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Ophichthidae fishes limit to continental shelf of all tropical and subtropical oceans and con-
tain more than 350 species, representing the greatest specialization diversity in the order An-
guiliformes. In the present study, we conducted a genome survey sequencing (GSS) analysis
of Ophichthus evermanni by Illumina sequencing platform to briefly reveal its genomic char-
acteristics and phylogenetic relationship. The first de novo assembled 1.97 Gb draft genome
of O. evermanni was predicted based on K-mer analysis without obvious nucleotide bias.
The heterozygosity ratio was 0.70%, and the sequence repeat ratio was calculated to be
43.30%. A total of 9016 putative coding genes were successfully predicted, in which 3587
unigenes were identified by gene ontology (GO) analysis and 4375 unigenes were classified
into cluster of orthologous groups for enkaryotic complete genomes (KOG) functional cat-
egories. About 2,812,813 microsatellite motifs including mono-, di-, tri-, tetra-, penta- and
hexanucleotide motifs were identified, with an occurrence frequency of 23.32%. The most
abundant type was dinucleotide repeat motifs, accounting for 49.19% of the total repeat
types. The mitochondrial genome, as a byproduct of GSS, was assembled to investigate
the evolutionary relationships between O. evermanni and its relatives. Bayesian inference
(BI) phylogenetic tree inferring from concatenated 12 protein-coding genes (PCGs) showed
complicated relationships among Ophichthidae species, indicating a polyphyletic origin of
the family. The results would achieve more thorough genetic information of snake eels and
provide a theoretical basis and reference for further genome-wide analysis of O. evermanni.

Introduction
Ophichthidae is the family with the most various species in the order of Anguilliformes, which hitherto
contains more than 350 valid species belonging to 62 genera all over the world [1]. These snake-shaped
fishes are widely spread in tropical and subtropical inshore waters and prefer to slither in muddy substrates
or coral reefs by pointed rayless tail tips or acute snouts [2]. Because of less distinguishable morpholog-
ical features and various shapes of body in different growth stages, it brings great difficulties to effective
species identification and phylogeny analysis of this group. The studies on ophichthid eels are limited
to morphological identification and new species description [3–8]. There have been no reports on the
genome of snake eels until now. The lacking of molecular genetic data has seriously restricted the further
evolutionary and genomic studies of Ophichthidae fishes.

Nowadays, high-throughput next-generation sequencing (NGS) provides a more convenient approach
to obtain massive genomic sequences, which can more comprehensively reveal the genetic background
and phylogenetic relationships at DNA level [9]. With the accomplishment of the first fish whole genome
sequencing (WGS) early in 2002 [10], more and more fish genomes have been published, ranging from
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the model fishes [11,12] to many commercial species [13–17]. The genome survey sequencing (GSS) is a convenient
approach to provide fundamental information of genome. It could not only productively identify genome-wide simple
sequence repeats (SSRs) but also efficiently predict putative gene functions and targeted the potential exon-intron
boundaries [18].

In the present study, we selected Ophichthus evermanni [19], a kind of snake eel that mainly distributes in the East
China Sea, the South China Sea and the coastal waters of southern Japan as a representative [20], and preliminarily
revealed the genomic characterization such as genome size, GC content, heterozygosity and repeat ratio of this snake
eel based on genome survey sequencing. Meanwhile, the genome annotation, microsatellite markers identification
and mitochondrial genome assembly were conducted by a series of bioinformatics analyses. The information above
could be helpful in species identification, adaptive evolutionary mechanisms and phylogenetic studies. Besides, these
findings would also supplement the molecular biology data of O. evermanni and make a valuable contribution to the
genome-wide studies on snake eels.

Materials and methods
Sample collecting and DNA extraction
One female specimen of Evermann’s snake eel with body length 771.42 mm and body weight 571.63 g was obtained
from coastal waters of Xiamen (118◦34′E, 24◦15′N), China in December 2020 (Supplementary Figure S1). After iden-
tifying it by morphological characteristics and DNA barcoding (mitochondrial DNA COI gene), the examined in-
dividual was preserved in −80◦C ultra-low temperature freezer, and all animal experiments took place at Fisheries
Ecology and Biodiversity Laboratory (FEBL) of Zhejiang Ocean University, Zhoushan, China. Experiments were con-
ducted under the guideline and approval of the Ethics Committee for Animal Experimentation of Zhejiang Ocean
University (ZJOU-ECAE20211876).

