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AuNPs are synthesized through several methods to tune their physicochemical

properties. Although AuNPs are considered biocompatible, a change in morphology or

properties canmodify their biological impact. In this work, AuNPs (∼12 to 16 nm) capping

with either sodium citrate (CA) or gallic acid (GA) were evaluated in a rat aorta ex vivo

model, which endothelial inner layer surface is formed by glycocalyx (hyaluronic acid,

HA, as the main component), promoting vascular processes, most of them dependent

on nitric oxide (NO) production. Results showed that contractile effects were more

evident with AuNPsCA, while dilator effects predominated with AuNPsGA. Furthermore,

treatments with AuNPsCA and AuNPsGA in the presence or absence of glycocalyx

changed the NO levels, differently. This work contributes to understanding the biological

effects of AuNPs with different capping agents, as well as the key role that of HA in the

vascular effects induced by AuNPs in potential biomedical applications.

Keywords: gold nanoparticles, aorta, vascular tone, endothelium, glycocalyx, nitric oxide

INTRODUCTION

To date, the knowledge gained by nanotechnology has offered a plenty variety of nanoparticles
(NPs), which have unique properties, such as tunable surface functionality. Gold nanoparticles
(AuNPs) are highly remarkable in biomedicine due to their physicochemical, electronic, and
intrinsic optical properties (1–4).

AuNPs are widely used in biomedicine as antitumor drug delivery vehicle (5–7), theragnostic
platforms (8, 9), thermotherapy (10, 11), gene therapy (12, 13), and diagnostic (14).

AuNPs can be synthesized tuning size and shape particles by different strategies; for instance,
thermal, electrochemical, chemical methods, and biosynthesis (15–21). Particularly, chemical
methods use a gold salt (Au3+) precursor and different reducing agents, such as sodium
borohydride, sugars, polyols, gallic acid (GA), and citric acid (CA). Molar proportions of reagents,
temperature and reaction time influence the shape and particle size (22).
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GRAPHICAL ABSTRACT | The synthesized AuNPs (∼12 to 16 nm) were reduced and capped with two acids: sodium citrate (CA) and gallic acid (GA). These

compounds were evaluated in isolated rat aortic rings, an ex vivo model, through changes in the vascular tone (vasodilation/vasocontraction) associated with nitric

oxide production (NO). The endothelial inner layer surface of the aortic rings is formed by glycocalyx (hyaluronic acid, HA, as the main component), promoting vascular

processes, most of them dependent on NO production. The contractile effects were more evident with AuNPsCA, while dilator effects predominated with AuNPsGA.

Furthermore, treatments with AuNPsCA and AuNPsGA in the presence or absence of glycocalyx, using hyaluronidase (HIA) 50 or 100U modified both the magnitude

on the vascular tone, as well as the NO levels. The graphical abstract represents the effects related to the concentration of 100 ug/ml of AuNPs, compared to the

control and to increasing concentrations of AuNPs with and without enzyme treatment.

In this sense, the formation of AuNPs occurs in various steps.
Firstly, the dissociation of HAuCl4 (strong acid) in water to H+

+ AuCl−4 , and CA to citrate (weak conjugated base)+H+. Later,
citrate molecules provide electrons to the metallic ions, which
form seed particles. Then, some AuCl3OH− molecules interact
with the seed particles to growth into AuNPs (23). Finally, the
excess of citrate molecules interacts with the AuNPs surface

to increase steric and electrostatic repulsions between particles
to increase colloidal stability (24). Similarly, the formation and
stabilization of AuNPs occurs in presence if GA. However, this
last synthesis is carried out at high pH, favoring the complexation
of Au3+ by -OH ions and gallate base and consequently,
controlling the nucleation process to obtain smaller nanoparticles
with homogeneous particle size (25).
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The different AuNPs synthesis methods can confer other
biological effects. For instance, the spherical AuNPs shape,
synthesized with citrate (AuNPsCA; 16–20 nm/150mM), inhibits
cell proliferation in human cholangiocarcinoma cells after 24 h
(26). The use of other reduced agents such as GA in spherical
AuNPsGA (15 nm/150µM) reduced the ability to inhibit the
growth of cervical cancer cells after 24 h. However, AuNPsGA
at the same concentration did not affect normal Vero kidney
cells (27).

Interestingly, [Freese et al. (28)] reported that spherical
AuNPsCA (18 and 65 nm, 250µg/mL) can be internalized
by human dermal microvascular endothelial cells after
24 h exposure, showing no toxic effects and suggesting
that target biology plays a decisive role in toxicity of
AuNPsCA (28).

