its use of a small number of
cells. Therefore, development of microwell- and droplet-based scRNA-seq have played a
decisive role in single-cell research on ESCs [60,61]. Studies on the developmental status
and heterogeneity of undifferentiated ESCs and induced pluripotent stem cells (iPSCs),
using microwell- and droplet-based scRNA-seq, will be discussed below.

Using a microwell-based microfluidic chip, Messmer et al. identified transcriptional
heterogeneity in hESCs [62]. Generally, pluripotency status is divided into naïve and
primed states. Although both human and mouse ESCs are derived from the ICM of a
preimplantation blastocyst, they have different transcriptomic, epigenetic, and morpho-
logical characteristics. Mouse ESCs are naïve cells that have a core pluripotency network,
including OCT4, KLF4, and DPPA3. Unlike primed human ESCs, mouse ESCs have two
X chromosomes activated in female mice and feature global DNA hypomethylation and
dome-shaped mESC colonies [63]. However, during development, primed hESCs are
considered pluripotent in the epiblast after implantation. Messmer et al. converted primed
hESCs into naïve hESCs by chemical means and analyzed pluripotent status-based char-
acteristics through scRNA-seq and compared cell subpopulations. Through scRNA-seq
analysis, the researchers discovered that similar levels of pluripotency-specific markers,
namely OCT4, SOX2, and NANOG, were expressed in both naïve and primed cells and that
the cell population expressed many naïve (KLF17, DPPA5, DNMT3L, GATA6, TBX3, IL6ST,
DPPA3, and KLF5) and primed markers (CD24, ZIC2, and SFRP2). Primed cells were shown
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to express the markers HMX2 for tissue generation and SOX11 for nerve development,
showing characteristics of the late development stage. In contrast, naïve cells expressed
markers related to reproductive cell functions (HORMAD1 and KHD3CL) [64]. Moreover, a
subpopulation of naïve hESCs that showed characteristics of both naive and primed states
was identified. Such subpopulations were suggested to show formative pluripotency [65],
in which cells acquire differentiation competency and are marked by the expression of
early post-implantation factors such as OTX2, SOX3, and POU3F1, along with the transient
loss of NANOG expression.

Nguyen et al. used scRNA-seq to reveal that iPSCs were heterogeneous at the tran-
scriptional level [66]. Using 165 unique genes representing pluripotency, four independent
iPSC subpopulations were identified: core pluripotent, proliferative, early primed for
differentiation, and late primed for differentiation. The researchers then identified the
trajectory of interactions across the populations. Although the study was limited to one
iPSC line, it offered a wealth of transcriptional profiling for undifferentiated iPSCs at the
single-cell level and improved the understanding of complexity and heterogeneity of iPSCs.

3.2. scRNA-Seq in Somatic Cell Reprogramming

The application of four defined transcription factors (OCT4, SOX2, KLF4, and CMYC)
to somatic cells resulted in reprogramming to PSCs [15,67]. Since this discovery, many re-
search groups have made significant strides in understanding transcriptional and epigenetic
changes in these reprogrammed cells [68]. To reveal the molecular mechanism underlying
this complex reprogramming, reprogrammed cell transcriptomes have been analyzed by
NGS methods [69–72]. Through bulk NGS analysis, cells early in the reprogramming pro-
cess showed changes in proliferation, metabolism, and cytoskeletal organization, whereas
cells late in the reprogramming process showed activation of a pluripotent network at
the global level [69–71,73,74]. Even if reprogramming-induced transcription factors were
ectopically expressed, reprogramming efficiency was extremely low, and cells that were
successfully reprogramming continued to remain intermingled with those that were not.
For this reason, bulk NGS analysis is insufficient in understanding reprogramming. Not all
reprogrammed cells undergo the reprogramming process at the same time or in the same
sequence [75,76]. Even in the case of fully reprogrammed iPSCs, variable kinetics within
heterogeneous populations suggested that defining the reprogramming checkpoints might
still be possible through scRNA-seq [13].

Jaenisch’s research group was the first to analyze single-cell transcriptomes chrono-
logically during reprogramming using a microwell-based microfluidic chip [77]. Using
the C1 Fluidigm commercial platform, the researchers reprogrammed mouse somatic cells,
quantitatively analyzed 48 genes in hundreds of cells that acquired pluripotency, and
identified cell cycle regulatory genes and activation factors that promoted reprogramming.
The expression of ESRRB, UTF1, LIN28, and DPPA2 was a better predictive factor than
FBXO15, FGF4, and OCT4, which had previously been proposed as reprogramming mark-
ers. In particular, after activation of pluripotency genes, reprogramming was observed
to occur in a hierarchical manner. Activation of endogenous SOX2 was considered to be
an event occurring upstream prior to full acquisition of pluripotency. Using scRNA-seq,
the molecular determinants for induction of epigenetic changes in early stochastic and
late deterministic phases were determined through a hierarchical model, transcriptome
analysis, and late-reprogramming marker analysis.

Lin et al. performed scRNA-seq using Fluidigm C1 while focusing on three tran-
scription factors involved in conventional and chemical reprogramming [78]. During
reprogramming, the cell population became heterogeneous owing to stochastic cell fate
determination. Using new mathematical algorithms for single-cell reprogramming anal-
ysis, the cells were classified into categories of reprogramming and non-reprogramming
potential. In addition, an accurate branch point was obtained by dividing into reprogram-
ming potential and non-reprogramming potential clusters through scRNA seq results,
which provided more detailed information on the correlation of the genes involved at a



Int. J. Mol. Sci. 2021, 22, 5988 7 of 11

specific time. The existing buck-mRNA analysis reported interferon signaling and innate
immunity promote reprogramming [79,80], but suggested that INF-gamma act as a barrier
in the last stage of cell fate conversion. The scRNA seq study not only provides a high
resolution information and the landscape of existing reprogramming, but also suggests the
existence of a barrier during reprogramming, which is significant in that it provides a clue
to overcoming the limitations of existing reprogramming.

