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Abstract

Introduction: The information content of multiparametric flow cytometry

experiments is routinely underexploited given the paucity of adequate tools for

unbiased comprehensive data analysis that can be applied successfully and

independently by immunologists without computational training.

Methods: We aimed to develop a tool that allows straightforward access to the

entire information content of any given flow cytometry panel for immunologists

without special computational expertise. We used a data analysis approach which

accounts for all mathematically possible combinations of markers in a given panel,

coded the algorithm and applied the method to mined and self‐generated data sets.

Results: We developed Flow Plex, a straightforward computational tool that

allows unrestricted access to the information content of a given flow cytometry

panel, enables classification of human samples according to distinct immune

phenotypes, such as different forms of autoimmune uveitis, acute myeloid

leukemia vs “healthy”, “old” vs “young”, and facilitates the identification of cell

populations with potential biologic relevance to states of disease and health.

Conclusions: We provide a tool that allows immunologists and other flow

cytometry users with limited bioinformatics skills to extract comprehensive,

unbiased information from flow cytometry data sets.
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1 | INTRODUCTION

Flow cytometry is a powerful tool enabling high‐throughput,
multiparametric assessment of biological properties at the
single cell level. However, conventional data analysis
approaches have relied mostly on the retrieval of data from
bivariate plots each combining two markers of interest to the
question investigated, and subsequent gating on further
subpopulations defined by additional markers. This allows

targeted assessment of predefined cell populations, which in
most cases are known to the investigator, but leaves the
overwhelming majority of information obtainable from a
given panel of markers unaccounted for. In fact, the
information content that can be retrieved from any given
panel increases exponentially with the number of markers
used in the panel as each maker can assume at least two
mutually exclusive conditions: positive or negative. Con-
sidering that each given marker in the panel may or may not
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be taken into account to depict a cell population, the number
of cell populations that can be described by the panel equals
ncp= 3nm–1, where ncp=number of cell populations and
nm=number of markers (‐1 theoretical possibility when no
marker is chosen). For example, this accounts for 80
informative populations for four markers, 728 for six
markers, and 59 048 for 10 markers, thus providing a
considerable amount of information. In contrast, conven-
tional approaches focus on the identification and measure-
ment of a few populations defined by the sequential
combination of markers.1 Computed clustering approaches
of cell populations, spearheaded by the FlowCAP2 (Flow
Cytometry: Critical Assessment of Population identification
methods) initiative, have ameliorated the efficiency in flow
cytometry data analysis.3 Computational methods such as
the ones implemented by flowType/RchyOptimyx,4 Flow-
CAP,5 Citrus,6 SWIFT,7,8 or COMPASS,9 further aim at
identifying cell types or biomarkers important to predict
survival or differentiate clinical samples, starting from high
dimensional flow cytometry data. These approaches have
shown considerable success in classifying and predicting
disease states and clinical evolution, as evidenced by the
FlowCAP II and IV challenges.2 However, these methods
require intermediate to advanced bioinformatics skills (such
as in R, Matlab, or Python), which still represents a hurdle
for their widespread use for research or clinical purposes.
Web‐based platforms provide only partial alternatives for
nonprogrammers, such as GenePattern (Flow Cytometry
Suite) allowing cell population clustering analysis, or the
commercial interface Cytobank that helps with feature
extraction and data structuring. Our aim here is to provide
the routine flow cytometry user with a simple, directly
applicable tool to extract all available information derived
from positive/negative (i.e., ideally fluorescence minus one
[FMO]‐based) gating of cell populations, without computa-
tional expertise. We show that this methodology allows
efficient partitioning of clinical samples using only a few
widely used markers.

2 | METHODS

The supplement section of this paper contains all the
information necessary for the independent reproduction
and application of this tool, including the source code of
the program.

2.1 | Acquisition and processing of
human samples

Leukocytes were purchased from the New York Blood
Center (Component Laboratory, Long Island City, NY)
which routinely obtains informed consent from all

subjects and approved all experimental protocols. All
methods were carried out in accordance with relevant
guidelines and regulations.

