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A B S T R A C T   

Background: In previous studies of patients with frontotemporal lobar degeneration due to tau (FTLD-tau) and 
FTLD due to TDP (FTLD-TDP), cortical volumes derived from T1-weighted MRI have been used to identify a 
sequence of volume loss according to arbitrary volumetric criteria. Event-based modeling (EBM) is a probabi-
listic, generative machine learning model that determines the characteristic sequence of changes, or “events”, 
occurring during disease progression. EBM also estimates an individual patient’s disease “stage” by identifying 
which events have already occurred. In the present study, we use an EBM analysis to derive stages of regional 
anatomic atrophy in FTLD-tau and FTLD-TDP, and validated these stages against pathologic burden. 
Methods: Sporadic autopsy-confirmed patients with FTLD-tau (N = 42) and FTLD-TDP (N = 21), and 167 healthy 
controls with available T1-weighted images were identified. A subset of patients had quantitative digital his-
topathology of cortex performed at autopsy (FTLD-tau = 30, FTLD-TDP = 17). MRI images were processed, 
producing regional measures of cortical volumes. K-means clustering was used to find cortical regions with 
similar amounts of GM volume changes (n = 5 clusters). EBM was used to determine the characteristic sequence 
of cortical atrophy of identified clusters in autopsy-confirmed FTLD-tau and FTLD-TDP, and estimate each pa-
tient’s disease stage by cortical volume biomarkers. Linear regressions related pathologic burden to EBM- 
estimated disease stages. 
Results: EBM for cortical volume biomarkers generated statistically robust characteristic sequences of cortical 
atrophy in each group of patients. Cortical volume-based EBM-estimated disease stage was associated with 
pathologic burden in FTLD-tau (R2 = 0.16, p = 0.017) and FTLD-TDP (R2 = 0.51, p = 0.0008). 
Conclusions: We provide evidence that EBM can identify sequences of pathologically-confirmed cortical atrophy 
in sporadic FTLD-tau and FTLD-TDP.   
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1. Introduction 

Neurodegenerative diseases are progressive in nature. Objective 
methods for characterizing progression during life are challenging yet 
vital to interpreting data from disease-modifying clinical treatment tri-
als (Staffaroni et al., 2019). Machine learning methods are increasingly 
being used to tackle such problems in precision medicine; providing 
estimates of disease severity and prognosis while reducing sources of 
bias (Rajkomar et al., 2019). One such method, event-based modeling 
(EBM), is a probabilistic generative model that determines the charac-
teristic sequence of changes, dubbed “events,” that occur during the 
disease course (Fonteijn et al., 2011, 2012; Venkatraghavan et al., 2019; 
Young et al., 2014, Young et al., 2018). EBM models changes in bio-
markers as discrete occurrences in a sequence during the course of 
progressive disease (Fonteijn et al., 2012). EBM requires only a binary 
assessment of either “control” or “not”, minimizing the need for sub-
jective clinical evaluations. By iteratively switching the order of po-
tential biomarker changes, EBM uncovers the most likely, 
“characteristic”, sequence of events. Furthermore, EBM estimates the 
current best fit “stage” for each patient; providing an estimate for the 
patient’s current disease severity, and by extension, the next likely 
changes to occur during disease. 

Frontotemporal lobar degeneration (FTLD) is an ideal model for 
evaluating modern staging methods because, unlike Alzheimer’s disease 
(AD), it is often a monoproteinopathy. Therefore, in protein-targeted 
treatment trials, it is likely that only one type of pathologic inclusion 
is responsible for disease progression, making interpretation of changes 
over the course of disease more straightforward. In this study, we 
evaluate FTLD associated with misfolded tau protein (FTLD-tau) 
(Mackenzie et al., 2009, 2010) and with misfolded tar-DNA binding 
protein (FTLD-TDP) (Mackenzie et al., 2009; Neumann et al., 2006). In 
both diseases, pathologic burden remains the “gold standard” for disease 
severity, though identifying in vivo markers of disease severity is 
important for potential clinical treatment trials. T1-weighted MRI is 
widely available, non-invasive, repeatable, and can be used to monitor 
disease by capturing antemortem changes in gray matter (GM) structure 
by estimating regional volumes and cortical thickness. Such measures 
have been associated with pathologic burden in FTLD-tau and FTLD-TDP 
in behavioral variant frontotemporal degeneration (bvFTD) (Brettsch-
neider et al., 2014; Irwin et al., 2016a; Irwin et al., 2018; Whitwell et al., 
2011), primary progressive aphasia (PPA) (Giannini et al., 2019a), and 
in groups of participants with FTLD-tau and FTLD-TDP pathology 
regardless of specific clinical presentation (Burke et al., 2022; Whitwell 
et al., 2009a). 

A common application of machine learning methods is to identify 
shared features in a large set of data points to reduce these into a smaller 
set of factors of interest. K-means clustering is a widely used machine 
learning clustering method that has the flexibility to form a tractable 
number of clustered regions from smaller regions that may be anatom-
ically distributed. A comparable approach uses principal component 
analysis (PCA) to identify clusters of imaging features that can sort pa-
tients into groups (López et al., 2011; Wilson et al., 2009). Regardless of 
the specific approach, clustering is important for generating a reason-
able number of region sets for data-driven sequencing models like EBM 
when patient data are limited, such as when examining patient groups 
with rare conditions with a difficult to acquire gold standard. To 
sequence cortical GM changes, studies using EBM and other similar 
methods often use pre-existing coarsely defined atlases or lobe-wise 
summaries to generate cortical GM biomarkers (Fonteijn et al., 2012; 
Panman et al., 2021; Young et al., 2014). However, results using such 
methods tend to generate characteristic sequences with high positional 
variance which leads to some difficulty in interpretation of the resulting 
sequence. Furthermore, whole-lobe measurements may not respect 
disease boundaries to adequately capture variance across the patient 
sample. 

In this study, we used machine learning to identify sets of cortical 

regions based on amount of GM atrophy and then sequence these clus-
ters using EBM. We hypothesized that, in groups of autopsy-confirmed 
FTLD-tau and FTLD-TDP participants, k-means clustering would iden-
tify sets of cortical regions in T1-weighted MRIs that EBM would then 
use to generate characteristic sequences of cortical volume loss. EBM 
also generates a disease severity estimate for each patient by deter-
mining which change events have already occurred in each patient and 
which have yet to occur. As later estimated stages should indicate more 
advanced disease, we hypothesized that patients with later estimated 
stages will have greater pathologic burden found at autopsy, and 
perhaps lower scores on tests of general cognitive functioning such as 
mini mental state exam (MMSE). 