Various spherical sizes of AuNPsCA (3, 5, 7, 10, 30,
60 nm), in concentration of 0.24 to 15.6µg/mL do not alter
the endothelial permeability either promote the release of
pro-inflammatory mediators, such as prostaglandins I2 and
E2 in rat brain microvessel endothelial cells. However, the
smallest AuNPsCA (3–7 nm) tend to accumulate into these
cells. Moreover, AuNPsCA of 3 nm (7.8µg/mL or higher) show
a moderate decline of the viability cell but unmodified the
morphology after 24 h exposure (29).

Pan et al. (30) showed that the cytotoxicity induced by
spherical AuNPsCA (1–2 and 5 nm; 110µM, 24 h of exposure) is
size-dependent in evaluations performed in cancer cell cultures
of SK-Mel-20 humanmelanoma, HeLa human cervix carcinoma,
L929 mouse fibroblast and J774A1 cells after 24 h of exposure
(30), meanwhile, Chi-Ming et al. (31), showed that AuNPs in
the range of 3–5 nm after 30min of exposure, suppressed the
vascular endothelial growth factor (VEGF)-induced activation of
Akt/eNOs signaling pathway in rhesus macaque choroid-retinal
endothelial cell line RF/6A derived from the choroid-retina with
no signs of cytotoxicity.

Moreover, 10 nm spherical AuNPsCA were exposed to the
NO donor ruthenium complex Cis-[Ru(bpy)2(NO)(4PySH)].
(PF6)3 in a range concentration of 0.3 nM to 10µM, the
combination induced a vasodilator effect from the concentration
of 5µM in precontracted isolated rat aortic rings (32). Recently,
20 nm AuNPsCA promoted a transient vasodilation in mouse
4T1 tumors after intragastric and intravenous administration
of these NPs. This effect could be mediated at least in part
by the NO production and did not accelerate the tumor
growth (33).

On the other hand, a study with spherical AuNPs (14 nm,
1µg/mL) synthesized with eggplant extract and coated with HA
evaluated the incorporation of a small-interfering ribonucleic
acid-specific (to silence the expression of IAP-2, an inhibitor
of apoptosis). The results showed that the modified AuNPs
decreased the cell proliferation and triggered pronounced cell
apoptosis in A456 human lung carcinoma cells after 48 h of
exposure (34). Also, spherical AuNPs of 30 nm synthesized
with eggplant extract coated with HA and metformin 4µg/mL,
induced a reduction in G2/M phase andmolecular level apoptosis
in HePG2 human liver cancer cells after 48 h exposure, while for
that free metformin ranged from 10 µg/mL (35).

The HA is a macromolecule that makes up the
endothelial glycocalyx (among other glycosaminoglycans
and proteoglycans), which is produced by endothelial cells
(36, 37). HA has been implicated in NO production when
endothelial cells are exposed to wall shear stress (37, 38). NO
is an essential mediator in the regulation of vascular tone
since it promotes muscle relaxation and is synthesized from L-
arginine by activation of different NO synthase (NOS) isoforms,
endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible
NOS (iNOS) (39, 40).

In this context, the glycocalyx can potentially mediate
mechanical transduction; since when the glycocalyx layer is
removed, flow-dependent vasodilation and NO production is
altered (36, 41). For example, in an experiment where 4–6 cm
length of the rat’s right superficial femoral artery was incubated
with 14µg/mL of hyaluronidase (HIA) for 20min to remove HA,
NO levels decreased as well as the vasodilation (42).

Our research group has shown that other metallic
nanoparticles, such as silver nanoparticles can modulate
smooth muscle contraction (43–45) and moreover the
AuNPsGA promoted a transient smooth muscle contraction in
precontracted rat isolated tracheal rings (46). However, studies
on the actions of the AuNPs and their interaction with structures
of blood vessels are poorly studied. Thereby, we aim to evaluate
the participation of glycocalyx structures in vascular actions
induced by AuNPs synthesized by two different methods.

MATERIALS AND METHODS

Chemicals
HAuCl4, acetylcholine (ACh), Phenylephrine (Phe), vanadium
(III) chloride, N-(1-naphthyl) ethylenediamine dihydrochloride
(NEED), sulfanilamide (SULF), bovine serum album (BSA),
HIA (Type IV-S: from bovine testes), glutaraldehyde, ethanol
(>98%), NaCl, KCl, KH2PO4, MgSO4, CaCl2, C8H18N2O4S 4-(2-
hydroxyethyl)-1-piper-azineethanesulfonic acid (HEPES) were
purchased from Sigma Chemical Company (St. Louis MO, USA).