2.2 | Sample processing and flow
cytometry

Peripheral blood mononuclear cells were obtained
through centrifugation over Ficoll (GE Healthcare,
Uppsala, Sweden) and cryopreserved on the day they
were received. Cells from all recruited donors were
thawed, stained with the antibodies specified in Table S1
for 20 minutes at room temeparture, fixed in 4%
paraformaldehyde and acquired on an LSRII the follow-
ing day. The staining panel for this experiment was
optimized in various single‐color titration and add‐in
experiments as described.10 N‐1 (FMO) controls were
obtained to guide gating decisions. Flow cytometry
analysis was performed using FlowJo software.

2.3 | Human study subject recruitment
and sample selection for analysis

We aimed to collect samples from female and male
humans in two age groups: 8 to 35 years old, and 65 to 95
years old and requested leukocyte enriched blood from
presumably healthy human donors with these age and sex
specifications from a commercial provider. We received 32
samples (equally split between male and female donors) in
response to this request over a period of 7 months. The
commercial provider of the blood samples allows verifica-
tion of subject‐related health data retrospectively. All
samples were verified to have the requested age and sex
specifications, except two samples which were outside the
requested age range (HDC‐39 and HDC‐40). For one
sample, the precise age could not be reliably verified
(HDC‐38). These samples were excluded. As classification
was not satisfactory when middle‐aged donors were
included in the analysis, we decided to exclude all donors
above the age of 30 to escalate the age difference (HCD‐26,
‐27, ‐28, ‐33, ‐39, ‐40, ‐49, and ‐52). Included study subjects
are enlisted in Table S2. Serological test results for all
donors were provided as well. All donors tested negative
for HBC, HCV, HTLV, Chagas disease, and Zika virus.
Forty‐seven percent of the included donors were seropo-
sitive for CMV, consistent with the expected CMV
seropositivity rate in presumably healthy human subjects
in the general population.

2.4 | Computation of subpopulations

The algorithm calculates all subpopulations for M
markers using coding elements (the lowest level gated
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populations) and intermediate gated populations as
input.

The number of subpopulations can be calculated as
follows for four markers as an example:

Each marker defines one positive and one negative
population (21), and in general 2m populations are
defined for m markers. Enumerating the subpopulations
involves going through all populations defined by one
marker, two markers, and so forth. The number of
marker combinations when choosing m markers among
4 is C(4,m) = 4!/(m!(4−m)!), with markers defining 2m

populations.
Thus, the total number of populations is C(4,1) 21 +C

(4,2) 22 + C(4,3) 23 + C(4,4) 24 = 80, and in general C
(M,1) 21 + C(M,2) 22 +…+ C(M,M) 2M= 3M−1 popula-
tions for M markers.

Populations are computed from coding elements and
higher level gated populations. Thus for four markers, the
population A2/4 (M1+, M2−, M4+) (Figure 1) is
computed as %(A2 +A4) × %(A)/100, where %() is the
percentage of the parent population.

2.5 | Workflow

For data entry, nested gating is performed in FlowJo
(FlowJo LLC, Ashland, OR), and populations are entered
into the “Create Table” module from higher to lower

gating levels (Figure S7) (see the Supporting Information
file “instructions for running the program” for more
details).

A table is created for all samples, gathering popula-
tion values in the specified order. The resulting table
is pasted into the Java‐created.csv input file (named
“4markers.csv” in the section describing “Running the
program”) (Figure S8, top).

From the input file, the Java program generates an
output.csv file containing a table of all population values
for each sample (named “4markers_output.csv” in the
section describing “Running the program”) (Figure S8,
bottom).

To demonstrate the impracticality of performing
calculations for even small numbers of markers, we
computed output values under the application of the
above‐mentioned principles for four markers in excel
spreadsheets. An example is attached in (Figure S9) that
exemplifies the summation of coding elements into final
output values.