2. Materials and methods 

2.1. Participants 

We used the Penn Integrated Neurodegenerative Disease Database 
(INDD) (Toledo et al., 2014) to identify 42 patients with FTLD-tau pa-
thology (Pick’s Disease (PiD) N = 10, progressive supranuclear palsy 
(PSP) N = 20, corticobasal degeneration (CBD) N = 12), 21 patients with 
FTLD-TDP pathology (Type A, N = 6; Type B, N = 5; Type C, N = 6; Type 
E, N = 4) and 170 age- and education-matched healthy controls with at 
least one antemortem high resolution T1-weighted image (see Table 1 
for a summary of demographic information). Expert pathologists 
confirmed pathological diagnosis (EBL, JQT) according to published 
criteria (Toledo et al., 2014). Experienced cognitive neurologists (MG, 
DJI, LM) at the Penn Cognitive Neurology Outpatient Clinic diagnosed 
patients clinically with published criteria for phenotypes confirmed at a 
multidisciplinary consensus meeting. Exclusion criteria included more 
than minimal co-pathology burden, or having any clinical or patholog-
ical evidence of stroke, significant head injury, infection, immune- 
mediated disorder, or intracranial mass or hydrocephalus. We also 
excluded participants with a genetic mutation associated with FTLD 
(Wood et al., 2013), to avoid potential confounding factors as partici-
pants with genetic mutations have been shown to have unique clinical, 
pathological, and imaging characteristics relative to those with sporadic 
FTLD (Capozzo et al., 2017; Janssen et al., 2002; Whitwell et al., 2012). 
Patients clinically diagnosed with amyotrophic lateral sclerosis (ALS) 
without a clinically noted cognitive or social deficit and/or without a 
low score of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) 
during life were excluded. All participants underwent an informed 
consent procedure approved by the Institutional Review Board at the 
University of Pennsylvania in accordance with the Declaration of Hel-
sinki. All participants were previously analyzed in (Burke et al., 2022). 

2.2. T1-weighted acquisition and preprocessing 

High resolution T1-weighted MRI imaging was available for each of 
the 63 patients and 170 controls of the study. All images passed visual 
quality control (QC), performed by two independent, experienced raters 

Table 1 
Demographic characteristics of participants. SD = standard deviation, FTLD-tau 
= frontotemporal lobar degeneration due to tau, FTLD-TDP = FTLD due to TDP, 
MMSE = Mini mental state examination, *=significant difference between 
controls and FTLD-tau and controls and FTLD-TDP by t-test p < 0.05, 
^=significant difference in proportion of males and females between controls 
and FTLD-tau.   

Controls FTLD-tau FTLD-TDP 

N (female)^ 167 (102) 42 (15) 21 (11) 
Age At MRI (SD) 64.1 (8.41) 66.5 (7.62) 61.9 (9.16) 
MMSE (SD)* 29.1 (0.89) 24.3 (4.61) 18.9 (8.65) 
Education (SD) 15.6 (2.53) 16.2 (2.53) 15.6 (3.17) 
Disease duration at MRI (SD) N/A 4.73 (2.86) 3.38 (2.26) 
MRI-autopsy interval (SD) N/A 3.26 (2.00) 3.33 (2.48)  
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(CAO, SEB). Common reasons for failed QC were excessive head motion 
or poor segmentation. For additional details on pulse sequences, image 
processing, and quality control, please refer to (Burke et al., 2022). In 
the relatively rare case that we had multiple images for an individual 
pass QC, we selected the earliest available image, as it is the earliest 
phases of disease that are more difficult to discern yet are the most 
meaningful regarding impact on inclusion and likely benefit in treat-
ment trials. All images were magnetization prepared rapid acquisition 
gradient echo (MPRAGE) acquired on Siemens scanners. T1-weighted 
images were processed using antsCorticalThickness.sh (Tustison et al., 
2014). Briefly, the pipeline uses Advanced Normalization Tools (ANTs) 
to process the images, including N4 bias correction (Tustison et al., 
2010), diffeomorphic registration from native space to template space, 
and Atropos brain segmentation (Avants et al., 2011) to identify cortex. 
To determine regional brain volumes, we used the cortical subset of the 
publicly available Lausanne parcellation with 250 labels per hemisphere 
(Hagmann et al., 2008). The native-template warps were used to 
transform the labels to each individual’s native space. 

2.3. W-score calculation 

Cortical volumes were calculated in each ROI for each participant. 
To account for known differences in volume associated with age and 
intracranial volume, W-scores were used (La Joie et al., 2012). Briefly, 
W-scores use linear regression to remove the effect of confounding 
variables on a measurement of interest, and the standard deviation 
across samples is used to normalize variance across different ROIs in the 
data set; the process is similar to calculating a z-score but with covariates 
of no interest removed. For details on the W-score calculation procedure, 
please see (Burke et al., 2022; La Joie et al., 2012). We used the available 
healthy control data to generate W-scores at each ROI for each patient 
and healthy control. The equation generated from the control data was 
then applied to each data set for both healthy controls and patients. Due 
to consistently outlying W-score values, three additional controls with 
borderline visual QC were excluded. 

2.4. Biomarker generation for EBM 

EBM requires a set of biomarkers as input to become the change 
events, which are placed in the most likely or “characteristic” order. 
EBM requires more participants than biomarkers, and we wanted to 
verify that a machine learning method could create biomarkers related 
to pathologic burden at autopsy. We used the kmeans() function from 
the “stats” package in R (MacQueen, 1967; R Core Team, 2021) to 
perform two K-means clustering processes: one using as input the 
cortical volume w-scores of the FTLD-tau patients, and the other using 
cortical volume w-scores of the FTLD-TDP patients. To select the number 
of clusters to use in our EBM analysis, we used a combination of quan-
titative recommendation and biological hypotheses: we performed K- 
means clustering using one to 25 clusters and examined both the within 
cluster sum of squares (WCSS) and Akaike information criterion (AIC) 
for each number of clusters. Using the “elbow” method, both WCSS and 
AIC indicated the optimal number of clusters to be around five for each 
of our FTLD-tau and FTLD-TDP groups. We then calculated the mean w- 
score of the collection of ROIs from within each cluster for each of the 
FTLD-tau participants and each of the controls with the FTLD-tau clus-
ters, and once for the FTLD-TDP participants and each of the controls 
with the FTLD-TDP clusters. In such a way, the large number of ROIs 
from the Lausanne 250 scale is sufficiently reduced to a reasonable 
number of biomarkers for each EBM: five. 