Synthesis of AuNPsGA and AuNPsCA
AuNPsGA were synthesized as described by Moreno-Alvarez
et al. (47). Briefly, 10mL of deionized water containing 0.001mol
of GA were added, under magnetic stirring, to 100mL of a
0.001M gold (III) solution prepared from a stock solution made
with HAuCl4 salt and deionized water. Then the pH value
was adjusted to 10 using a 1.0M NaOH solution (30min).
This reaction time was determined using UV-Vis spectroscopy
(S2000-UV-Vis fiber) following the development of the AuNPs
plasmon. A decrease in the intensity of the signal at 262 nm
confirmed the adsorption of the GA to AuNPs (47).

On the other hand, AuNPsCA were synthesized by Turkevich
method (48) using 40mL of a 0.001M gold (III) solution
prepared from a stock solution with HAuCl4 salt and deionized
water at a temperature of 90 ◦C were added, under magnetic
stirring, to 4mL of deionized water containing 0.0002mol of
CA. The reaction was kept for 30min (monitoring by UV-Vis
spectroscopy). The decrease of intensity of the signal at 340 nm
confirmed the adsorption of the CA to AuNPs.
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Transmission Electron Microscopy
Analysis
Physical characterization of synthesized AuNPs was performed
by transmission electron microscopy (TEM) using JEM−1230
(JEOL company, Peabody, MA) instrument working at an
accelerating voltage of 100 kV. The AuNPs were analyzed after
suspension in water and subsequent deposition onto carbon-
coated grids. Images obtained were used to determine the mean
size and standard deviation of particle sizes by measuring over
100 particles in random fields of view. Collected data were
analyzed by ImageJ software (Version 1.50, National Institutes of
Health, Bethesda MD, USA).

Dynamic Light Scattering Analysis
The hydrodynamic diameter and zeta potential of AuNPs
were determined by dynamic light scattering (DLS) in a
Beckman Coulter zeta potential and submicron particle size
analyzer DelsaNano C. Measurements were performed by
number distribution in a normalized scale. Measurements
were conducted at 25C using water as dispersant medium
(viscosity 0.8872 cP; dispersant dielectric constant 78.5;
dispersant refraction index 1.330). Both AuNPsGA and
AuNPsCA stocks (2 mg/mL) were diluted 1:1 v/v to perform
DLS analysis.

Dispersion of AuNPs
AuNPs were suspended in sterile deionized water at 3.5 mg/mL
and dispersed by sonication (10min) at ambient temperature
using a Cole-Parmer 470 50W ultrasonic tip processor at 45 kHz
of frequency.

Tissue Preparation
Adult male Wistar rats (300–350 g) were sacrificed by overdose
injection of sodium pentobarbital under animal protocols
approved by the Animal Care and Use Committee of the
Universidad Autonoma de San Luis Potosi (CEID2014033,
CEID202003). The experiments were performed as previously
described (45).

The aorta was excised, cleaned of adherent tissue, and cut
into 3–4mm length segments. Then, individual rings with
endothelium were suspended in organ baths containing buffered
Krebs-Henseleit (KH) solution (118mM NaCl, 4.6mM KCl,
1.2mM KH2PO4, 1.2mM MgSO4, 1.75mM CaCl2, 20mM
HEPES) free of pharmacological blockers, and with different
either 50U HIA or 100U HIA for 20min and then washed
out with KH solution containing 1 % BSA for 10min to
remove of HIA. The solutions were kept at 37◦C and pH
of 7.4.

Vascular Tone of Rat Aortic Rings
The aortic rings with or without HIA were suspended from
a Radnoti isometric transducer in organ baths containing
buffered KH solution. A passive load of 2 g was applied,
and the aortic segments were allowed to equilibrate for an
hour. Rat aortic vessels were precontracted with 2µM of Phe,
followed by AuNPs exposure (0.1, 1, 10, and 100µg/mL). The

solution was kept at 37◦C and pH of 7.4. Isometric changes
in tension were monitored using Polyview software (Astro-
Med, Inc. Grass Instrument Division). Quantitative evaluation
of the effects was measured as the percentage of reduction
in the vascular tone induced by the AuNPs sample, to the
100% of contraction triggered by Phe. The magnitudes were
normalized with Image J software (National Institute of Health,
Bethesda, MD).