2.6 | Programming

The Java program recursively generates all 3n present/
absent/undefined combinations of the markers, then
computes the percentage value for each combination by
recursively summing the present/absent subtrees for

FIGURE 1 Exhaustive enumeration of immune subpopulations by flow cytometry for disease classification. A, In a four‐marker
(M1‐M4) flow cytometry panel, subpopulations are defined by negative/positive thresholds (quadrants). Coding elements are derived by
nested gating of M3, M4‐defined subpopulations into M1, M2‐defined populations. The algorithm combines these coding elements to
calculate the representation of all possible subpopulations, exemplified here for the M2‐negative population. B, Hierarchical clustering of
healthy (blue), Behçet's disease (BD‐red), sarcoidosis (SAR ‐ purple) or Retinal Vasculitis (RV‐green) according to all subpopulations of
immune cells in peripheral blood mononuclear cells defined by CD62L or CD27 expression, and IL‐22, IL‐17A secretion. Values in the color
legend represent z‐scores after autoscaling subpopulation percentages. IL, interleukin
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every marker that is undefined. The value for a
combination where all markers are defined is computed
directly based on partial sums of the input percentage
values.

Instructions to run the program are attached as a
Supporting Information file “Instructions for Running the
Program”. The source code is provided in two Supporting
Information files MarkerCombosInputGeneratorFlowJo.java
and MarkerCombosBatch.java. Two versions are included,
depending on whether the input tables are comma‐separated
files (decimal point format, e.g., in the United States) or
semicolon separated files (decimal comma format, e.g., in
most of Europe).

2.7 | Verification of computations

To verify the accuracy of computed population values,
they were directly compared with manually gated
subpopulation statistics. As shown in Figures S1 and
S2, there was concordance between calculated values and
direct gating, with both the formula‐based spreadsheet
(Figure S1) and the Java program (Figures S1 and S2).

2.8 | Principle component analysis
(PCA) and hierarchical clustering

For principle component analysis and hierarchical clustering,
data were entered into the ClustVis online program (http://
biit.cs.ut.ee/clustvis/).11 Pearson correlation was used as the
distance measure.

For some supplementary analyses, hierarchical clustering
was performed based on Euclidian distance applying default
specifications of the CIMMiner online tool at (https://
discover.nci.nih.gov/cimminer/oneMatrix.do).

PCA and hierarchical clustering analyses were repli-
cated in R using prcomp and heatmap.2 from the gplots
packages (not shown).

2.9 | Ethical approval

All necessary ethical approval for data presented in this
study has been acquired.

3 | RESULTS

We implemented an approach to compute data sets
generated through a minimal number of bivariate gating
steps to generate metadata describing accurately the entire
set of cell populations that can be retrieved from a panel,
when each marker used in the panel is defined as either
positive or negative, thus extracting the full information
content obtainable from each gating choice. This approach

was pioneered and applied in a low throughput setting by
Hofmann et al,12 and later incorporated into the flowType
algorithm available on Bioconductor for R users by
Aghaeepour et al. The program we have developed
computes values representing the frequencies of all possible
subpopulations when all markers in the panel are taken
into consideration through multiplication of the frequencies
of all back‐gated subpopulations toward the starting
population (Figure 1A).

We called the numeric values for these populations
“coding elements” as further computation was based on their
rearrangement and combination. These coding elements
depict the highest level of resolution for the differential
representation of cell populations in the panel. Extraction of
coding elements can be conveniently done and exported
using the popular flow cytometry analysis software FlowJo,
or can be performed on any other analysis platform. In the
next step, coding elements are sequentially paired to
determine the representation of each mathematically possi-
ble cell population within the starting population when all
possible combinations of markers and their respective bi‐
modal qualities (positive/negative) are taken into account.
This involves the summation of coding elements specific to
the representation level of the markers in the hierarchy of
the gating tree. It is to be noted that this calculation cannot
be performed easily by the current version of FlowJo or any
similar flow cytometry analysis software. To enable the
combinatorial population generation process for analysis of
larger panels, we coded the algorithm in Java. For easy
reference, we called the program Flow Plex.