2.5. EBM 

EBM is a data-driven analysis technique that generates a likely 
sequence of events, using frequencies of deviations from a control group 
(Fonteijn et al., 2012). To perform EBM, we used the publicly available 

ebm package from GitHub (https://github.com/ucl-pond/ebm). Briefly, 
EBM assumes a set of change events is preserved across a patient group 
and that an ordering of these events exists. The set of events is deter-
mined by the biomarkers given to the model as input. For each analysis, 
one for FTLD-tau, and a second for FTLD-TDP, each patient and control 
has five biomarkers: one for each cluster of cortical volumes. As 
described above, each biomarker is the mean W-score of the ROIs from 
each identified cluster. Two key underlying assumptions in EBM are that 
biomarkers change monotonically and that all patients follow the same 
event sequence. This means that a participant cannot have a biomarker 
revert to an earlier phase once the event has occurred (i.e., a patient 
cannot return to “control” status). The structural MRI data sets of FTLD 
participants are thus good models for EBM, as cortical atrophy is thought 
to be irreversible over the course of neurodegeneration. Furthermore, all 
participants in each pathology group share a pathology that has been 
shown to share imaging features for early changes (Burke et al., 2022), 
which indicates that the patients within a pathology group are likely to 
follow the same sequence of events for early changes. Under such as-
sumptions, a Markov Chain Monte Carlo (MCMC) model may be used to 
estimate the order of each event. However, MCMC requires a good prior 
sequence estimate to assure good fits in reasonable time, so a greedy 
ascent algorithm is used for initialization. The model begins by assuming 
each order is equally likely and proceeds to randomly switch pairs of 
events and estimate the likelihood of the data given the switched order. 
If the likelihood of the switched order is greater than the pre-switched 
order, the switched order becomes the new estimate. If the likelihood 
of the switched order is less than the likelihood of the pre-switched 
order, the pre-switched order is maintained as the estimate, and a new 
pair of events is switched. The simulation continues until a prespecified 
number of iterations is reached (n = 2000). To increase the likelihood 
that the true maximum likelihood is reached, different initialization 
points for the greedy algorithm are used (n = 10). After the optimal 
greedy estimate is determined, the MCMC simulation begins, initialized 
with the maximum likelihood greedy estimate, which is refined in a 
similar iterative event-pair-switching manner, until the specified num-
ber of iterations is reached (n = 500,000). Importantly, during the 
MCMC, the probabilities of each simulated sequence are remembered. In 
such a way, both the characteristic event ordering and positional vari-
ance calculations are preserved. The positional variance can then be 
examined to infer confidence in the model. For each biomarker, a 
Gaussian mixture model is used to determine the likelihood of the data 
given the events, as in (Fonteijn et al., 2011). The Gaussian mixture 
model was used, as opposed to a uniform distribution, as we expected 
approximately normal distributions of measurements for each 
biomarker. Furthermore, the EBM was then used to estimate where in 
the sequence of events each participant is, giving each participant a 
disease stage or “disease severity” estimate. 

In such a way, two EBM procedures were run. The first with the five 
mean W-scores of the cortical volumetric FTLD-tau cluster biomarkers 
for the patients with FTLD-tau and control participants, and the second 
for the five mean W-scores of the cortical volumetric FTLD-TDP cluster 
biomarkers for the patients with FTLD-TDP and control participants. 
Each EBM model generates a characteristic sequence and positional 
variance diagram for the group of participants, as well as a stage esti-
mate for each participant. The characteristic sequences of the EBM 
analysis can be examined to determine the likely order of cortical vol-
ume changes for the two groups. The positional variance diagrams can 
also be examined to infer confidence about each characteristic sequence. 
The per-patient stage estimates based upon volumes can be used to 
probe associations with other disease metrics, such as pathologic burden 
or cognition (see below). To examine whether pathological subtypes 
influenced EBM-estimated stages, two ANOVAs were run comparing 
EBM-estimated stages within each “umbrella” of FTLD-tau and FTLD- 
TDP. Post-hoc t-tests were used to probe which subtypes were signifi-
cantly different, if any. All results were considered significant at p <
0.05 (uncorrected for multiple comparisons). 
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2.6. Pathologic burden and estimated stage regressions 

Pathology is the “gold standard” for diagnosis of FTLD-tau and FTLD- 
TDP. It is important that in vivo biomarkers of disease severity, such as 
estimated stage from EBM, are validated against this gold standard. For 
most participants, we studied burden of pathology from a random 
hemisphere at autopsy according to standardized NIA/AA diagnostic 
guidelines (Hyman et al., 2012) in a group of consistently-sampled re-
gions (see below) in autopsied patients. Bilateral sampling was done in a 
small subset of patients, and measurements from regions sampled 
bilaterally were averaged together within a patient. The available 
number of patient autopsy samples in each group included: the anterior 
cingulate (aCING: number with FTLD-tau = 26, FTLD-TDP = 15), middle 
frontal cortex (MFC, FTLD-tau = 28, FTLD-TDP = 15), orbitofrontal 
cortex (OFC, FTLD-tau = 29, FTLD-TDP = 14), superior-middle temporal 
cortex (SMTC, FTLD-tau = 29, FTLD-TDP = 14), angular gyrus (ANG, 
FTLD-tau = 23, FTLD-TDP = 14). Briefly, tissue was fixed in 10 % 
formalin and immunostained for tau (AT8; Invitrogen) (Mercken et al., 
1992) or phosphorylated TDP-43 (rat monoclonal TAR5P-1D3; Milli-
pore Sigma) (Neumann et al., 2009) and then an Aperio AT2 (Leica 
Biosystem, Wetzlar, Germany) was used to obtain 20x magnification 
whole-slide images (Giannini et al., 2019a; Irwin et al., 2016a). QuPath 
software version 0.3.0 (Bankhead et al., 2017) was used to measure the 
percent area occupied (%AO) of FTLD-tau or FTLD-TDP inclusions in 
GM in each slide (Giannini et al., 2019b; Irwin et al., 2016a). Each EBM 
produces a single estimate of each participant’s disease stage that is 
based upon a distributed network of brain regions. Thus, we wanted a 
similarly distributed estimate of pathologic burden for each patient. To 
achieve this, we began by log-transforming the %AO in each of the re-
gions listed above to account for the skewed distribution of this mea-
surement (Burke et al., 2022; Giannini et al., 2019b). Finally, to obtain 
one total score for pathologic burden per patient, we took the arithmetic 
mean of the log %AO data for the above-mentioned regions for each 
patient so we could relate this to the EBM-estimated stage (see below). 

We tested the relationships between EBM-estimated stage for each 
patient and pathologic burden. To do so, we performed linear regression 
analyses, using the summarized quantitative pathologic burden as the 
dependent variable. We attempted to correct for multiple comparisons 
but found only significant results with FTLD-TDP in this relatively small 
sample, so we report uncorrected results using a reasonable threshold 
for significance, p < 0.05 (uncorrected). 

2.7. Cognitive impairment and estimated stage regressions 

To determine whether the EBM-estimated stage for each patient is 
clinically informative, the EBM-estimated stages were investigated in 
subsets of patients with an available measure of general cognition: 
MMSE (FTLD-tau = 40, FTLD-TDP = 17). Similar to the pathologic 
burden analysis, we performed linear regression analyses to test the 
relationships between the measure of cognition (dependent variable) 
and EBM-estimated stage for each patient with available data (inde-
pendent variable), considering results significant at p < 0.05 
(uncorrected). 

3. Results 

3.1. K-means clusters 

K-means clustering was used twice, once to create five clusters of 
regions to be used as biomarkers for FTLD-tau EBM, and once to create 
five clusters of regions to be used as biomarkers for FTLD-tau EBM. Panel 
A of Fig. 1 shows the clusters for FTLD-tau, with one cluster representing 
mostly bilateral frontal cortex, with some temporal regions included 
(orange), one bilateral anterior temporal and insular cluster that also 
includes orbitofrontal cortex (yellow), one cluster that includes much 
parietal cortex, with some temporal and frontal cortex as well (dark red), 

a cluster that encompasses much of the bilateral motor and supple-
mentary motor cortex, in addition to some frontal and parietal cortex 
(bright red), and finally a majority occipital cluster, that also includes 
some parietal cortex (black). 