Nitric Oxide Production
NO production was quantified indirectly by measuring nitrites
(NO2) and nitrates (NO3), which represent the NO metabolism
final products, using the Griess method (44). Briefly, 100 µL
aliquots of KH solution contacting with aortic rings with or
without HIA treatment or AuNPsGA and AuNPsCA were
sampled into 96 well plates and incubated for 30min in the
presence of 10 µL of NEDD (0.1%, w/v), 10 µL of SULF
(2%, w/v) and 80 µL of vanadium (III) chloride (50mM)
at 37◦C. After incubation, the absorbance of each sample
was measured with plate iMarkTM microplate reader (BIO-
RAD, serial number 10923), with an emission filter set at
560 nm. NO2/NO3 concentration was calculated using NO2

standard curve.

Statistical Analysis
Data were collected from three independent experiments.
After confirming normal distribution by the Kolmogorov-
Smirnov’s test, a one-way analysis of variance (ANOVA) or
two-way ANOVA (Factorial design) followed by Fisher’s Least
Significant Differences test to detect significant variations among
treatments. Statistical analysis was performed using the Statistica
10 software package (StatSoft, Tulsa, OK, USA), whereas Graph
Pad Prims V 5.01 (Graph-Pad Software Inc.) was used for data
plotting. Statistical significance for all analyses was accepted
at P < 0.05.

RESULTS

AuNPs Morphology and Surface Charge
TEM analysis revealed that AuNPsGA (Figure 1A) and AuNPCA
(Figure 1B) have spherical shape and a size distribution with
a mean particle size of 11.6 nm ± 2.82 and 15.8 nm ± 3.56,
respectively. DLS analysis determined for AuNPsGA a range size
from 7.9 to 37 nm, with a peak of 14.14 nm (Figure 1C) and a
mean surface charge of−23.5mV. On the other hand, AuNPsCA
showed a range size from 10 to 30 nm with a peak of 16.56 nm
(Figure 1D) and a mean surface charge of−34.5mV (Table 1).

AuNPs Modulate the Vascular Tone
Non-precontracted aortic rings were treated with increasing
concentrations of AuNPsGA and AuNPsCA (0.1–100µg/mL).
The concentrations were directly administered into the organ
baths containing the aortic rings. Data show that the cumulative
concentration of 100 µg/mL AuNPsGA did not modify the
vascular basal tone (Figures 2A,E). Cumulative concentrations of
AuNPsCA did not alter the vascular basal tone (Figures 2B,F).
However, the aortic rings were precontracted with Phe 2µM;
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FIGURE 1 | TEM micrographs of AuNPs. (A) Image shows the spherical shape of the AuNPsGA dispersed in water with a mean particle size of 11.6 nm ± 2.82; (B)

image shows spherical AuNPsCA with a mean particle size of 15.8 nm ± 3.56; (C) histogram shows the DLS size distribution of the AuNPsGA with a peak value of

14.4 nm; and (D) histogram shows the DLS size distribution of the AuNPsCA with a peak value of 16.5 nm.

TABLE 1 | Comparative parameters between TEM and DLS.

Nanoparticle Particle size (nm), TEM Hydrodynamic diameter (nm), DLS/Peak (nm) Zeta potential (mV), pZ Polydispersion index (PDI)

AuNPsCA 15.8 ± 3.56 10 to 30 / 16.56 −34.5 ± 6.47 0.369

AuNPsGA 11.6 ± 2.82 7.9 to 37/ 14.14 −23.5 ± 6.61 0.188

AuNPsGA induced vasodilation at all administrated cumulative
concentrations (0.1–100µg/mL) (Figures 2C,G), and in a
different fashion than the non-precontracted rings. In contrast,
AuNPsCA induced a contractile effect, being significant since the
concentration of 1 µg/mL (Figures 2D,H).

To infer responsible concentration(s) of AuNPsGA and
AuNPsCA in modulating the vascular tone, AuNPsGA and
AuNPsCA were administrated in single concentrations, using
precontracted rings with Phe 2µM. AuNPsGA induced
vasodilation at all single concentrations used (0.1–100µg/mL);
(Figures 3A,C,E,G,I), while AuNPsCA (0.1–100µg/mL)
keeps or increases the vasoconstriction displayed by the Phe
(Figures 3B,D,F,H).

Data suggest that the physiological effect exerted by AuNPs
depends on both the synthesis method and the particle
concentration. Thus, more studies were performed to figure out
the role of glycocalyx, since it is the first contact of AuNPs with
the cell.