After species identification and morphological measurement, a piece of fresh muscle tissue was clipped from
the base of dorsal fin and soaked in absolute ethanol. The genomic DNA was extracted by using the standard
phenol-chloroform method followed by proteinase K digestion to ensure complete protein removal. The DNA in-
tegrity was first assessed by 1% agarose gel electrophoresis (5 V/cm, 20 min). And then, the quantity and purity
of genomic DNA were checked by Qubit 2.0 fluorometer (Invitrogen, California, U.S.A.) and NanoDrop2000 spec-
trophotometer (Thermo Fisher Scientific, Delaware, U.S.A.), respectively.

Library construction and genome survey sequencing
The DNA sample was randomly fragmented into 300–500 bp using Covaris M220 Focused-ultrasonicator (Covaris,
Massachusetts, U.S.A.) to construct the two paired-ends sequencing libraries, and then followed by terminal repair,
adding an A base to the blunt ends and ligation to sequencing adaptors. After DNA purification and bridge PCR
amplification, the prepared DNA library was sequenced based on the Illumina Hiseq 2500 platform with a read length
of 2×150 bp by Origin-gene Biomedical Technology Co., Ltd., Shanghai, China (http://www.origin-gene.com/). All
sequencing data were deposited in the short-read archive (SRA) database (http://www.ncbi.nlm.nih.gov/sra/) under
the accession number PRJNA807805.

Genome assembly and K-mer analysis
The clean data were obtained after removing reads containing adapters, duplicated reads and low quality reads from
the raw genome survey sequence data. All the high-quality reads were assembled based on de Bruijn graph algorithm
using SOAP de novo v2.04 software (https://soap.genomics.org.cn/) [21]. Jellyfish software [22] was conducted to
count K-mer depth distribution of sequenced reads and then evaluated the genome size according to the formulas:
Genome Size = K-mer number/average K-mer depth, Revised Genome Size = Genome Size × (1 − Error Rate).
Because the distribution of K-mer frequency yields to Poisson distribution, the peak of K-mer distribution curve
can be regarded as the expected depth of K-mer [23]. The heterozygous frequency of the genome of O. evermanni
was roughly determined based on the K-mer analysis following the description of Liu et al [24]. And the repeat ratio
was calculated according to the percentage of the total number of K-mer after the main peak 1.8 times of all K-mer
numbers [24,25]. Moreover, the GC content was also an important parameter for measuring the sequencing bias of a
genome, which was calculated by the 10 kb non-overlapping sliding windows along the assembled sequence.

Gene prediction and functional annotation
The software GeneMark-ES (http://exon.gatech.edu/genemark/gmes instructions.html) [26] was conducted to pre-
dict genes. The translated protein sequences were compared with Nr (Non-Redundant Protein Sequence), KOG
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Table 1 The top ten species blasted against the nucleotide sequence database (NT)

Species Number of reads Percentage (%)

Cyprinus carpio 854 8.54

Larimichthys crocea 288 2.88

Oryzias latipes 90 0.90

Danio rerio 85 0.85

Gouania willdenowi 81 0.81

Echeneis naucrates 78 0.78

Denticeps clupeoides 74 0.74

Syngnathus acus 66 0.66

Mastacembelus armatus 65 0.65

Salmo trutta 59 0.59

(Cluster of Orthologous Groups for Enkaryotic Complete Genomes), KEGG (Kyoto Encyclopedia of Genes and
Genomes) and GO (Gene Ontology) databases using Blast 2.2.28 + [27], respectively, so as to obtain the annotation
information of the predicted genes.

Microsatellites identification and phylogenetic analysis
The Perl script MicroSatellite (MISA) was used to identify microsatellites in the genome of O. evermanni [28]. The
settings implemented to detect the minimum numbers of SSRs for mono-, di-, tri-, tetra-, penta- and hexa-nucleotide
repeats were as follows: number of mono-nucleotide repeats was less than 10, number of di-nucleotide repeats was
less than 6, and numbers of remaining repeats were all less than 5, respectively.