FTLD-TDP results in somewhat different clusters, as shown in Fig. 1. 
B. One cluster nearly encompasses left temporal lobe and insula (bright 
red), with another relatively symmetric cluster on the right side (yel-
low). There’s also a bilateral frontal cluster (orange). The remaining two 
clusters cover the parietal and occipital cortex, with one covering the 
precentral gyrus, much of the angular gyrus and other parietal and oc-
cipital cortex (black) and finally a cluster covering most of the occipital 
pole and medial occipital cortex, along with some superior parietal 
cortex (dark red). 

3.2. EBM of FTLD-tau and FTLD-TDP 

To test whether the data-driven EBM can determine a meaningful 
sequence of machine learning-based biomarkers, we used the five 
cortical volume biomarkers for each patient group generated by K- 
means clustering in an EBM analysis for the respective patient groups 
relative to the same set of controls. Note that the only information about 

Fig. 1. K-means clusters of cortical volumes for A) FTLD-tau and B) FTLD-TDP.  
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the biomarkers given to EBM was the study group in which they 
belonged (control “0” vs patient “1”), and EBM then determines their 
most likely or “characteristic” sequence order. As shown in Fig. 2.A, 
results of the cortical volumetric FTLD-tau EBM were assigned the 
characteristic sequence occipital, motor, parietal, then frontal, and 
finally temporal. The motor and parietal events show some positional 
variance, though variance is low for the other three events. 

The FTLD-TDP EBM generates a characteristic sequence as shown in 
Fig. 2.B. Similar to FTLD-tau, events 1 and 2 are the clusters with 

posterior regions, beginning with the parietal and occipital clusters. Left 
temporal, bilateral frontal, and right temporal clusters are the next 
events, respectively, and they demonstrate relatively low positional 
variance. 

The ANOVA comparing EBM-estimated stages across isoforms of 
FTLD-tau were significant (p = 0.003, f(2, 39) = 6.65). Post-hoc t-tests 
showed that, PiD tended to have higher estimated stages than CBS (p =
0.0009, t(19) = 3.95) and PSP (p = 0.0001, t(27) = 4.37). For FTLD- 
TDP, there was no significant effect of isoform on EBM-estimated 
stage (p = 0.062). 

3.3. Pathologic burden and estimated stage regressions 

EBM also produced an estimate for the stage of each patient based 
upon their biomarkers. As the biomarkers indicate the extent of disease, 
this EBM-estimated stage is a proxy of disease severity. A low estimated 
stage (e.g. 1 or 2) indicates change having occurred only in one or 
relatively few biomarkers in the characteristic sequence. Greater EBM- 
estimated stages (e.g. 4 or 5) indicates patients with more widespread 
cortical atrophy and typically including atrophy in all of the preceding 
stages. To verify whether more severe disease stage estimates, derived 
from the five volumetric biomarkers for each patient, were associated 
with greater pathologic burden in FTLD-tau and FTLD-TDP, we per-
formed linear regressions with the EBM-estimated stage as the inde-
pendent variable and the pathologic burden the dependent variable. The 
estimated volumetric stage was significantly positively associated with 
pathologic burden, meaning that a greater extent of cortical volume loss, 
represented by a later volumetric stage, was associated with greater 
pathologic burden in FTLD-tau (R2 = 0.16, t(1, 28) = 2.55, p = 0.017; 
see Fig. 3.A). The EBM-estimated stage also demonstrated a significant 
association with pathologic burden in FTLD-TDP (R2 = 0.51, t(1, 15) =
4.19, p = 0.0008; see Fig. 3.B). As interval between MRI and autopsy 
may modulate the relationship between EBM-estimated stage and 
pathologic burden within an individual, regressions were also run with 
MRI-autopsy interval as a covariate, but results remained similar. 

3.4. Cognitive impairment and estimated stage regressions 

To determine whether more severe disease estimated by EBM anal-
ysis of T1 volumetric imaging was associated with worse cognition, we 
performed linear regression analysis similar to the one described above, 
but with MMSE as the dependent variable, and again estimated stage as 
the independent variable. Patients did not demonstrate a significant 
association between EBM-estimated stages and MMSE for either FTLD- 
tau or FTLD-TDP groups (p > 0.05). 

4. Discussion 

We applied EBM to MRI data of autopsy-confirmed patients with 
FTLD-tau and FTLD-TDP. Based on AIC and WCSS, K-means clustering 
suggested five clusters for cortical MRI volumetric biomarkers for pa-
tients with FTLD-tau and FTLD-TDP. Using these clusters as input, EBM 
generated a statistically robust solution for ordering these clusters as 
events in each pathology group. EBM thus determined that the charac-
teristic sequence of cortical volume biomarker change events for each of 
FTLD-tau and FTLD-TDP. The EBM-estimated stage for each patient in 
vivo was related to quantitative digital measures of pathology found at 
autopsy in each group using linear regression. These results indicate the 
ability of EBM to capture and model in vivo imaging for the purpose of 
identifying the accumulation of pathologic inclusions of both FTLD-tau 
and FTLD-TDP. Thus, we have indicated that EBM can meaningfully 
inform patients’ disease state relative to the gold standard of pathology. 
We discuss each of these aspects of our study below. 

Fig. 2. Characteristic sequence from event-based models (EBM). Event order is 
the characteristic sequence generated by running EBM. Biomarkers are the 
mean W-scores from all ROIs within each disease cluster. The grayscale in each 
row represents confidence of placement of that biomarker in that place in the 
event order, with darker hues representing higher confidence in the event 
placement, and lighter representing lower confidence. A. The FTLD-tau data 
EBM characteristic sequence. Positional variance is low for events 1 (occipital; 
black in Fig. 1.A), 4 (frontal; orange), and 5 (temporal, insula, orbitofrontal 
(TIO); yellow), the motor, parietal, frontal (MPF; bright red) and parietal, 
temporal and frontal (PTF; dark red) events show some variance. B. The FTLD- 
TDP EBM generates a characteristic sequence of the motor, angular, parietal 
and occipital (MAPO; black in Fig. 1.B) cluster followed by the occipital cluster 
(dark red), with left temporal (bright red) next, followed by frontal (orange), 
and finally right temporal (yellow) events. There is relatively low positional 
variance in the FTLD-TDP sequence, with some present between the left tem-
poral, bilateral frontal, and right temporal events. 
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4.1. K-means of FTLD-tau and FTLD-TDP 

In patients with neurodegenerative disease that results in cortical 
volume loss, such as those with FTLD-tau and FTLD-TDP, K-means 
clustering identifies anatomic regions with similar amounts of cortical 
atrophy and groups them into clusters. In FTLD-tau and FTLD-TDP, the 
created clusters follow a somewhat expected pattern (Brettschneider 
et al., 2014; Irwin et al., 2016a; Irwin et al., 2016b; Seeley et al., 2008; 
Whitwell et al., 2007, Whitwell et al., 2011). FTLD-tau clusters are 
largely symmetric bilaterally, and while three of the five clusters in 
FTLD-TDP are bilaterally symmetric, the final two clusters each 
encompass one temporal lobe. This may be due to a preponderance of 
patients with the semantic variant of primary progressive aphasia 
(svPPA) in this group (Hodges et al., 1992), where atrophy is more 
prominent in the left temporal lobe than the right temporal lobe. Though 
generated using data from the same patients as the atrophy phases 
published in (Burke et al., 2022), the K-means clusters for both patient 
groups are distinct from these phases. This difference is likely due to the 
different methodological techniques used to capture disease: establish-
ing an arbitrarily low threshold for atrophy, as in (Burke et al., 2022), 
may increase sensitivity to the earliest phases of disease in some regions, 
but by clustering regions objectively statistical power is improved. 

