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Abstract

Anxiety is characterized by altered responses under uncertain conditions, but the precise 

mechanism by which uncertainty changes the behaviour of anxious individuals is unclear. Here we 

probe the computational basis of learning under uncertainty in healthy individuals and individuals 

with a mix of mood and anxiety disorders. Participants chose between four competing slot 

machines with fluctuating, reward/punishment outcomes during safety and stress. We predicted 

that anxious individuals under stress would learn faster about punishments, and exhibit choices 

that were more affected by them, formalising our predictions as parameters in reinforcement-

learning accounts of behaviour. Overall, data suggest that anxious individuals are quicker to 

update their behaviour in response to negative outcomes (i.e. increased punishment learning-rates). 

When treating anxiety, it may therefore be more fruitful to encourage anxious individuals to 

integrate information over longer horizons when bad things happen, rather than try to blunt 

responses to negative outcomes.

Introduction

Mood and anxiety disorders are the most common mental health problems in the developed 

world, accounting for 4% of all years lived with disability1. Despite this, we have very little 
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understanding of the mechanisms driving pathological feelings of anxiety, and the associated 

alterations to cognitive processes, such as decision-making, when people are anxious. This 

hinders our ability to improve treatments2.

Altered psychological, behavioural and neural responses to uncertainty are thought to be key 

to the manifestation of anxiety3. Firstly, anxious individuals report finding uncertain 

situations distressing4. Secondly, anxious individuals have been shown to be averse to 

uncertain decisions – preferring less profitable but more predictable options over more 

profitable but uncertain ones5. Finally, in translational research, a well-established 

dissociation is made between the processing of predictable and unpredictable threats6, with 

unpredictable threats used as a pre-clinical model of anxiety, in which uncertainty is a 

central component, while predictable shocks are a model for fear/phobias. In humans, the 

neural signatures of unpredictable threat responding7 overlap with those engaged by 

pathological anxiety8 indicating that this model is relevant to understanding the pathological 

state.

Decision-making under uncertainty is nevertheless ubiquitous in daily life9. ‘Multi-armed 

bandit’ tasks can probe this decision making under uncertainty by asking individuals to 

select one of multiple slot machines (i.e. bandits) with slowly fluctuating payoffs. On any 

given trial, the best option might be one that you chose recently (and so have some 

knowledge about), or it might be one you haven’t chosen (and so do not have up-to-date 

information about). Computationally it has been demonstrated that the balance of decision-

making about which bandit to choose can be captured through reinforcement-learning 

algorithms, which approximately optimise decisions based on the history of feedback from 

the bandits9,10. Specifically, decisions are made according to the relative weights afforded 

to rewards and punishments (i.e. sensitivity – how much one anticipates liking being 

rewarded or disliking being punished), and how quickly information is integrated over time 

(i.e. learning rates – how quickly one might switch bandits following a punishment, or how 

long one persists in choosing a previously rewarded bandit). If altered response to 

uncertainty were a core feature of anxiety symptoms, we would predict that the mechanisms 

parameterised by reinforcement-learning models should differ in individuals with high levels 

of anxiety symptomatology11. Specifically, given that anxiety is associated with a bias 

towards aversive processing – i.e., negative affective bias 12–14- we might predict that 

anxiety will selectively increase the weights of aversive-specific parameters in 

reinforcement-learning algorithms: i.e., punishment sensitivity and punishment learning rate.

In this study, we therefore sought to formalise the differences in decision-making under 

uncertainty between healthy individuals and those with high levels of anxiety in terms of 

differences in the parameters of reinforcement-learning models. Moreover, given that the 

diathesis-stress hypothesis15 predicts that some symptoms of mood and anxiety disorders 

are only revealed when an individual is under stress13, we also transiently induced stress in 

participants using threat of unpredictable shock (where shock probability was unrelated to 

the participant’s behaviour). We predicted, therefore, that anxiety symptoms would 

selectively increase punishment sensitivity and punishment learning rate in the 

reinforcement-learning algorithm, and that this would be exaggerated under acute stress.

Aylward et al. Page 2

Nat Hum Behav. Author manuscript; available in PMC 2019 December 17.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Results

Healthy controls (M=88) and individuals with unmedicated mood and anxiety symptoms 

(N=44; see Table 1 for full demographics), completed a four armed bandit task under 

conditions of threat of shock (stress) and safety as illustrated in Figure 1. Data available 

online16 (see data availability statement).