Another strength of scRNA-seq analysis in reprogramming research is the ability to
draw insights related to the direction of the reprogramming trajectory. Bulk RNA-seq-
based reprogramming research only captures snapshots of cells during reprogramming
and does not provide information on dynamic processes; therefore, it can be difficult to
explain the trajectory of reprogramming cells. By collecting data at multiple time points
throughout the reprogramming process, a reprogramming trajectory may be proposed [12].
To this end, researchers performed scRNA-seq on reprogrammed mouse iPSCs at 12 h
intervals to determine cell fate. The reprogramming environment was reconfigured in
315,000 scRNA-seq profiles, and the Waddington-optimal-transport algorithm was applied
to create a reprogramming trajectory, a development program wider than any previously
obtained. Cells were found to transition from mesenchymal to epithelial; populations
related to pluripotency, extra-embryo, and nerve cells were generated; and each population
included multiple micro-subpopulations. Through their scRNA-seq analysis, reprogram-
ming waves appear several times when somatic cell reprogramming occurs, and Obox6
is revealed as a transcription factor that appears after the second reprogramming wave.
Evaluating interaction scores for ligands in stromal cells with receptors expressed in iPSCs,
the authors found a paracrine factor, GDF9, that mediates intercellular interactions when
reprogramming takes place, confirming that it can increase reprogramming efficiency. The
study showed that transcription factors such as Obox6 and the paracrine signal GDF9 can
affect cell fate transitions, increasing reprogramming efficiency [81].

Reprogramming is a stochastic process. A very small number of cells in a reprogramming-
induced population are actually reprogrammed [82]. Therefore, it is difficult to detect
changes in fully reprogrammed iPSCs. Hence, analysis of single-cell transcriptomes is
essential to accurately understand the entire reprogramming process in somatic cells,
to identify cell fate determinants, and to develop strategies for overcoming the repro-
gramming barrier. Tran et al. conducted an analysis using an average of approximately
55,000 reads and 13,000 uniquely identified transcripts per cell, which corresponded to a to-
tal of 18,005 genes detected across all cells [13]. At the time of reprogramming from mouse
embryonic fibroblasts (MEFs) to iPSCs, the researchers identified the path, speed, and
efficiency of cell fate conversion of the reprogrammed cells by determining pluripotency of
14 cell clusters in a time-course analysis. At that time, they observed the expression pattern
of four genes and found that all of the mesenchymal-related genes are not downgraded at
the same stage, and the cell cycle and antihypertensive genes are temporarily controlled.
Downregulation of mesenchymal genes and upregulation of CDH1 were found to be
independently regulated, whereas co-expression NANOG, SALL4, TDGF1, and EPCAM
within the same cell predicted a more homogenous transition to an iPSC state. The process
of transition to iPSC meant a continuous change in cell fate. If a cell population is very
heterogeneous, it is impossible to understand the reprogramming by only bulk sequence
analysis of cells at the end points [13]. Based on the review of multiple theses, scRNA-seq
helped reveal that PSCs were heterogeneous, that there were multiple cell fate transition
branch points in the reprogramming process, and that the mechanism for each can be
unraveled.

Xing et al. simultaneously conducted scRNA-seq and single-cell ATAC-seq (scATAC-
seq) to further clarify the analysis of the entire body of a single-cell in human somatic
cell reprogramming [11]. scATAC-seq is an epigenomic profiling technique for measuring
chromatin accessibility and discovering cell type-specific regulatory mechanisms [83].
The combination of scRNA-seq and scATAC-seq provide more comprehensive molecular
profiles of individual cells and their identities. In human somatic cells, single-cell analysis
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combined with scRNA-seq and scATAC-seq during reprogramming showed that the
transition from a network controlled by FOSL1 to a network controlled by TED4 leads the
cell to a pluripotent state. The combinational application of scRNA-seq and scATAC-seq to
study these reprogrammed heterogeneous groups continues to advance our understanding
of reprogramming efficiency-related hurdles [84].

4. Conclusions

Biologists have long aimed to identify the expression of genes at the single-cell level.
Ten years ago, this goal could be accomplished mainly through RNA in situ hybridiza-
tion, immunostaining, or FACS for specific proteins. However, in these methods, only
a certain number of genes could be identified in each experiment, and bulk-mRNA se-
quencing for the total population had limitations owing to heterogeneity. To overcome
these limitations, track heterogeneous cell subpopulations, and understand pathway dy-
namics, single-cell transcriptome analysis has been widely accepted since its introduction
in 2009 [2,57]. Particularly in stem cell research, it can be widely applied for identifying
cell differentiation potential, cell fate determinants, and heterogeneity. This review fo-
cused on undifferentiated pluripotent status and reprogramming pluripotency. Recently,
single-cell transcriptome analysis has helped induce undifferentiated stem cells in vitro
and enable their differentiation into diverse cells, generating a “pseudo-time” trajectory
of the fate determinants of stem cells [11,12,79]. Studies using scRNA-seq have helped
identify functional cellular subpopulations, enhance developmental studies, and contribute
to identifying causes underlying diseases. Despite considerable development over the
last ten years, there remain limitations in the detection of mutations in undetected cell
populations owing to 3′-mRNA sequencing [66]. Although scRNA-seq enables identifi-
cation of markers of cell populations and subpopulations, it cannot yet offer sufficient
information on the interactions across subpopulations and organisms. If a technique for
analyzing proteomes and metabolomes at the single-cell level can be developed, along
with development of methods to combine these large data sets, safer and more efficient
stem cell therapy products may be designed therefrom.
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