K-means is a simple, interpretable, and fast unsupervised clustering 
method. When applied to structural cortical volume data, it provides 
immediately interpretable cluster of regions which can be grouped 
together to form biomarkers for other algorithms, like EBM. While PCA 
is another unsupervised machine learning method that is both simple 
and fast, the clusters that PCA creates are a linear combination of the 
original data; in the context of cortical volumes, this makes interpreta-
tion difficult as regions are likely to partially participate in multiple 
different clusters. Furthermore, the PCA transformed results can be 
signed, which can also muddy interpretation. K-means also has some 
drawbacks, including requiring a specified number of unique clusters, its 
sensitivity to noise, and a tendency to perform best when clusters are of a 
similar size, all of which may potentially be of some concern when 
considering analysis of cortical volume data. PCA and other similar 
methods that have begun to address the concerns related to its appli-
cation to brain data should be considered in future work (Avants et al., 
2014; Zuendorf et al., 2003). 

4.2. EBM in FTLD-tau and FTLD-TDP 

This study demonstrates both strengths and weaknesses of EBM. 
Strengths include interpretability of both the sequence of events and 
confidence in the sequence, as shown by EBM calculating both the 
characteristic sequence and its positional variance. In EBM, the earliest 
regions in the characteristic sequences - in this study, events labeled 4 
and 5 in Fig. 2 – identify the earliest loci of pathology or “epicenters”. 
Later regions in the sequence of events – in this study, events labeled 1 
and 2 – are regions affected later in the disease course. While initial 
studies of EBM used longitudinal data (Fonteijn et al., 2012; Young et al., 
2014), the present study examines cross-sectional cohorts of patients, so 
interpretability is somewhat more nuanced as we are not examining 
changes, but ordered snapshots of disease based on volumes of cortical 
atrophy where each subsequent stage encompasses earlier stages. Thus, 
that both the FTLD-tau and FTLD-TDP characteristic sequences repre-
sent a likely pattern of least to most pathology makes some sense. The 
“early” events in FTLD-tau, changes in the frontal and temporal lobes, 
are consistent measurements in patients, as determined by their 
extremely low positional variance. The later events, changes in the pa-
rietal and motor regions, demonstrate more positional variance, as it is 
possible that as different FTLD-tau isoforms show some phenotypic 
differences reflected in later disease stages (Burke et al., 2022; Josephs 
et al., 2008; Whitwell et al., 2011; Whitwell et al., 2009b). Finally, the 
occipital lobe is perhaps minimally affected in most patients, again 
showing extremely low positional variance. Similarly for FTLD-TDP, 
temporal and frontal regions demonstrate the most pathology, and pa-
rietal and occipital regions relatively less so. These ordered stages of 
disease are also seen in pathologic assessments of FTLD-tau (Irwin et al., 
2016a; Kovacs et al., 2020) and FTLD-TDP (Brettschneider et al., 2013, 
Brettschneider et al., 2014). 

The individual patient EBM-estimated stage measurements are an 
important feature of EBM as well. Though past studies of EBM and 
similar methods have associated estimated stage with follow-up EBM 
stage, clinical diagnosis, or the contralateral homologue measurements 
in neurodegenerative diseases (Panman et al., 2021; Young et al., 2014), 
this is the first study to show that the EBM-estimated disease stage is 
related to underlying pathological burden. This is important as pathol-
ogy remains the “gold standard” for disease in FTLD. We showed a 
predictive relationship between a distributed antemortem measure of 
brain structure and a similarly distributed representative sample tissue 

Fig. 3. Event-based modeling (EBM)-estimated stage regressions. A. EBM-estimated stage based upon cortical volumes display a significant positive relationship with 
pathologic burden in patients with FTLD-tau, summarized as the mean log percent area occupied (ln(%AO); p = 0.017). B. EBM-estimated stage derived from cortical 
volumes in patients with FTLD-TDP also demonstrate a significant relationship with pathologic burden (p = 0.0008). 
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measure of pathologic burden in each of FTLD-tau and FTLD-TDP. This 
relationship provides converging evidence with past studies examining 
associations between structural imaging measures and pathologic 
burden (Burke et al., 2022; Giannini et al., 2019a; Irwin et al., 2016a; 
Whitwell et al., 2009a). Though MMSE is regularly shown to be 
impaired in patients with FTLD and worsens over time (Bian et al., 2008; 
Cousins et al., 2021; Tan et al., 2013), we did not find such an associ-
ation. This may be due in part to the fact that the MMSE was originally 
developed to monitor overall clinical change in AD patients with 
memory difficulty, and future work should perhaps examine EBM- 
estimated stages measures that are potentially more specific for FTLD, 
such as automated speech measures or the Philadelphia Brief Assess-
ment of Cognition (PBAC) (Cho et al., 2021; Cousins et al., 2021; Libon 
et al., 2011; Nevler et al., 2019). 