Self-report analysis

As expected the mood and anxiety group demonstrated higher levels of trait anxiety (data 

missing from 1 participant in each group; t(128)=8.7, p<0.001, d=1.6, [95%CI 1.2, 2.0]), 

and recent depression symptoms (data missing from 3 patients; 4 controls; t(124)=9.0, 

p<0.001, d=1.7, [95%CI 1.2, 2.01]), relative to healthy controls (Table 2). Moreover, 

participants reported feeling more anxious under the threat relative to the safe conditions 

(data missing for the second block for 1 patient; F(1,129)=319, p<0.001, η2=0.7, [95%CI 

0.62, 0.77]) but this did not differ according to group (group*condition interaction: 

F(1,129)=0.04, p=0.8, η2<0.001, [95%CI 0, 0.03]).

Model agnostic task analysis

As expected, participants were more likely to repeat a choice following a win than a loss 

(F(1,130)=78, p<0.001, η2=0.4, [95%CI 0.25, 0.48]). However this was not modulated by 

group (group x outcome interaction: F(1,130)=0.18,p=0.68, η2=0.001, [95%CI 0, 0.04]) or 

stress condition (stress condition x outcome interaction: F(1,130)=2.6,p=0.11, η2=0.019, 

[95%CI 0, 0.09]), and the three-way interaction was not significant (F(1,130)=3.6, p=0.061, 

η2=0.026, [95%CI 0, 0.1]).

A Bayesian version of the same analysis confirmed that the winning model included only 

outcome (logBF10=91), which scored 8 times better than the next best model (main effects 

of outcome and stress condition; logBF10=89.3). The full set of Bayes Factors from this 

analysis is presented in supplementary table 1.

Modelling results

We fit seven models to the data (Table 2). The winning model fit with a full prior 

specification was the six-parameter model that included a lapse and a decay parameter 

(Table 3a). We then fit the top two models with the different combinations of group/

condition hierarchical priors and demonstrated that both models were actually best fit using 

only two priors; one for each group (Table 3b). Of note, however, uniquely for the decay 

model using a single prior, our model fitting procedure did not converge, likely because the 

single prior failed to capture the nature of the underlying distribution (which may be better 

represented by two distributions as seen in Table 3). Specifically, there are multiple Gelman-

Rubin statistics17 (R^) greater than 1.1 (even if we increase the number of samples in the 

chains from 2k to 10K). As such, fit indices such as LOOIC are not meaningful and are not 

reported.

Data Availability
All data used in this analysis are available on OSF osf.io/2jx87 (DOI 10.17605/OSF.IO/UB6J7)16
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Extracting the parameters from the models fit using two priors (one for each group) 

demonstrated elevated (i.e., HDI for the comparison across groups does not overlap zero) 

punishment learning rate and lapse parameters in symptomatic relative to control 

individuals. In the model including a decay parameter, decay rate was also elevated in the 

symptomatic group (Table 4; Figure 2). Of note, this same pattern (main effect of group on 

punishment learning rate and lapse parameters only) was seen when parameters were 

extracted from the 4 prior model, and there was no effect of condition on any parameter (see 

supplementary results 1).

Model check

Finally, we simulated data for this model for each participant based on their parameter 

estimates. For both the simulated and real data we calculated the proportion of all trials on 

which participants switched bandits. Real and simulated data showed close correspondence 

(r(132)=0.84, p<0.001, [95%CI 0.78, 0.89] for both models; Figure 3).

Moreover, simulated data recapitulated the model-agnostic analysis. There was a main effect 

of outcome (F(1,130)=434, p<0.001, η2=0.8, [95%CI 0.70, 0.81]) driven by greater stay 

probability following wins than losses, which did not interact with diagnosis 

(F(1,130)=0.003, p=0.95, η2<0.001, [95%CI 0, 0.008]).

Continuous symptom analyses

Extracting each individual’s posterior mean estimated parameters supported the existence of 

positive correlations between trait anxiety and the lapse (lapse: r(130)=0.32 [95%CI 0.16, 

0.47], logBF10=4.5, p<0.001, lapse_decay: r(130)=0.42 [95%CI 0.27, 0.56], logBF10=10.44, 

p<0.001), and punishment learning rate (lapse r(130)=0.28 [95%CI 0.11, 0.43], 

logBF10=2.9, p=0.001, lapse_decay: r(130)=0.42 [95%CI 0.27, 0.56], logBF10=10.4, 

p<0.001), but no supported correlation for the decay parameter (lapse_decay: r(130)=0.19 

[95%CI 0.02, 0.35], logBF10=0.074, p=0.032) or any other parameter (all logBF10<0.4). 