AuNPs Physiological Effects Are
Dependent on Glycocalyx
HA indirectly regulates the vascular tone since its removal
decreased the NO levels (38). We performed a HIA enzyme
treatment to aortic rings to remove HA before exposing it to
AuNPsGA and AuNPsCA. Then, compare each event in the
presence of the enzyme to their control (no enzyme). 50U
HIA treatment did not modify the vasodilator effect induced
by ACh (See Supplementary Figure 1A). However, 100U HIA
treatment, the vasodilation promoted by ACh was reduced ∼ 10
% vs. the treatment with HIA 50U and ∼ 50 % over the effect
induced by ACh (HIA 0U) (Supplementary Figures 1B–D).

The treatment with 50U HIA enhanced the vasodilator effect
of AuNPsGA 100µg/mL in aortic rings compared to those
concentrations in the absence of HIA (Figure 4A). In contrast,
AuNPsCA (0.1 and 1µg/mL) administrated in the aortic rings
with the same enzymatic treatment restored the Phe contractile
effect, which increased in the absence of HIA 50U, suggesting the
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FIGURE 2 | Effects induced by increasing concentrations of AuNPsGA and AuNPsCA. Cumulative concentrations (µg/mL) of AuNPs of AuNPsGA (A) and AuNPsCA

(B) did not induce an effect on vascular tone in the aortic rings in absence of Phe 2µM. Cumulative doses of AuNPsGA (C) and AuNPsCA (D) induced a vasodilator

and vasocontraction effect on precontracted aortic rings with Phe 2µM, respectively. Results are representative of three independent experiments. Percentage of

contraction induced by AuNPsGA and AuNPsCA (0.1, 1, 10, and 100µg/mL) in the absence (E,F) and presence (G,H) of Phe 2µM, calculated as the percentage of

tension based on 100% contraction induced by Phe 2µM. NO production, in the absence and presence of AuNPsGA and AuNPsCA (0.1, 1, 10 and 100µg/mL), also

in the absence (I,J) and presence (K,L) of Phe 2µM was determined by Griess method. Values are represented as mean ± SEM (n = 3). *P < 0.05, **P < 0.01 and

***P < 0.001 vs. control (0µg/mL).

Frontiers in Medicine | www.frontiersin.org 6 June 2022 | Volume 9 | Article 889952

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Maldonado-Ortega et al. Vascular Effects of AuNPs

FIGURE 3 | Effects induced by singles concentrations of AuNPsGA and AuNPsCA. Effects induced by single concentrations of AuNPsGA (A) 0.1, (C) 1, (E) 10 and

(G) 100µg/mL; and AuNPsCA (B) 0.1, (D) 1, (F) 10, (H) 100µg/mL on pre-contracted aortic rings with Phe 2µM. Results are representative of three independent

experiments. Percentage of contraction induced by AuNPsGA (0.1, 1, 10, and 100µg/mL) (I) AuNPs-CA (0.1, 1, 10, and 100µg/mL) (J) on pre-contracted aortic

(Continued)
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FIGURE 3 | rings with Phe 2µM, calculated as the percentage of tension based on 100% contraction induced by Phe 2µM. NO production, in absence and

presence of AuNPsGA (0.1, 1, 10, and 100µg/mL) (K) and AuNPsCA (0.1, 1, 10, and 100µg/mL) (L) was determined by Griess method. Values are representing as

mean ± SEM (n = 3). *P < 0.05, **P < 0.01 and ***P < 0.001 vs. control (0µg/mL).

FIGURE 4 | Effects induced by AuNPsGA and AuNPsCA previously treatment with HIA 50U. Percentage of contraction induced by single concentrations of

AuNPsGA (A) 0.1, 1.0, 10, and 100µg/mL, and (B) singles concentrations of AuNPsCA (A) 0.1, 1.0, 10, and 100µg/mL. Graphics A and B show aortic ring

contraction with previous treatment with either 0U HIA (white bars) or 50U HIA (gray bars) on precontracted aortic rings with Phe 2µM. The contraction was

calculated as the percentage of tension based on 100% contraction induced by Phe 2µM. Results are representative of three independent experiments. NO

production, in the presence of AuNPsGA (C) and AuNPsCA (D) (0.1, 1, 10, and 100µg/mL), also with previous treatment with either 0U of HIA (white bars) or 50U

HIA (gray bars). NO levels were determined by Griess method. Values are represented as mean ± SEM (n = 3). *P < 0.05, **P < 0.01 and ***P < 0.001 vs. control

with Phe (white bars) or the control with Phe and 50U HIA (gray bars). #P < 0.001 differences between no presence of HIA 50U and presence of HIA 50U.

important role of HA, as part of the endothelial glycocalyx on
the effect induced by AuNPs (Figure 4B). However, AuNPsCA
100µg/mL in the presence of HIA did not change the contractile
effect vs. the absence of HIA. The physiological effects of
AuNPsGA and AuNPsCA at single doses when aortic rings were
previously treated with 50U HIA, are shown in Figure 4.