4.3. Limitations 

Though the results are promising, the current study has some 
shortcomings. First, because FTLD is a rare condition, imaging studies in 
these rare cases are quite uncommon, and imaging studies of autopsy- 
proven cases of FTLD-tau and FTLD-TDP are even rarer, therefore the 
number of participants is relatively small, particularly those with FTLD- 
TDP. There are different isoforms of FTLD-tau, primarily Pick’s disease 
(PiD), progressive supranuclear palsy (PSP), and corticobasal degener-
ation (CBD), and FTLD-TDP has types A, B, C, and E. While neuro-
pathological staging studies of PiD and a heterogeneous cohort of FTLD- 
tau pathology suggest that PiD is likely to display early pathology in 
cortex (Irwin et al., 2016a; Irwin et al., 2018), a similar study examining 
pathology in PSP emphasized subcortical structures, which we were not 
able to examine here, though pathology was also present in cortex 
(Kovacs et al., 2020). As such, subcortical structures should also be 
examined in EBM studies adequately powered to analyze isoforms of 
FTLD-tau (Irwin et al., 2016a; Kovacs et al., 2020). While we found no 
significant differences in EBM-estimated stage between isoforms of 
FTLD-TDP, this may be due to the relatively small sample sizes for each 
subgroup (Mackenzie & Neumann, 2016). Thus, a shortcoming of the 
present work is that the study is underpowered to use EBM to examine 
phases in the subgroups of patients with FTLD-TDP separately, and this 
should be a direction for future research. As with any data-driven 
analysis method, validating results on an independent cohort should 
be a direction for future work, though, as mentioned, there are relatively 
few available FTLD patient datasets with both MRIs and regional pa-
thology data. Though we found an association between cortical volume 
EBM-estimated stage and pathologic burden, this was found to be sig-
nificant only when not correcting for multiple comparisons for the 
different regressions we performed with this rare cohort of patients. 
Furthermore, though EBM-estimated stages are associated with patho-
logic burden for both FTLD-tau and FTLD-TDP, the characteristic se-
quences may not map onto expected patterns based upon existing 
pathology literature. This may be due in part to the relatively sparse 
pathology sampling representing much less than the full brain coverage 
available from MRI metrics. K-means is a relatively simple clustering 
method and other clustering methods with sparsity and anatomical 
adjacency constraints may warrant consideration in the future (Avants 
et al., 2014; Cook et al., 2014; Kandel et al., 2015). EBM has the po-
tential to incorporate longitudinal data, but the present study was un-
derpowered to explore this possibility. Another strength of EBM is its 
ability to seamlessly integrate multiple modalities, such as both struc-
tural and functional imaging measures. Some studies have indicated that 
hypoperfusion may precede structural changes in FTLD (Dopper et al., 
2016; Ferraro et al., 2018; Olm et al., 2016) and that MRI perfusion is a 
candidate for monitoring longitudinal changes in FTLD (Ssali et al., 
2022), so future studies should examine EBM in the context of longitu-
dinal multimodal imaging studies in pathology-confirmed FTLD 
patients. 

5. Conclusions 

EBM is a promising machine learning tool for understanding 
neurodegenerative disease progression in vivo. We’ve shown that EBM of 
volumetric cortical data derived from MRI can produce results that 
parallel those from autopsy studies. Individual patient EBM-estimated 
stages are associated with digitally quantified pathologic burden, vali-
dating the utility of EBM in capturing signal related to the important 
underlying biology in both FTLD-tau and FTLD-TDP. This connection 
should encourage future work using EBM as an in vivo method for 
monitoring disease modifying treatments in neurodegenerative 
disorders. 
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Distribution patterns of tau pathology in progressive supranuclear palsy. Acta 
Neuropathol. 140 (2), 99–119. 

La Joie, R., Perrotin, A., Barré, L., Hommet, C., Mézenge, F., Ibazizene, M., Camus, V., 
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Chaves, R., Padilla, P., Gómez-Río, M., 2011. Principal component analysis-based 
techniques and supervised classification schemes for the early detection of 
Alzheimer’s disease. Neurocomputing 74 (8), 1260–1271. https://doi.org/10.1016/ 
j.neucom.2010.06.025. 

Mackenzie, I.R.A., Neumann, M., 2016. Molecular neuropathology of frontotemporal 
dementia: insights into disease mechanisms from postmortem studies. J. Neurochem. 
138, 54–70. https://doi.org/10.1111/jnc.13588. 

Mackenzie, I.R.A., Neumann, M., Bigio, E.H., Cairns, N.J., Alafuzoff, I., Kril, J., 
Kovacs, G.G., Ghetti, B., Halliday, G., Holm, I.E., Ince, P.G., Kamphorst, W., 
Revesz, T., Rozemuller, A.J.M., Kumar-Singh, S., Akiyama, H., Baborie, A., Spina, S., 
Dickson, D.W., Trojanowski, J.Q., Mann, D.M.A., 2009. Nomenclature for 
neuropathologic subtypes of frontotemporal lobar degeneration: consensus 
recommendations. Acta Neuropathol. 117 (1), 15–18. 

Mackenzie, I.R.A., Neumann, M., Bigio, E.H., Cairns, N.J., Alafuzoff, I., Kril, J., 
Kovacs, G.G., Ghetti, B., Halliday, G., Holm, I.E., Ince, P.G., Kamphorst, W., 
Revesz, T., Rozemuller, A.J.M., Kumar-Singh, S., Akiyama, H., Baborie, A., Spina, S., 
Dickson, D.W., Trojanowski, J.Q., Mann, D.M.A., 2010. Nomenclature and nosology 
for neuropathologic subtypes of frontotemporal lobar degeneration: An update. Acta 
Neuropathol. 119 (1), 1–4. 

MacQueen, J., 1967. Some methods for classification and analysis of multivariate 
observations. Computer Chem. 4, 257–272. 

Mercken, M., Vandermeeren, M., Lübke, U., Six, J., Boons, J., Van de Voorde, A., 
Martin, J.J., Gheuens, J., 1992. Monoclonal antibodies with selective specificity for 
Alzheimer Tau are directed against phosphatase-sensitive epitopes. Acta 
Neuropathol. 84 (3), 265–272. https://doi.org/10.1007/BF00227819. 

Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., 
Bruce, J., Schuck, T., Grossman, M., Clark, C.M., McCluskey, L.F., Miller, B.L., 
Masliah, E., Mackenzie, I.R., Feldman, H., Feiden, W., Kretzschmar, H.A., 
Trojanowski, J.Q., Lee, V.-M.-Y., 2006. Ubiquitinated TDP-43 in frontotemporal 
lobar degeneration and amyotrophic lateral sclerosis. Science 314 (5796), 130–133. 
https://doi.org/10.1126/science.1134108. 

Neumann, M., Kwong, L.K., Lee, E.B., Kremmer, E., Flatley, A., Xu, Y., Forman, M.S., 
Troost, D., Kretzschmar, H.A., Trojanowski, J.Q., Lee, V.M.Y., 2009. Phosphorylation 
of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of 
TDP-43 proteinopathies. Acta Neuropathol. 117 (2), 137–149. https://doi.org/ 
10.1007/s00401-008-0477-9. 

Nevler, N., Ash, S., Irwin, D.J., Liberman, M., Grossman, M., 2019. Validated automatic 
speech biomarkers in primary progressive aphasia. Ann. Clin. Transl. Neurol. 6 (1), 
4–14. https://doi.org/10.1002/acn3.653. 

Olm, C.A., Kandel, B.M., Avants, B.B., Detre, J.A., Gee, J.C., Grossman, M., McMillan, C. 
T., 2016. Arterial spin labeling perfusion predicts longitudinal decline in semantic 
variant primary progressive aphasia. J. Neurol. 263 (10), 1927–1938. https://doi. 
org/10.1007/s00415-016-8221-1. 

Panman, J.L., Venkatraghavan, V., van der Ende, E.L., Steketee, R.M.E., Jiskoot, L.C., 
Poos, J.M., Dopper, E.G.P., Meeter, L.H.H., Donker Kaat, L., Rombouts, S.A.R.B., 
Vernooij, M.W., Kievit, A.J.A., Premi, E., Cosseddu, M., Bonomi, E., Olives, J., 
Rohrer, J.D., Sánchez-Valle, R., Borroni, B., Bron, E.E., Van Swieten, J.C., Papma, J. 
M., Klein, S., 2021. Modelling the cascade of biomarker changes in GRN -related 
frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 92 (5), 494–501. 