Trait anxiety was, as expected, strongly correlated with recent depression symptoms (BDI; 

r(126)=0.8, [95%CI 0.73, 0.85] logBF10=60,p<0.001), and so similar correlations were 

observed between BDI scores and model parameters (Figure 4). Of note, the interaction 

between trait anxiety and parameters of interest remained significant (all t=3.1-5.1, p<0.002) 

when age was additionally included as a predictor in the models, suggesting that the effects 

were not driven by age.

Discussion

We found that higher mood and anxiety symptoms were associated with altered decision-

making in the aversive domain; specifically greater punishment-learning rates. This finding 

was partially consistent with our hypotheses. Contrary to our hypotheses, however, we found 

no evidence that this was influenced by stress, and no evidence of a group difference in 

punishment sensitivity. Moreover, the higher learning rate for punishments occurred in 

combination with lower reliance on the modelled reinforcement-learning parameters in 

general (as evidenced by an increased influence of the lapse parameter in the symptomatic 
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group) and increased propensity to ‘forget’ the previous values of unchosen options (i.e. 

increased reliance on a decay parameter).

A greater punishment learning rate means that individuals with mood and anxiety symptoms 

learn faster about punishments, and will therefore more readily update their behaviour on the 

basis of more recent negative outcomes instead of integrating over longer time scales. This is 

also reflected in the lower stay probabilities immediately following punishment in the model 

agnostic analysis (which was recapitulated in the model simulations). Importantly, this 

occurred in the absence of evidence for a group difference in punishment sensitivity, which 

suggests that anxious individuals do not over-weigh punishments per se. This lack of 

evidence for an effect of anxiety on punishment sensitivity is consistent with our prior work 

with reinforcement learning paradigms13, as well as work indicating similar loss aversion 

between anxious and healthy individuals (albeit in the context of higher risk aversion)5. 

Taken together these results indicate that it is not that anxious individuals weigh negative 

outcomes more heavily in themselves; rather they use that information differently. 

Specifically, a greater punishment learning rate implies that individuals with anxiety 

integrate information about threats over fewer trials, will over-estimate the probability of bad 

outcomes, and hence engage in avoidance behaviours18. Clinically this might result in 

overestimating negative events. For example, in the aftermath of a heavily reported plane 

crash an anxious individual might overestimate the risk of it re-occurring and therefore avoid 

flying14. In the long run, such avoidance behaviour will reduce an anxious individual’s 

ability to update learning and hence over-estimation persists, and avoidance behaviour is 

upheld.

The clarity that it is the learning rate, rather than sensitivity to punishment, which is elevated 

in mood and anxiety disorders12,19 may be important in relation to potential interventions 

that could mitigate such a negative bias. Specifically, we may not need to ‘blunt’ aversive 

responses through treatment – rather we should focus on treatments that seek to modify how 

negative information is used20. Indeed, changing the way individuals use the same 

information is one principle underpinning psychological interventions for mood and anxiety 

disorders, such as Cognitive Behavioural Therapy20. One specific recommendation that 

follows from our findings is in line with what is already practiced in exposure therapy20: 

Therapists expose patients to sources of anxiety (e.g. a spider) and encourage them to hold 

off on implementing decisions on the basis of predicted negative outcomes (i.e. running 

away) until they learn how infrequent (or frequent) the negative outcomes (i.e. the spider 

causing them harm) are20. The present work takes us a step towards formalising the 

behavioural effect as a defined parameter in a reinforcement learning model which we can 

directly measure and hence target to refine future treatments.

The altered punishment learning rates in the symptomatic group do, however, need to be 

considered in the context of an accompanying increased reliance on the lapse parameter and 

the decay parameter. In the model, the lapse parameter quantifies dependence on a form of 

‘unexpected’ responding. This could occur from participants losing concentration on a trial 

and choosing at random, or possibly increasing their tendency towards undirected 

exploration in an attempt to avoid unpredictable punishments21. In other words, anxiety 

may shift the balance in explore-exploit trade-offs towards exploration, perhaps as a form of 
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‘exploration-driven avoidance’, in which individuals shift their behaviour to avoid bad 

outcomes. This should be considered alongside prior work demonstrating that high anxiety 

(in healthy individuals) is associated with impoverished ability to detect shifts from stable to 

unpredictable punishments – perhaps because their default assumption is that the 

environment Is unpredictable22. Increased exploration may therefore be due to an 

assumption of increased unpredictability. The effect on the decay parameter suggests that 

anxious individuals also ‘forget’ the previous values of unchosen bandits more rapidly, 

which could also contribute to their propensity towards increased exploration. Future 

experiments should test the different predictions made by these explanations. However, the 

lapse parameter also captures aspects of decision-making that are not encompassed by the 

model. In other words, what we have consigned to categories of irreducible uncertainty 

might actually be reduced by more sophisticated and proficient models. Our data are 

available online16 (see data availability statement) for future exploration of different models as 

the field and literature develop.