To further reveal the phylogeny of O. evermanni, we assembled and generated the complete mitochondrial genome
by running a Perl script NOVOPlasty 4.3.1, a de novo assembler for organelle genomes from the whole genome
data [29]. The circular mitogenome was annotated by the online tool MitoFish (http://mitofish.aori.u-tokyo.ac.jp/)
and then checked and corrected the annotation results manually. The complete mitochondrial sequence of O. ever-
manni was submitted to NCBI (National Center for Biotechnology Information) database with the accession number
OM421636. The nucleotide composition was calculated by Mega 11 [30]. Twenty Anguilliformes mitogenomes were
downloaded from the GenBank, with Gymnothorax formosus (GenBank accession number: KP874184) selected as
the outgroup. Twelve protein-coding genes (PCGs) excluding ND6 were concatenated for phylogenetic analysis based
on Bayesian inference (BI) method inferring by MrBayes 3.2.6 [31] Four independent Markov Chain Monte Carlo
(MCMC) chains (one cold chain and three heated chains) were run for 1,000,000 generations with sampling every
thousand generations, and then the initial 25% of these sampled trees were discarded as burn in. And before that,
assessing nucleotide substitution saturation and selecting the best-fit model of nucleotide substitution were carried
out with DAMBE 5.0 [32] and Modeltest 3.7 [33], respectively.

Results
Illumina Sequencing data statistics
The average sequencing depth of the HiSeq data was 50× coverage, which yielded approximately 54.145 Gb clean
bases with the error ratio 0.0282% after sequencing quality control. The values of Q20 (base quality > 20) and Q30
(base quality > 30) were 96.575% and 91.525%, respectively, which suggested that the sequencing depth and was
sufficient to capture most of the genomic information. The proportions of single base were presented in Figure 1A,
the GC content was 42.66% with no apparent abnormalities and obvious GC bias being observed. Ten thousand pairs
of reads data were randomly selected from the filtered high-quality data, and the top ten species blasting against the
NT (Nucleotide Sequence Database) from the NCBI was showed in Table 1, demonstrating that there was no obvious
exogenous contamination during the library construction.

Genomic characteristics by K-mer analysis
About 364,763,910 clean reads were used to carry out de novo assembly based on K-mer analysis. Finally, a total
length of 761,647,043 bp contigs were obtained with the contig N50 value of 1366 bp and N90 value of 469 bp, and the
maximum contig was 18,910 bp in length. A 350-bp insert library data were used to construct the K-mer distribution
map of K = 17 and the 17-mer frequency distribution curve exhibited a unique peak at depth of 24 (Figure 1B).
Statistical analysis showed that the total number of K-mers was 47,338,914,261 after removing the anomalies of depth.
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(A)

(B)

Figure 1. Sequence content across all bases and K-mer (K = 17) analysis for estimation of the genome size of O. evermanni

(A) The X-axis was the position in read and Y-axis was base content. (B) The X-axis represented K-mer depth and the Y-axis was

the frequency at a given depth divided by the total frequency of all depths.
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Table 2 Statistical information of predicted genes

Gene number
Gene total length

(bp)
Gene average

length (bp)
Gene density

(genes/kb)
Intergenic region

length (bp)
GC content in

gene region (%)

GC content in
intergenic region

(%)

9,016 6,405,663 710 0.011 755,241,380 55.00 42.50

Table 3 Dominant base classes in each base repeat type in O. evermanni

Repeat type Maximum repeat modify Minimum repeat modify
Type Repeat motif Number Proportion Repeat motif Number Proportion

Mononucleotide 4 A 363,365 43.28% G 66,406 7.91%

Dinucleotide 12 CA 373,131 26.97% GC 2194 0.16%

Trinucleotide 60 AAT 22,229 11.24% CGT 39 0.02%

Tetranucleotide 240 AAAT 24,328 7.93% TCGT 10 0.003%

Pentanucleotide 966 AAAAT 2978 6.54% – – –

Hexanucleotide 2361 CACACG 1227 3.09% – – –

According to the calculation formula of genome size, we counted the revised genome size of the diploid species O.
evermanni was 1.97 Gb after eliminating the effects of erroneous K-mers. The proportion of heterozygosity and
repeat sequence ratio were 0.70% and 43.30%, respectively.