C.A. Olm et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2213-1582(22)00350-3/h0020
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0020
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0020
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0020
https://doi.org/10.1002/ana.23937
https://doi.org/10.1007/s00401-013-1238-y
https://doi.org/10.1007/s00401-013-1238-y
https://doi.org/10.1016/j.neurobiolaging.2022.02.007
https://doi.org/10.1016/j.neurobiolaging.2022.02.007
https://doi.org/10.1016/J.JALZ.2017.01.011
https://doi.org/10.1016/J.JALZ.2017.01.011
https://doi.org/10.1016/j.cortex.2021.01.012
https://doi.org/10.1016/j.cortex.2021.01.012
https://doi.org/10.1016/j.neuroimage.2014.05.008
https://doi.org/10.1016/j.neuroimage.2014.05.008
https://doi.org/10.1002/trc2.12188
https://doi.org/10.1016/j.nicl.2016.08.001
https://doi.org/10.1016/j.neurobiolaging.2018.04.008
https://doi.org/10.1016/j.neurobiolaging.2018.04.008
https://doi.org/10.1016/j.neuroimage.2012.01.062
https://doi.org/10.1016/j.neuroimage.2012.01.062
https://doi.org/10.1002/ana.25465
https://doi.org/10.1002/ana.25465
https://doi.org/10.3389/fnins.2019.00682
https://doi.org/10.3389/fnins.2019.00682
https://doi.org/10.1093/brain/115.6.1783
https://doi.org/10.1016/j.jalz.2011.10.007
https://doi.org/10.1002/ana.24559
https://doi.org/10.1369/0022155415614303
https://doi.org/10.1369/0022155415614303
https://doi.org/10.1093/brain/awx319
https://doi.org/10.1093/brain/awx319
https://doi.org/10.1212/WNL.58.8.1161
https://doi.org/10.1016/j.neurobiolaging.2006.09.019
https://doi.org/10.1016/j.neurobiolaging.2006.09.019
https://doi.org/10.1007/s11103-011-9767-z
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0135
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0135
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0135
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0135
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0135
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0135
https://doi.org/10.1523/JNEUROSCI.2170-12.2012
https://doi.org/10.1080/13854046.2011.631585
https://doi.org/10.1080/13854046.2011.631585
https://doi.org/10.1016/j.neucom.2010.06.025
https://doi.org/10.1016/j.neucom.2010.06.025
https://doi.org/10.1111/jnc.13588
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0160
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0160
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0160
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0160
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0160
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0160
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0165
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0165
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0165
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0165
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0165
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0165
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0170
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0170
https://doi.org/10.1007/BF00227819
https://doi.org/10.1126/science.1134108
https://doi.org/10.1007/s00401-008-0477-9
https://doi.org/10.1007/s00401-008-0477-9
https://doi.org/10.1002/acn3.653
https://doi.org/10.1007/s00415-016-8221-1
https://doi.org/10.1007/s00415-016-8221-1
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0200
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0200
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0200
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0200
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0200
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0200


NeuroImage: Clinical 37 (2023) 103285

9

Rajkomar, A., Dean, J., Kohane, I., 2019. Machine learning in medicine. N. Engl. J. Med. 
380 (14), 1347–1358. https://doi.org/10.1056/nejmra1814259. 

Seeley, W.W., Crawford, R., Rascovsky, K., Kramer, J.H., Weiner, M., Miller, B.L., Gorno- 
Tempini, M.L., 2008. Frontal paralimbic network atrophy in very mild behavioral 
variant frontotemporal dementia. Arch. Neurol. 65 (2), 249–255. https://doi.org/ 
10.1001/archneurol.2007.38. 

Ssali, T., Anazodo, U.C., Narciso, L., Liu, L., Jesso, S., Richardson, L., Günther, M., 
Konstandin, S., Eickel, K., Prato, F., Finger, E., St. Lawrence, K., 2022. Sensitivity of 
arterial Spin labeling for characterization of longitudinal perfusion changes in 
Frontotemporal dementia and related disorders. NeuroImage: Clinical 35, 102853. 
https://doi.org/10.1016/j.nicl.2021.102853. 

Staffaroni, A. M., Ljubenkov, P. A., Kornak, J., Cobigo, Y., Datta, S., Marx, G., Walters, S. 
M., Chiang, K., Olney, N., Elahi, F. M., Knopman, D. S., Dickerson, B. C., Boeve, B. F., 
Gorno-Tempini, M. L., Spina, S., Grinberg, L. T., Seeley, W. W., Miller, B. L., Kramer, 
J. H., … Rosen, H. J. (2019). Longitudinal multimodal imaging and clinical 
endpoints for frontotemporal dementia clinical trials. Brain, 142(2), 443–459. 
https://doi.org/10.1093/brain/awy319. 

Tan, K.S., Libon, D.J., Rascovsky, K., Grossman, M., Xie, S.X., 2013. Differential 
longitudinal decline on the mini-mental state examination in frontotemporal lobar 
degeneration and alzheimer disease. Alzheimer Dis. Assoc. Disord. 27 (4), 310–315. 
https://doi.org/10.1097/WAD.0b013e31827bdc6f. 

Toledo, J.B., Van Deerlin, V.M., Lee, E.B., Suh, E., Baek, Y., Robinson, J.L., Xie, S.X., 
McBride, J., Wood, E.M., Schuck, T., Irwin, D.J., Gross, R.G., Hurtig, H., 
McCluskey, L., Elman, L., Karlawish, J., Schellenberg, G., Chen-Plotkin, A., Wolk, D., 
Grossman, M., Arnold, S.E., Shaw, L.M., Lee, V.-Y., Trojanowski, J.Q., 2014. 
A platform for discovery: The University of Pennsylvania Integrated 
Neurodegenerative Disease Biobank. Alzheimer’s and Dementia 10 (4), 477. 

Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C., 
2010. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 29 (6), 
1310–1320. https://doi.org/10.1109/TMI.2010.2046908. 

Tustison, N.J., Cook, P.A., Klein, A., Song, G., Das, S.R., Duda, J.T., Kandel, B.M., van 
Strien, N., Stone, J.R., Gee, J.C., Avants, B.B., 2014. Large-scale evaluation of ANTs 
and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179. https:// 
doi.org/10.1016/j.neuroimage.2014.05.044. 

Venkatraghavan, V., Bron, E.E., Niessen, W.J., Klein, S., 2019. Disease progression 
timeline estimation for Alzheimer’s disease using discriminative event based 
modeling. Neuroimage 186 (August 2018), 518–532. https://doi.org/10.1016/j. 
neuroimage.2018.11.024. 