Finally, it is worth noting that we found no evidence that the modelled effects were affected 

by acute stress. We predicted that they would be because the diathesis-stress hypothesis 

predicts that symptoms of anxiety will be exacerbated in stressful circumstances15. Indeed, 

our prior work indicated that reliance on Pavlovian avoidance biases in anxiety disorders is 

exacerbated by the same stress manipulation adopted here13. Nevertheless it remains 

possible that such an effect exists, but that it is weak relative to the strong effects of 

diagnosis and outcome, and the current study was simply underpowered to detect it. 

Alternatively our threat of shock manipulation might not be sufficiently strong. Future work 

may consider measuring concurrent startle responding during the task to confirm efficacy of 

the manipulation beyond self-report. Another caveat is that the reinforcers we used (faces) 

may not have been as motivating as other outcomes, such as money. It is possible that 

‘stronger’ outcomes may have driven changes in sensitivities and/or revealed a significant 

influence of stress. Alternatively, it may be that stronger feedback would actually remove the 

group effects we observe23. Either way, future work should explicitly test the impact of 

modulating feedback strength on task performance. Relatedly, it is possible that the within-

subject nature of the safe/threat conditions meant that the overall context was anxiogenic and 

there was no true baseline. Note though, that self-report measures did vary across conditions, 

and also that many prior studies have shown within-subject differences using this 

manipulation12. However, a between subject design with separate groups, and critically a 

safe group with no electrode contact, would control for this. A final caveat is that we 

recruited a mixed sample of anxiety and depression. Our post-hoc analyses (see 

supplementary results 2) provide some evidence that there is no difference in parameters 

across the different diagnostic groupings. However, the study was not designed to 

disambiguate depression from anxiety, which are, in any case, highly co-morbid (and highly 

correlated at a symptom scale level) and may not represent true ‘natural kinds’. On a related 

note, although we have no a priori reason to suspect that IQ or socio-economic status 

differed between our groups (or that it drives group differences), we do not have full data on 

this and so cannot entirely rule it out.

These findings extend our prior work attempting to formalise the behavioural alterations 

seen in anxiety disorders in terms of computational models5,13. Such models aim to bridge 
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the gap between observable symptoms (which form the basis of current diagnostic 

categories) and the underlying cognitive computations in the brain. Ultimately, the 

experience of debilitating anxiety emerges from interactions between an individual and their 

environment; and fully optimised treatments are unlikely to emerge without a clearer 

understanding of how these symptoms emerge mechanistically. Formally specifying some of 

the behavioural changes that occur in clinical anxiety takes us a step closer to this goal.

Methods

Participants

We recruited 132 participants, N=88 healthy controls (50 female; age=23±5) and N=44 with 

unmedicated mood and anxiety symptoms (28 female; age=28±9) from the local community 

(i.e. not through clinical services, but rather through advertisements on noticeboards and 

internet sites; this was to increase the probability of recruiting unmedicated participants). 

The two groups were recruited through separate advertising campaigns. The symptomatic 

group responded to an advert asking for people for whom anxiety/depression was impacting 

their lives, and then underwent a standardized clinical screen. The groups did not 

significantly differ in gender (X2=0.65, p=0.5) but the patient group was slightly older 

(mean ages: 29 vs 23; t(130)=4.4, p<0.001,d=0.8 [95% CI 0.4, 1.2]). We set an a priori 
minimum group size of N=40 in the original grant application (MR/K024280/1) based on a 

previously observed difference between groups of effect size d=1.0924, which was 

decreased to 0.7 for the purpose of a conservative power analysis. The final N=44 in the 

clinical group and N=88 in the healthy group, provides >95% power for a between-groups t-

test with α = 0.05 (two-tailed). Ultimately we wanted to collect as much data as possible 

within our time and financial constraints, as parameter recovery in modelling is dependent 

upon sample size25. Critically, model comparison and inference was only completed after 

we stopped recruitment.