On the other hand, the treatment with 100U HIA enhanced
the vasodilator effect of AuNPsGA at the concentration
of 0.1, 10, and 100µg/mL (Figure 5A). In contrast, the
treatment of AuNPsCA in the aortic rings with the same
enzymatic treatment reduced the contraction induced by
AuNPsCA (0.1, 10, 10µg/mL) in comparison to the absence
of HIA, suggesting that AuNPsCA modulate the vascular
effects through the presence of HA (Figure 5B) as part of the
endothelial glycocalyx.

AuNPs Vascular Effects and Nitric Oxide
Production
NO is an endothelium-dependent vasodilator of the smooth
muscle, which plays a pivotal role in maintaining homeostatic
conditions of the blood vessels. NO under physiological
conditions is synthesized by the constitutively expresses enzymes
eNOS and nNOS (39). Under the altered situation, inflammation
promotes the inducible isoform iNOS generating a higher NO
concentration (44).

In this study, the NO production was determined in the
KH solution before and after the aortic ring was exposed
or not to HIA 50 U/HIA 100U and treated or not with
AuNPsGA and AuNPsCA. The cumulative concentrations of
AuNPsGA (Figure 2I) and AuNPsCA (Figure 2J), using the non-
precontracted rings, induced NO production release since the
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FIGURE 5 | Effects induced by AuNPsGA and AuNPsCA previously treatment with HIA 100U. Percentage of contraction induced by single concentrations of

AuNPsGA (A) 0.1, 1.0, 10 and 100µg/mL, and (B) singles doses of AuNPsCA (A) 0.1, 1.0, 10, and 100µg/mL. Graphics A and B show aortic ring contraction with

previous treatment with either 0U HIA (white bars) or 100U HIA (gray bars) on precontracted aortic rings with Phe 2µM. The contraction was calculated as the

percentage of tension based on 100% contraction induced by Phe 2µM. Results are representative of three independent experiments. NO production, in the

presence of AuNPsGA (C) and AuNPsCA (D) (0.1, 1, 10, and 100µg/mL), also with previous treatment with either 0U of HIA (white bars) or 100U HIA (gray bars). NO

levels were determined by Griess method. Values are represented as mean ± SEM (n = 3). *P < 0.05, **P < 0.01 and ***P < 0.001 vs. control with Phe (white bars) or

the control with Phe and 50U HIA (gray bars). #P < 0.001 differences between no presence of HIA 50U and presence of HIA 50U.

AuNPsGA promoted a significant increment vs. the control,
six times the control level, but not the AuNPsCA. However,
the precontracted rings with Phe 2µM displayed a significant
NO production increase induced by AuNPsGA (Figure 2K)
about five times vs. control, but not AuNPsCA (Figure 2L).
Moreover, the precontracted rings enhanced the NO levels about
1.3 times in comparison with non-precontracted conditions.
The addition of single doses of AuNPsGA (Figure 3K) and
AuNPsCA (Figure 3L) (0.1, 1,10, and 100µg/mL) µg/mL
induced differential NO levels.

The AuNPsGA treatment with single doses promoted
significant production of NO vs. the control, which was
associated with the relaxation induced by all the concentrations
under study (Figures 3A–K). However, in the AuNPsCA, only
the concentration of 100µg/mL yielded higher production of
NO, which could be related at least in part, with a modest
relaxation (Figures 3H–L).

Thus, the effect provoked by AuNPsGA and AuNPsCA
on the vascular tone is associated with NO, but in a
differential production that is in the function of the increasing
concentrations of AuNPsGA and AuNPsCA and strongly
suggests that could be other(s) mediator(s) induced by AuNPs
implicated in the modulation of vascular effects.

When HA was removed by HIA treatment in aortic rings, and
later exposed to AuNPsGA and AuNPsCA, variations in the NO
production were seen compared to their respective control in the
absence of HIA.

In this context, the aortic rings previously exposed to HIA
(50U) in the presence of single concentrations of AuNPsGA of
0.1 and 1.0µg/mL decreased NO levels in a pattern dependent
on the AuNPsGA concentration. However, the concentrations
of 10 and 100µg/mL were associated with a significant vascular
relaxation (Figure 4C).