Gene prediction and annotation
A total of 9016 putative coding genes with the average length of 710 bp were successfully predicted by GeneMark-ES
software (Table 2). The total length of genes and intergenic regions were 6,405,663 and 755,241,380 bp, with the GC
content of 55.0% and 42.5%, respectively. The predicted genes were separately aligned by BLAST 2.2.28+ to the GO,
KEGG, NR and KOG databases.

A total of 3587 unigenes were identified by GO analysis and further classified into the categories of molecular
function, cellular component and biological process (Figure 2A). About 55.04% of them were grouped under bio-
logical processes, in which metabolic process was the most highly represented group. Second, 34.73% of the genes
were grouped under cellular components, in which cell and cell part were the most significantly represented groups.
Finally, 10.23% of the genes were grouped under molecular functions, in which binding represented a relatively high
proportion. There were 4,375 genes were classified into KOG functional categories, the signal transduction mecha-
nisms represented the largest group (861; 19.68%), followed by general function prediction only (562; 12.85%) and
transcription (551; 12.59%) (Figure 2B).

Gene annotation analysis showed that a lot of predicted genes of O. evermanni genome were associated with the
functional category of signal transduction mechanisms (861 genes) and immunity (950 genes). The functions of gene
products in cells and their potential metabolic pathways were available in Supplementary Figure S2.

Microsatellites distribution and characteristics
Microsatellite identification tool (MISA) was used for microsatellite mining. As a result, 9,382,261 sequences with
a total length of 1,214,882,177 bp were examined, and 2,812,813 SSRs were finally identified. Totally 2,187,607
SSR-containing sequences were detected accounting for 23.32% the total examined sequences. Among them, about
485,719 sequences contained more than 1 SSR and the number of SSRs present in compound formation was 425,676.
The most abundant type of repeat was the dinucleotide (1,383,575; 49.19%), followed by mononucleotide (839,597;
29.85%), tetranucleotide (306,611; 10.90%), trinucleotide (197,737; 7.03%), pentanucleotide (45,529; 1.62%) and hex-
anucleotide (39,764; 1.41%) repeats (Figure 3A). The most and the second most common repeat types were five times
repeats (451,077) and six times repeats (291,123) (Figure 3B).

In this study, the dominant repeating motifs ranging from mononucleotide to hexanucleotide were A (363,365), CA
(373,131), AAT (22,229), AAAT (24,328), AAAAT (2978) and CACACG (1227) of the total SSRs (Table 3). Among
the dinucleotide motifs, the most abundant repeat motif type was AC/GT, followed by AG/CT, AT/AT and CG/CG.
Within the trinucleotide repeat motifs, the major repeat motifs were AAT/ATT and AAG/CTT, accounting for 44.35%
and 17.77%, respectively. Percentages of different motifs in mon-, tetra-, penta- and hexa- nucleotide repeats were
also showed in Figure 4.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 2. GO annotation and KOG function classification of putative genes in O. evermanni

(A) Genes were assigned to three categories: biological process, cellular component and molecular function. (B) Different color

codes (A–Z) at right of the histogram represented different category.

Mitochondrial DNA structure and phylogenetic relationships
It was the first time to report the complete mitogenome for O. evermanni in this study. The complete mitochondrial
genome was 17,759 bp in length (Figure 5), with the base composition of A (31.27%), G (16.19%), C (26.22%) and T
(26.32%), respectively. The A+T content (57.59%) was greater than G+C content (42.41%), showing an obvious AT
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Figure 3. Distribution of SSR motifs in O. evermanni

(A) Frequency of different microsatellite motif types. (B) Distributions of different motif types with different repeat numbers.

bias. Unlike other typical teleosts, the gene arrangement was identified in the mitogenome of O. evermanni. ND6
gene and the conjoint tRNA-Glu were translocated between tRNA-Thr and tRNA-Pro, and another highly homol-
ogous D-loop region was located in the upstream of the ND6 gene. The tRNA-Gln (Q), tRNA-Ala (A), tRNA-Asn
(N), tRNA-Cys (C), tRNA-Tyr (Y), tRNA-SerUCA (S1), tRNA-Glu (E), tRNA-Pro (P) and ND6 were located in the
L-strand, while the rests were located in the H-strand. Except for tRNA-Ser (AGC), the remaining 21 tRNAs could
fold into typical cloverleaf secondary structure.