Although our focus was on anxiety symptoms, we recruited a mixed sample because mood 

and anxiety disorder symptoms show considerable overlap, and the disorders are strongly 

comorbid indicating that they may not be mechanistically dissociable. The majority of our 

pathological sample (N=28) had a mixed diagnosis of Generalised Anxiety Disorder (GAD) 

and Major Depressive Disorder (MDD); eight had GAD diagnosis alone; three had panic 

disorder with MDD; and five had MDD alone (These diagnoses were assigned according to 

the Mini International Neuropsychiatric Interview (MINI) and completed by a trained 

researcher under the guidance of a clinical psychologist or psychiatrist)26. The average 

number of depressive episodes was 5 (SD±7), with the average onset of first episode 20±8 

years. All were currently unmedicated, but N=18 had tried psychiatric medication more than 

6 months prior to the experiment, and N=21 had undergone some form of psychological 

treatment. Exclusion criteria were any form of psychiatric medication within the last 6 

months, any current psychiatric diagnosis (other than major depression or anxiety disorder), 

neurological disorder, or pacemaker. Continuous measures of anxiety symptomatology were 

obtained using the State-Trait Anxiety Inventory (STAI) and recent depression symptoms 

using the Beck depression inventory (BDI). All participants provided written informed 

consent and were reimbursed £7.50/hour for participation. The study obtained ethical 
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approval from the UCL Research Ethics Committee (Project ID Numbers: 1764/001 and 

6198/001). Of note, all relevant data distributions are plotted. In some cases they are non-

normal, but the inference (e.g. using Bayesian model comparison approaches) is not reliant 

on the same assumptions as classic frequentist statistics. Due to the nature of the 

recruitment, data collection and analysis were not performed blind to the conditions of the 

experiments and the participants were not randomised into groups. Task stimuli and threat 

condition were, however, randomised across participants.

Four-armed bandit task

The task was adapted from Seymour et al10 and presented using the Cogent toolbox for 

MATLAB on a laptop computer. Positive feedback was a single happy face, and negative 

feedback was a single fearful face (consistent with our prior work13,19). The task was 

completed under alternating conditions of safe and threat (see Stress manipulation section 

below), with a different set of four bandits in each condition leading to a total of 8 bandits (a 

set of 4 that was consistent throughout the safe condition; 4 throughout the threat condition).

On each trial, participants were asked to select one of the four bandits (within 3.5s) and were 

then provided (for just the selected bandit; Figure 1A) with one of: 1) no feedback, 2) 

positive feedback, 3) negative feedback, or 4) both positive and negative feedback. The 

probabilities of these outcomes fluctuated independently and slowly across bandits, such that 

the bandit that was most beneficial changed over time (Figure 1B) and participants had to 

keep track of reward and punishment separately. Note, however, that the outcomes 

themselves were binary (present or not). The participants were instructed to “try to get 

happy faces! avoid fearful!”. The bandits remained in the same spatial location on every 

trial. The face stimuli were chosen because our prior work using them showed that RL 

mechanisms (striatal prediction error signals) are sensitive to the same stress manipulation19 

(and this study itself built on a line of studies27 that explored the impact of stress on the 

same stimuli in other contexts). There was no additional outcome (e.g. monetary loss/gain).

Stress manipulation

State anxiety was induced via threat of unpredictable electric shocks delivered with two 

electrodes attached to the non-dominant wrist using a Digitimer Constant Current Stimulator 

(Digitimer Ltd, Welwyn Garden City, UK). The appropriate shock level was established 

using a shock work-up procedure prior to testing. Specifically, up to five shocks of 

increasing intensity were administered, and participants rated each one on a scale from 1 

(barely felt) to 5 (unbearable), with the final shock level set to 4. The experimental task was 

programmed using the Cogent toolbox for MATLAB 2014, presented on a laptop and 

administered under alternating safe and threat blocks. At the start of the safe block, the 

background colour changed to blue and proceeded by a 2000ms message stating: “YOU 

ARE NOW SAFE!” At the start of the threat block, the background colour changed to red 

and the message: “YOU ARE AT RISK OF SHOCK” was presented for 2000ms. The 

electrodes remained on the participant’s wrist throughout both types of condition. 