In contrast, AuNPsCA exposed to HIA (50U) at a
concentration of 0.1µg/mL increased the NO levels, and 1 and
10µg/mL AuNPsCA decreased the NO production (Figure 4D).
At the concentration of 100µg/mL, the NO stimulation was
not changed in comparison to the treatment in the absence of
HIA 50U treatment. These fluctuant productions of NO appear
not to be related to the effect induced by AuNPsCA upon the
vascular tone, suggesting that other mediators or structures HA-
dependent are involved in this physiological profile.

Whereas, the aortic rings previously exposed to HIA
(100U) in the presence of single concentrations of AuNPsGA
showed that at a concentration of 1µg/mL decreased the
NO production and it was not associated with the contractile
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effect (Figures 5A,C), meanwhile, the concentration of 10 and
100µg/mL, even change the levels of NO vs. the correspondent
treatment with HIA increasing the vasodilation (Figures 5A,C).
In the case of aortic rings previously exposed to HIA 100U and
treated with the AuNPsCA, the fluctuation on theNO production
was contrasting and associated with the vascular tone at the
different AuNPs concentrations evaluated (Figures 5B,D), which
biological pattern was like those displayed with the HIA 50
U treatment.

In this study, we found that part of the physiological effects
depended on the AuNPsGA/AuNPsCA concentration and the
endothelial glycocalyx HA destined to regulate the vascular tone.
The mediator detected was the NO, that plays a pivotal role in
the vascular effects of AuNPsCA associated to the glycocalyx, but
other mechanism can be associated.

DISCUSSION

It is undeniable that studies of AuNPs are supplying relevant
information for their biomedical applications. However, the
biological mechanisms involved are not fully described in the
literature. Considering the leading site of AuNPs distribution is
blood circulation, most of the toxicological evaluations of AuNPs
in animals have been conducted by intravenous administration of
AuNPs (4, 7). The vascular system is divided into (1) heart, as a
central pump focuses on distributing blood to (2) major vessels,
which delivers and returns blood from the heart to (3) minor
vessels, which are finally distributed in the organs and tissues
(49). Both major and minor vessels have an inner endothelial cell
layer (endothelium). Together, the muscle cells and endothelial
cells regulate the vascular tone through vasoactive factors (50,
51). One of these factors is nitric oxide (NO), which is synthesized
by the nitric oxide synthase (NOS) (39, 40).

The vascular effects induced by NO are controversial,
including the regulation of the vascular tone, which are in
function of a list of factors such as: (a) the presence of O2.-,
this kind of factor can modify the half time, bioavailability, and
the concentration of NO, for instance the NO varies in function
of the oxygen tension and the O2.-. The concentration range
of 10-50 nM, NO has a half-life time around 3-5 s, in excessive
concentration of 300 nM, the half-life time could be longer
than 30 s; (b) the presence of scavengers like oxyhemoglobin to
yield methemoglobin and inorganic nitrate; (c) the reaction of
NO with thiols groups presents in the proteins, which formed
the S-nitroso thiols; (d) The biological location of the NOS
isoforms in conditions by the normal physiological situation,
which can produce a balance of NO concentration in the order
or picomolar/nanomolar (eNOS/nNOS), or in altered conditions
produces NO in the order or micromolar (iNOS). For example,
the high NO production that characterized iNOS isoform
is expressed in the vascular smooth muscle cells following
exposure to pro-inflammatory cytokines promote; hypotension,
cardiodepression and vascular hyporeactivity in septic shock
(40, 52, 60).

In the vascular smooth muscle cells of thoracic aorta
from rat, 5 nm AuNPs (100mM) synthesized with sodium

ascorbate induced vasodilatation dependent on the NP
concentration and endothelium-independent by the ability
to activate sensitive potassium channels calcium (53). Our
findings demonstrated induction of the vasodilation only with
AuNPsGA, while AuNPsCA showed contractile effects in aortic
rings. A preliminary analysis showed that AuNPsCA could be
deposited onto the tissue and then induce contractile effects
(Supplementary Figure 2).