Phylogenetic relationships were constructed based on the linked sequences of 12 PCGs (without stop codons)
of 21 mitogenomes using BI method. In order to make sure that the aligned sequences were suitable for tree con-
struction, we conducted the test of substitution saturation based on Iss statistic for the dataset with DAMBE prior to
phylogenetic analysis. The observed Iss value (0.3013) was significantly smaller than Iss.c value (0.8496 assuming a
symmetrical topology and 0.6444 assuming an extreme asymmetrical topology) when all three codon positions were
considered as a whole. Furthermore, the plot trend-line analysis was carried out using generalized time reversible
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Figure 4. Type and frequency of microsatellite motifs in O. evermanni

(A) Frequency of different mononucleotide microsatellite motifs. (B) Frequency of different dinucleotide microsatellite motifs. (C) Fre-

quency of different trinucleotide microsatellite motifs. (D) Frequency of different tetranucleotide microsatellite motifs. (E) Frequency

of different pentanucleotide microsatellite motifs. (F) Frequency of different hexanucleotide microsatellite motifs.

(GTR) distance as abscissa and base substitution as ordinate (Figure 6). The result showed that there was an obvious
linear relationship between them, indicating the sequences obviously had experienced little substitution saturation
and subsequent phylogenetic analysis was feasible. GTR+G model was chosen as the appropriate model for the nu-
cleotide sequences based on Akaike information criterion (AIC). The reconstructed BI tree was showed in Figure 7.
It revealed that all Ophichthidae species gathered as one clade, and O. evermanni had the closest relationship with
Myrichthys maculosus. Family Ophichthidae clustered with one group of Congridae consisting of Conger japoni-
cus and C. myriaster. Nettastomatidae, Derichthyidae and Congridae (Heteroconger hassi + Paraconger notialis)
formed another clade. While, species of Muraenesocidae located near the root of the phylogenetic tree.
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Figure 5. The mitochondrial genome structure of O. evermanni

Discussion
The family Ophichthidae, the most divergent group within the order Anguilliformes, comprises two subfamilies, the
Myrophinae and the Ophichthinae, the latter of which is characterized by a hard, pointed and finless tail tip [3,4].
The genus Ophichthus includes the highest numbers of species (285 valid species worldwide) among all of the 47
recognized genera in the subfamily Ophichthinae, and there have been some new species to be constantly discovered
and reported since the last two decades [1]. Therefore, the classification and identification of the snake eels are always
in the utmost confusion [34]. Fourteen-four species of Ophichthus were recorded and described in offshore China,
which mainly distributed in the sea waters south of the Yangtze River Estuary [2]. However, very limited molecular
genetic researches have been focused on a certain snake eel both at home and abroad.

In the present study, the Illumina paired-end sequencing technique was applied to preliminarily unravel the ge-
nomic background of O. evermanni, a representative species of this group. Genome size refers to the amount of DNA
contained in a haploid genome, and it serves as an important basis for comparative and evolutionary genomics [35].
Genome size and its variability were influenced by the mutational pressure of chromosomal, transposon activity and
relative occurrence rates of segmental duplications and deletions to some extent [36]. The draft genome size of O.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 6. Nucleotide substitution saturation analysis of 12 PCGs sequences without ending codons

evermanni was relatively larger than those of most marine teleosts, such as Fugu rubripes (322.5 Mb) [10], Gadus
morhua (830 Mb) [37], Larimichthys crocea (728 Mb) [13], Sillago sinica (534 Mb) and [38]. Previous researches
indicated larger genomes had relatively higher mutational liability to undergoing natural selection in evolutionary
process [39], and lungfish was a good case in point [40]. Our result implied that larger genomes of snake eels might
accumulate more mutations and have strong ability to adapting to the benthic and burrowing living habits in sandy
shores or muddy estuaries.