Participants were told that they might receive a shock only during the threat condition but 

that the shocks were not dependent on their performance. As a manipulation check, 

participants retrospectively rated how anxious they felt during the safe and threat conditions 
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on a scale from 1 (“not at all”) to 10 (“very much so”). This well-established12 

manipulation has been shown to have high reliability19 and replicability28. There were four 

threat and four safe conditions, each involving 50 trials and lasting ~5 minutes each. Thus, 

there were a total of 400 trials for a max duration of ~45 minutes depending upon participant 

response times. Participants received one shock per threat condition (four in total). They 

were given shocks on the 33rd trial of the 1st and 3rd threat conditions and the 15th trial of 

the 2nd and 4th threat conditions.

Manipulation check and model agnostic task analysis

The retrospective manipulation check was taken once in the middle and once at the end of 

the task (i.e. first half/second half) and analysed in a 2 (half) x 2 (condition) x 2 (diagnosis) 

repeated measures ANOVA. For model agnostic task analysis, we calculated stay probability 

following win only and loss only trials (excluding trials in which both wins and losses were 

given) and included them in a 2 (outcome) x 2 (condition) x 2 (diagnosis) repeated measures 

ANOVA. We implemented frequentist and Bayesian (adopting a default Cauchy prior) 

repeated measures ANOVAs using JASP29 (for data and associated JASP analyses see data 

and code availability statements). All t-test are 2 sided, and effect sizes calculated using the 

default settings in JASP. For frequentist tests we used an alpha level of .05.

Computational Modelling

We fitted seven different models10 using the HBayesDM package for R30 (for code see code 

availability statement). This toolbox simplifies the implementation of hierarchical Bayesian 

parameter estimation using STAN. We fit 3 chains for each model with 1000 burn in samples 

and 2000 samples. For more details please refer to30. Previous studies showed that 

hierarchical parameter estimation outperforms individual parameter estimation in parameter 

recovery31. We fit the models, shown in Table 2, to three pieces of information per trial: 

choice (1:4), gain (0,1) and loss (0,-1).

The bandit4arm models (where i refers to a given bandit, t refers to trial) were calculated by 

inputting reward and punishment values separately to the following equations:

Valuet i
rew = Valuet i

rew + LearningRaterew ⋅ PredictionErrort i
rew (1)

Valuet i
pun = Valuet i

pun + LearningRatepun ⋅ PredictionErrort i
pun (2)

Code Availability
Scripts for model fitting are available on OSF here osf.io/2jx87 (DOI 10.17605/OSF.IO/UB6J7)16 as Supplemental Software for this 
manuscript. For the HBayesDM package, please see https://github.com/CCS-Lab/hBayesDM
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PredictionErrort i
rew = Sensitivityrew ⋅ RewardOutcome t − Valuet − 1 i

rew if i = chosen
− Valuet − 1 i

rew if i = unchosen
(3)

PredictionErrort i
pun = Sensitivitypun ⋅ PunishmentOutcome t − Valuet − 1 i

pun if i = chosen
− Valuet − 1 i

pun if i = unchosen
(4)

Choice probability was determined by passing the reward and punishment values through a 

softmax function in the ‘_4par’ model, where j represents all the bandits:

Choice Probabilityt i =
exp Valuet i

rew + Valuet i
pun

∑ j exp Valuet j
rew + Valuet j

pun (5)

For the ‘_lapse’ model, the addition of an irreducible noise parameter (i.e. ‘lapse’) allowed 

for the possibility of decisions made at random, irrespective of the inferred values of the 

bandits (sometimes referred to as ‘trembling hand’ decisions)32. Of note, this lapse 

parameter serves a similar purpose as an (inverse) temperature parameter in the softmax, but 

it is less liable to trade off against the other parameters 33:

Choice Probabilityt i =
exp Valuet i

rew + Valuet i
pun

∑ j exp Valuet j
rew + Valuet j

pun ⋅ 1 − Lapse + Lapse
4 (6)

For the ‘_2par_lapse’ model, there were no sensitivity parameters in Equations 3 and 4. For 

the ‘_singleA_lapse’ model, there is a single learning rate across equations 1 and 2 (i.e. this 

parameter is not allowed to take on separate values depending on whether the outcome was 

rewarding or punishing. For the ‘_lapse_decay’ model we added a decay rate based on34 

such that the weights of features that were not chosen gradually decayed to 0, according to 

the decay rate:

Valuet i = 1 − decay ⋅ Valuet − 1 i if i = unchosen (7)

We implemented the two ‘IGT_pvl’ models, exactly following30,35. These models are 

substantially worse at describing the current data (Table 3a) but are detailed in 

supplementary methods 1. Briefly they are ‘prospect valence learning’ models which 

integrate aspects of reinforcement learning and prospect theory learning models.
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Model selection

Parameters for all models were initially fit under four separate hierarchical priors: 1) 

anxious/depressed individuals under threat; 2) healthy controls under threat; 3) anxious/

depressed individuals under safe; 4) healthy controls under safe. The winning model was 

defined as the model with the lowest Leave-One-Out Information Criterion (LOOIC) 

summed across these four priors.