To verify the accuracy of the obtained meta‐data sets
using this approach, we generated and mined flow
cytometry data. Percentage values for computable cell
populations were obtained through manual gating. There
was an excellent correlation between computed and
manually gated populations (Figures S1 and S2).

Next, we asked whether this approach could help
classify biological samples according to immune pheno-
types. To this end, we first mined a data set generated
from the peripheral blood of healthy humans and
subjects with a uniform ocular pathophenotype (pan‐
uveitis) caused by two different autoimmune diseases:
Behçet's disease (BD) and sarcoidosis (SAR).13 Currently,
no peripheral blood‐based diagnostic test can reliably
discriminate between these disorders. Peripheral blood
mononuclear cells gated for CD3+ CD4+ cells had been
stained for CD62L, CD27, and for secretion of inter-
leukin‐22 (IL‐22) and IL‐17A. Nested gating allowed
measurements of all 80 coding elements derived from
these four markers (Figure S3). Using the freely available
online tool ClustVis,11 hierarchical clustering of samples
based on these populations led to an accurate separation
between healthy and diseased samples (Figure 1B).
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Furthermore, BD and SAR samples were classified with
only minimal error, despite these disorders displaying a
uniform ocular pathophenotype, that is, uveitis. Retinal
vasculitis—a phenotype which is part of the clinical
spectrum of both disorders but more characteristic of BD
clustered with the latter (Figures 1 and S4). No single
marker or subpopulation by itself could unambiguously
differentiate between samples, thus supporting the use of
multipopulation analysis for efficient classification.

We also tested the approach on another mined data
set,6 to differentiate acute myeloid leukemia (AML)
patients' samples (n = 43) from healthy donors' samples
(n = 317). Several sets of markers were available to
characterize identical samples. We focused on the
combination of four markers: CD13, CD15, CD16, and
CD56 (Figure S5), from which the algorithm generated 80
subpopulations. AML samples and healthy donor sam-
ples segregated in different regions by principle compo-
nent analysis (Figure 2A), with only one AML outlier
inside the healthy sample region. Hierarchical clustering
using the 80 coding elements defined by the four markers
clusters separated all but one AML sample from the
healthy samples. This combination of markers allowed a
small fraction (5.6%) of healthy samples to segregate with
AML samples.

Finally, we applied the approach to one of our own data
sets generated from presumably healthy donors of both
sexes and different age groups (18‐30, n = 7, and 65‐95
years, n = 15). We created a panel incorporating common,
well‐known immune‐markers: CD3, CD4, CD8, CD45RA,

CCR7, and CD38 and gated on a CD127lo CD25hi

lymphocyte starting population which contains the bulk
of human regulatory T cells (an example of a six‐marker
gating and nesting strategy is shown in Figure S6). The
input of gated coding elements into the algorithm yielded
the expected 728 populations. Despite the relatively low
number of samples and the expected subtle differences in
immune parameters between young and elderly popula-
tions, hierarchical clustering allowed very good categorical
separation of samples (Figure 3). Again, no single marker
was able to uniquely separate samples in an unambig-
uous way.

4 | CONCLUSIONS

The approach described herein allows for the full
exploitation of information available from a flow
cytometry panel with minimal gating effort and is
facilitated by Flow Plex, a computational tool we have
developed for this purpose. For instance, for an eight‐
marker panel, only four gating decisions need to be made
and batched: one at each level involving two markers in
the gating hierarchy—yielding a total of 38−1 = 6560
different cell populations. The information obtained
through this approach increases exponentially with the
number of markers in the panel while the number of
necessary gating decisions increases only linearly. This
results in a vast increase in information over conven-
tional gating. The latter—with increasing numbers of