Whitwell, J.L., Jack, C.R., Parisi, J.E., Knopman, D.S., Boeve, B.F., Petersen, R.C., 
Ferman, T.J., Dickson, D.W., Josephs, K.A., 2007. Rates of cerebral atrophy differ in 
different degenerative pathologies. Brain 130 (4), 1148–1158. https://doi.org/ 
10.1093/brain/awm021. 

Whitwell, J.L., Jack, C.R., Senjem, M.L., Parisi, J.E., Boeve, B.F., Knopman, D.S., 
Dickson, D.W., Petersen, R.C., Josephs, K.A., 2009a. MRI correlates of protein 

deposition and disease severity in postmortem frontotemporal lobar degeneration. 
Neurodegener. Dis. 6 (3), 106–117. https://doi.org/10.1159/000209507. 

Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Ivnik, R.J., Vemuri, P., Gunter, J.L., 
Senjem, M.L., Shiung, M.M., Boeve, B.F., Knopman, D.S., Parisi, J.E., Dickson, D.W., 
Petersen, R.C., Jack, C.R., Josephs, K.A., 2009b. Distinct anatomical subtypes of the 
behavioural variant of frontotemporal dementia: A cluster analysis study. Brain 132 
(11), 2932–2946. https://doi.org/10.1093/brain/awp232. 

Whitwell, J.L., Jack, C.R., Parisi, J.E., Knopman, D.S., Boeve, B.F., Petersen, R.C., 
Dickson, D.W., Josephs, K.A., 2011. Imaging signatures of molecular pathology in 
behavioral variant frontotemporal dementia. J. Mol. Neurosci. 45 (3), 372–378. 
https://doi.org/10.1007/s12031-011-9533-3. 

Whitwell, J.L., Weigand, S.D., Boeve, B.F., Senjem, M.L., Gunter, J.L., Dejesus- 
Hernandez, M., Rutherford, N.J., Baker, M., Knopman, D.S., Wszolek, Z.K., Parisi, J. 
E., Dickson, D.W., Petersen, R.C., Rademakers, R., Jack, C.R., Josephs, K.A., 2012. 
Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, 
progranulin and sporadics. Brain 135 (3), 794–806. https://doi.org/10.1093/brain/ 
aws001. 

Wilson, S.M., Ogar, J.M., Laluz, V., Growdon, M., Jang, J., Glenn, S., Miller, B.L., 
Weiner, M.W., Gorno-Tempini, M.L., 2009. Automated MRI-based classification of 
primary progressive aphasia variants. Neuroimage 47 (4), 1558–1567. https://doi. 
org/10.1016/j.neuroimage.2009.05.085. 

Wood, E.M., Falcone, D., Suh, E., Irwin, D.J., Alice, S., Lee, E.B., Xie, S.X., Van Deerlin, V. 
M., Chen-Plotkin, A.S., Lee, E.B., Xie, S.X., Van Deerlin, V.M., Grossman, M., 
Alice, S., Lee, E.B., Xie, S.X., Van Deerlin, V.M., 2013. Development and validation of 
pedigree classification criteria for frontotemporal lobar degeneration. J. Am. Med. 
Assoc.: Neurology 70 (11), 1411–1417. https://doi.org/10.1001/ 
jamaneurol.2013.3956. 

Young, A.L., Oxtoby, N.P., Daga, P., Cash, D.M., Fox, N.C., Ourselin, S., Schott, J.M., 
Alexander, D.C., 2014. A data-driven model of biomarker changes in sporadic 
Alzheimer’s disease. Brain 137 (9), 2564–2577. https://doi.org/10.1093/brain/ 
awu176. 

Young, A.L., Marinescu, R.V., Oxtoby, N.P., Bocchetta, M., Yong, K., Firth, N.C., Cash, D. 
M., Thomas, D.L., Dick, K.M., Cardoso, J., van Swieten, J., Borroni, B., 
Galimberti, D., Masellis, M., Tartaglia, M.C., Rowe, J.B., Graff, C., Tagliavini, F., 
Frisoni, G.B., Laforce, R., Finger, E., de Mendonça, A., Sorbi, S., Warren, J.D., 
Crutch, S., Fox, N.C., Ourselin, S., Schott, J.M., Rohrer, J.D., Alexander, D.C., 2018. 
Uncovering the heterogeneity and temporal complexity of neurodegenerative 
diseases with Subtype and Stage Inference. Nat. Commun. 9 (1) https://doi.org/ 
10.1038/s41467-018-05892-0. 

Zuendorf, G., Kerrouche, N., Herholz, K., Baron, J.-C., 2003. Efficient principal 
component analysis for multivariate 3D voxel-based mapping of brain functional 
imaging data sets as applied to FDG-PET and normal aging. Hum. Brain Mapp. 18 
(1), 13–21. https://doi.org/10.1002/hbm.10069. 

C.A. Olm et al.                                                                                                                                                                                                                                  

https://doi.org/10.1056/nejmra1814259
https://doi.org/10.1001/archneurol.2007.38
https://doi.org/10.1001/archneurol.2007.38
https://doi.org/10.1016/j.nicl.2021.102853
https://doi.org/10.1097/WAD.0b013e31827bdc6f
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0230
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0230
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0230
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0230
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0230
http://refhub.elsevier.com/S2213-1582(22)00350-3/h0230
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1016/j.neuroimage.2014.05.044
https://doi.org/10.1016/j.neuroimage.2014.05.044
https://doi.org/10.1016/j.neuroimage.2018.11.024
https://doi.org/10.1016/j.neuroimage.2018.11.024
https://doi.org/10.1093/brain/awm021
https://doi.org/10.1093/brain/awm021
https://doi.org/10.1159/000209507
https://doi.org/10.1093/brain/awp232
https://doi.org/10.1007/s12031-011-9533-3
https://doi.org/10.1093/brain/aws001
https://doi.org/10.1093/brain/aws001
https://doi.org/10.1016/j.neuroimage.2009.05.085
https://doi.org/10.1016/j.neuroimage.2009.05.085
https://doi.org/10.1001/jamaneurol.2013.3956
https://doi.org/10.1001/jamaneurol.2013.3956
https://doi.org/10.1093/brain/awu176
https://doi.org/10.1093/brain/awu176
https://doi.org/10.1038/s41467-018-05892-0
https://doi.org/10.1038/s41467-018-05892-0
https://doi.org/10.1002/hbm.10069

	Event-based modeling of T1-weighted MRI is related to pathology in frontotemporal lobar degeneration due to tau and TDP
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 T1-weighted acquisition and preprocessing
	2.3 W-score calculation
	2.4 Biomarker generation for EBM
	2.5 EBM
	2.6 Pathologic burden and estimated stage regressions
	2.7 Cognitive impairment and estimated stage regressions

	3 Results
	3.1 K-means clusters
	3.2 EBM of FTLD-tau and FTLD-TDP
	3.3 Pathologic burden and estimated stage regressions
	3.4 Cognitive impairment and estimated stage regressions

	4 Discussion
	4.1 K-means of FTLD-tau and FTLD-TDP
	4.2 EBM in FTLD-tau and FTLD-TDP
	4.3 Limitations

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