We then followed up initial model selection with a subsequent exploration of all four 

combinations of group/condition priors (1: all four, 2: two representing each condition, 3: 

two representing each group and 4: one pooling everyone together) on the top two models. 

We then compared parameter estimates from the top two models across the two groups using 

95% highest density intervals (HDI). Specifically, for each comparison, we calculated the 

difference in the hyper parameters and reported the 95% HDI of the difference. If this HDI 

did not overlap zero, we consider there to be a meaningful difference between the 

groups36,37. Note that 96% HDI are not testing if we can reject the null hypothesis (i.e., that 

two groups are the same on a given parameter), but instead whether the hyper parameters 

differ between the groups/conditions36,37. To illustrate group differences we plotted the 

individual mean posterior parameter estimates using raincloud plots38.

Finally, parameter estimates from the top two model/prior combinations were used to 

simulate choices for each individual and then compared to each individual’s real choices to 

confirm that models were not only the best of those tested, but also realistic models of the 

data (we required a correlation of greater than 0.7). Finally, we confirmed that simulated 

data recapitulated patterns observed in the model agnostic task analysis.

Continuous symptom analysis

Individual parameters (mean posterior estimates) for the overall winning model were 

extracted and correlated with individual trait anxiety and depression scores in Bayesian and 

Frequentist correlation matrices using JASP29.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Task schematic
A) Participants were asked to select one of four bandits on each trial. Following selection 

(here illustrated as top right under the threat condition, indicated in red), the bandit border 

changed colour (to blue, indicating safety), followed by the outcome (here illustrated as a 

combined reward and punishment; note that these were black and white photos of real 

human happy/fearful faces in the original experiment) overlaid on the selected bandit. The 

task proceeded in the same manner under the safe condition, but with a different set of 

bandits. B) Example of the independent fluctuation of reward and punishment probabilities 

across four bandits. At the start of a new condition, the bandits started with the probabilities 

they finished with at the end of the previous condition. I.e. the bandits at the end of one safe 

block paused during the subsequent threat block.
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Figure 2. Group difference in parameters.
Higher point estimates of A) punishment learning rates (LR), B) lapse rates and C) decay 

rates in the symptomatic group (ANX; N=44) relative to the healthy controls (HC; N=88) in 

the bandit4arm_lapse_decay model The same pattern is seen in D) punishment learning rates 

and E) lapse rates in the bandit4arm_lapse model (which does not include a decay 

parameter). The final estimated posterior mean of each parameter for each individual is 

plotted in each panel.
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Figure 3. Sensitivity plots.
Simulated data for each individual (N=132) shows close correspondence with real data on a 

simple metric ‘p(switch)’ – i.e. the proportion of trials in which the individual (or simulated 

agent) selected a different bandit from the previous trial. Healthy controls (N=88) plotted in 

blue, symptomatic in red (N=44); dashed line represents the identity. This is true for the A) 

bandit4arm_lapse_decay and B) bandit4arm_lapse models.
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Figure 4. Continuous Symptom Analysis.
Individual parameter posteriors (Lapse on top row, Punishment learning rate on bottom row) 

for both models (bandit4arm_lapse left two columns, bandit4arm _lapse_decay right two 

columns) plotted against anxiety symptoms (STAI) in left column and depression symptoms 

(BDI) in the right column. Healthy controls (N=88) plotted in blue, symptomatic (N=44) in 

red. Note that the Punishment learning rate parameter is at the boundary for the symptomatic 

group in the decay model. The r value is the correlation co-efficient between the symptom 

and the parameter for the entire sample. Note that the lowest score on the STAI is 20 (score 

1 for ‘almost never’ on all 20 questions).
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Table 1
Demographics

The counts or mean / standard deviation (s.d.) / max / min for demographic and mood measures are presented. 

Ravens refers to IQ estimate obtained from Raven’s progressive matrices. State and Trait refer to anxiety from 

the State-Trait Anxiety Inventory; BDI refers to depression (Beck Depression Inventory). The Higher Ed count 

represents those who are in undergraduate education or higher. * = this group were recruited from the 

institutional subject database, so are estimated to be ~90% in the Higher Ed group, but detailed information is 

unfortunately not available.