An earlier report with AuNPsCA coupled to NO donors
induced a dilatory effect on rat aortic rings (32). In our work,
the role of NO on the AuNPs vasodilator and vasoconstriction
effects were evaluated; AuNPsGA and AuNPsCA actions
were related to NO production. The variation on NO levels
suggests the activation of different isoforms of NOS, which
leads to vasodilation and vasoconstriction, saw that AuNPsGA
concentrations increased the basal NO production inducing
vasodilation. Furthermore, 0.1 to 10µg/mL of AuNPs-CA
did not increase the basal NO production and caused
vasoconstriction, but the AuNPsCA at 100µg/mL induced
NO production with no vasoconstriction effect may explain
these results by activating various signaling pathways or the
AuNPsCA interaction with the endothelial surface structures.
For instance, [Santos et al. (54)] compared the vasorelaxation
induced by AuNPs capped with either thioglycolic acid
(AuNPTGA) or thioglycolic acid modified with berberine
(AuNPTGA-BS). AuNPTGA did not induce vasorelaxation,
but the incorporation of berberine onto the particle surface
triggered vasorelaxation by cytosolic calcium ions concentration
decreased (54). Mohamed et al. (55) reported a vasodilation
effect in isolated aorta rings (male Wistar rats) when exposed
to AuNPs with different chemical surfaces. The percentage of
relaxation was associated with the chemical surface. At 0.030M,
AuNPsCA induced relaxation of ∼70%, while AuNPs with
polyvinylpyrrolidone (PVP) and mercaptopolyethylene glycol
(mPEG) at the same concentration generated ∼60 and ∼50%,
respectively. The authors reported that citrate capped particles
did not alter endothelial-dependent vasodilation previously
induced by ACh but attenuated endothelial-independent
responses induced by sodium nitroprusside. The capping with
PVP attenuated the ACh-induced relaxation, whereas mPEG
did not (55).

On the other hand, the slight differences in particle size
and the apparent value dispersion could trigger different
cellular mechanisms. The synthesis of AuNPs with gallic acid
allows a more controlled nucleation of Au due to both gallic
acid and -OH ions (pH 10) complexing Au3+, resulting in
smaller nanoparticles (25) with apparent better dispersion
than AuNPsCA, as characterization presents (Table 1). Thus,
AuNPsGA (11.6 could± 2.82 nm) may be more compatible than
AuNPsCA with higher diameter (15.8 ± 3.56 nm), and which
induced contractions in smooth muscle due accumulation and
aggregation of particles (Supplementary Figure 2).

However, the evidence found in this work regarding the
glycocalyx’s role, particularly from hyaluronic acid (HA),
suggest that functional groups and/or chemical conformation
of the capping agent exhibit variations in the affinity
with HA.
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With respect to glycocalyx role, a report by Kumagai et al.
(42) in the superficial femoral artery of porcine showed that
HIA 15 mU/mL (2 h 37◦C) decreased about 50% the NO
level (concerning a control with no enzyme) and about 15%
vasodilation effect (concerning same control). Thus, alterations
of glycocalyxmaymodify intracellular and cytoskeletal structures
and activate NO synthase (eNOS), associated with a low NO
production (56). It has been showed that citrate-coated iron
oxide NP show strong interaction with proteoglycans and
glycosaminoglycans in THP-1 monocytes (57); and particularly,
AuNPsCA exhibit high affinity to HA in physiological-like
solutions (58). The glycocalyx can entrap and accumulate
AuNPs and take part in the receptor-mediated endocytosis
(59). In the present work, when aortic rings were treated
with HIA and AuNPs, the NO production depended on
the concentration of the enzyme concentration being more
evident, the physiological effects and NO production induced
by AgNPsGA at the concentration of 100µg/mL in the
presence of HIA 50U, which increased the aortic relaxation
associated with NO production; however, 100U of HIA instead
promoted the vascular relaxation, did not change the NO
levels at the concentrations of AuNPsGA 100µg/mL, suggesting
that other endogenous agents HA-dependent could modulate
the relaxation.

In contrast, AgNPsCA has a different profile upon the
physiological effect and NO levels with respect to those showed
by AgNPsGA. Our results suggest that AuNPs effects are
dependent on the capping agents, and endothelial glycocalyx
plays an important role in these actions.

Further details are underway to investigate the interaction of
AgNPsCA and AgNPsGA with glycocalyx and the physiological
effects under normal and pathological conditions.

CONCLUSION

This work shows at the vascular level the effects of AuNPs
with two different capping agents. Contractile effects induced
by AuNPs may be due to an interaction between AuNPs
and the endothelial glycocalyx. Notably, the removal of HA
led to NO production modifications, which triggered an
intracellular signal for either vasodilation or vasoconstriction
effects. The data generated show the biological importance of
the reduce/stabilizing agents (GA and CA) used in the chemical
synthesis of AuNPs and turn settings applications of NMs in the

biomedical area, bioaccumulation, and route of administration.
Our findings contribute to understand the AuNPs effects, their
mechanism of action in the vascular system and to benefit
biosafety of AuNPs.
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