FIGURE 2 Separation of healthy and acute myeloid leukemia (AML) samples. A, Principal component analysis of healthy and AML
samples characterized by all combinations of CD13, CD15, CD16, and CD56 expression. B, Hierarchical clustering of healthy and AML
patient samples based on the representation of cell populations defined by all possible marker combinations
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markers used—yields a constantly decreasing fraction of
the information that can actually be obtained from the
same panel. Flow Plex can function as a pipeline for the
generation of high dimensional data by immunologists
familiar with standard flow cytometry analysis software
such as FlowJo, but without specialized computational
training. These high‐volume data sets can then be
analyzed employing straightforward routine approaches,
such as conventional principal component analysis and
hierarchical clustering techniques to group peripheral
blood samples by states of health, disease or other
variables/categories of interest, identify outliers and point
to populations of potential interest. These tools are easily
accessible online (e.g., the Clustvis website utilized here)
and/or part of the standard repertoire of statistical
support typically available to immunologists. Clustering
of populations can help with the biological interpretation,
which may be of interest for further discriminative and
mechanistic investigations. Additional methods can be
used to test the statistical significance of population
proportion differences if desired. As an example, the
uncertainty/robustness of clustering for the AML/
healthy data set (used as a training set for the program
in the workflow) was measured by bootstrapping using
the R package pvclust14 (Figure S10). Investigation of cell
populations with importance in disease can be performed
through statistical testing with correction for multiple
comparisons (e.g., false discovery rate method), and
biological interpretation can be further strengthened by
examining commonalities in clustered populations.
Association with survival, if available, can be tested
through the Cox proportional hazard methodology,
although with many populations special care must be
taken to exclude spurious correlations. Machine learning
algorithms on larger cohorts may improve the categorical

resolution of post‐flow cytometry analysis and feature
selection (and can be applied if desired), however,
the simple approach described here provides relevant
information to formulate testable biological hypotheses at
a speed and level of flexibility otherwise attainable only
by investigators with substantial computational expertise.

The quality and standardization of the flow cytometry
data are crucial to draw valid conclusions from flow
cytometry‐based analysis. All of the general rules for
standardization of flow cytometry data acquisition apply
here: special care should be taken during acquisition,
especially in longitudinal studies. Bead‐based standardi-
zation is strongly recommended. It is to be noted that the
program and subsequent analyses such as PCA and
hierarchical clustering—given their unbiased character—
can often very efficiently detect systemic biases.

While there theoretically is no limitation to the
number of markers that can be computed with Flow
Plex, the number of input values (obtained through
batching) also rises in an exponential fashion, however,
on a lower scale. To directly demonstrate the feasibility of
the method with standard computational power, we
plotted the execution times vs increasing numbers of
markers for MarkerCombosBatch (execution time for
MarkerCombosInputGeneratorFlowJo is negligible), de-
monstrating that analyses for up to 10 markers require
less than a minute for subpopulation generation, even for
large numbers of samples (Figure S11). Clustering
methods may become infeasible with a high number of
markers without prior feature selection. If manual gating
is used, the method probably works best at an optimum
in the 4 to 10 marker range (representing 80‐59 048 cell
populations per sample), a number of markers often used
in clinical studies. By using only a few markers, we could
generate meta‐data that helped categorize clinical

FIGURE 3 Hierarchical clustering of
elderly (>65 years; red) and young
(<30 years; blue) presumably healthy
donor‐derived leukocyte samples
according to 728 computed
subpopulations in peripheral blood
mononuclear cells defined by CD3, CD4,
CD8, CD45RA, CCR7, and CD38
expression gated on CD127lo/CD25hi

lymphocytes
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samples with a high degree of accuracy, even in samples
where relatively subtle differences are expected (e.g.,
young vs old). Also of importance is that many
immunologically relevant markers do not follow clear
bivariate partitioning, that is, they are expressed as a
continuum instead of one positive population distinct
from autofluorescence or other background signals. The
strict application of FMO (n−1) controls helps to clearly
differentiate positive from negative signals and is highly
recommended when generating data sets to be analyzed
with this approach. Considering the former, this method
will not discriminate between low/dim vs high/bright vs
expression levels of antigens, however, understanding
these limitations will enhance its useful application as a
discovery tool, stimulating, not replacing, hypothesis‐
driven research.
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