Asymptomatic Symptomatic

N 88 44

Female 50 28

Higher Ed * 37

mean (s.d) min max mean (s.d) min max

Age 23 (5.1) 18 41 29 (8.7) 20 64

Ravens -- -- -- -- 8 (2.6) 3 12

STAI State 38 (9.8) 18 53 47 (10.7) 21 68

STAI Trait 41 (10.6) 20 69 57 (8.2) 41 74

BDI 7 (7.1) 0 36 20 (9.4) 6 54
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Table 2
Model specification.

We fitted seven different models using the hBayesDM package. NP= number of parameters. Model = model 

names implemented in the hBayesDM package.

Model NP Parameters

bandit4arm_4par 4 Reward 
Sensitivity

Punishment 
Sensitivity

Reward Learning 
Rate

Punishment 
Learning Rate

bandit4arm_lapse 5 Reward 
Sensitivity

Punishment 
Sensitivity

Reward Learning 
Rate

Punishment 
Learning Rate

Lapse

igt_pvl_decay 4 Decay Rate Shape Consistency Loss Aversion

igt_pvl_delta 4 Learning Rate Shape Consistency Loss Aversion

bandit4arm_2par_lapse 3 Reward Learning 
Rate

Punishment 
Learning Rate

Lapse

bandit4arm_singleA_lapse 4 Reward 
Sensitivity

Punishment 
Sensitivity

Learning Rate Lapse

bandit4arm_lapse_decay 6 Reward 
Sensitivity

Punishment 
Sensitivity

Reward Learning 
Rate

Punishment 
Learning Rate

Lapse Decay
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Table 3
Model and prior fits.

a) The winning model is that with the lowest Leave-One-Out Information Criterion (LOOIC). The lowest two 

numbers (for bandit4arm_lapse and bandit4arm_lapse_decay) are displayed in bold. b) The lowest LOOIC is 

then obtained when the top two models are fit with two priors: one for symptomatic and one for healthy 

individuals (Diagnosis priors). † Note that fitting the decay model with a single prior did not converge 

rendering the LOOIC value meaningless.

      a) Model LOOIC

bandit4arm 128456

bandit4arm_lapse 128198

igt_pvl_decay 132008

igt_pvl_delta 131774

bandit4arm_2par_lapse 140144

bandit4arm_singleA_lapse 129120

bandit4arm_lapse_decay 126289

      b) Prior LOOIC

bandit4arm_lapse bandit4arm_lapse_decay

Diagnosis and Condition Priors (4) 128198 126289

Diagnosis Priors (2) 128166 126094

Condition Priors (2) 128225 126233

Single Prior (1) 128174 †
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Table 4
Parameter estimates and group comparison on the winning model and prior combination.

Values represent the mean (standard deviation) of the final estimated posterior mean estimates for each 

individual. The ‘Group HDI’ column comprises the upper and lower bounds of the 95% highest density 

intervals (HDI) of the comparison between the symptomatic and control groups. If the HDI does not 

encompass zero, we consider there to be a meaningful difference between the groups. We find a main effect of 

group on the punishment learning rate, lapse, and decay (when included) parameters only (in bold).

bandit4arm_lapse Symptomatic Control Between group HDI

Reward Sensitivity 7.47   (2.91) 9.61   (4.87) -4.55       0.65

Punishment Sensitivity 7.41   (7.21) 6.67   (4.83) -4.95       2.24

Reward Learning Rate 0.31   (0.30) 0.25   (0.22) -0.11       0.17

Punishment Learning Rate 0.51   (0.18) 0.31   (0.15) 0.08       0.38

Lapse 0.21   (0.10) 0.13   (0.11) 0.02       0.2

bandit4arm_lapse_decay Symptomatic Control Between group HDI

Reward Sensitivity 11.41   (5.03) 10.94   (7.20) -4.77       6.35

Punishment Sensitivity 4.64   (5.02) 3.00   (3.10) -0.87       1.93

Reward Learning Rate 0.21   (0.23) 0.23   (0.22) -0.13       0.07

Punishment Learning Rate 0.95   (0.01) 0.75   (0.14) 0.04       0.26

Lapse 0.22   (0.10) 0.10   (0.03) 0.04       0.18

Decay 0.61   (0.25) 0.41   (0.31) 0.10       0.40
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