Genome size is determined not only by the number of genes in the genome but also by the amount of repetitive
DNA. The repeat ratio (43.30%) of O. evermanni genome was present at a high level in the known fish genomes. It
confirmed that larger genomes tended to be ones in which the copy numbers of the repeat sequences were highest
[41]. Heterozygosity is important for determining the appropriate genomic splicing strategy and subsequence data
processing. The genome-scale de novo assembly will become difficult when the heterozygosity exceeds 0.5% [22].
According to the criteria, the higher proportion of heterozygosity (0.70%) reflected the complexity of O. evermanni
genome, and also inferred higher genetic diversity in O. evermanni. Low (<25%) or high (>65%) GC content may
cause sequencing bias of Illumina platform and seriously affect the quality of genome assembly and subsequent anal-
ysis [42]. In the study, the moderate GC content was detected and the percentage of A vs. G and C vs. T were almost
equal to each other, indicating the sequencing quality was good and suitable for further analysis.

As cave-dwelling fish species, the visual system structure and function of the snake eels have degenerated dra-
matically, by contrast, the olfactory organs and lateral line canals are well developed [43,44]. In the present study,
some signal transduction pathways (MAPK signaling pathway, olfactory transduction, taste transduction, neuroac-
tive ligand–receptor interaction etc.) were detected and therefore environmental messages are received from the sen-
sory organs and then abundant nerve fibers can transmit external stimulus to the brain. In addition, some signaling
pathways related to immune system were also founded, such as intestinal immune network for B-cell receptor signal-
ing pathway, T-cell receptor signaling pathway, Jak-STAT signaling pathway, NOD-like receptor signaling pathway
and Toll-like receptor signaling pathway. In coastal areas of Guangdong and Fujian, China, local residents regard it
as healthy tonic for strengthening body and improving immunity.

10 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 7. The phylogenetic tree inferred from the mitogenome sequences of 21 Anguilliformes fishes. Sample from this

study was written in red letters

Microsatellite DNA marker offers several advantages of codominant, extensive distribution, abundant polymor-
phisms and convenient analysis, and has become an ideal tool in genetics and evolution studies [45]. In the present
study, the dinucleotide repeats had the highest number and type of repeats, which was consistent with Acanthogob-
ius ommaturus [46], Sillago sihama [47], Harpadon nehereus [48] and Cociella crocodilus [49]. SSR polymorphic
loci are mainly distributed in dinucleotide and trinucleotide repeats [50]. Hence, the development of polymorphic
SSR markers from low repetitive motifs will have great potential in population genetics research of O. evermanni
subsequently. The complexity of repeated motif is usually related to evolutionary level and DNA mutation rate [51].
The frequency of mononucleotides to trinucleotides was amount to 86.07%, which implied that O. evermanni might
have experienced a long evolutionary history and accumulated more genetic variation. Apart from SSRs, another
important molecular marker mitochondrial DNA was also assembled to explore the systematical evolution of O. ev-
ermanni. The intricate clustering relationship in family Ophichthidae was presented in the topological structure of
BI tree, deducing that Ophichthidae was not a monophyletic group and should be a polyphyletic group. The conclu-
sion was identical with morphological and anatomical evidences of olfactory organs [44]. The snake eels have later
divergence time on evolution comparing to other related species, and the short interval time of differentiation might
cause a rapid affair of evolution radiation and species forming in this group.

Conclusions
In the present study, the genome size of O. evermann estimated by K-mer analysis (K = 17) was 1.97 Gb, with
the heterozygosity and duplication rates 0.70% and 43.30%, respectively. The results showed O. evermann owned
relatively larger genome size, higher heterozygosity and nucleotide repetition ratio in bony fishes. Besides, the gene
annotation, SSR characteristics and phylogenetic relationship analyses were tentatively carried out. Our results would
provide meaningful data for further genomic studies and lay a useful basis for novel molecular marker development.
Because genome size based on K-mer analysis might be affected by data quality, analytical software, parameters setting
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and some other confounding factors. Hence, the novel state-of-the-art genetic techniques, such as Illumina combined
with PacBio and Hi-C-based assembly needs to be conducted to obtain chromosomal-level scaffolding genome in the
future.
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