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Abstract

Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic
analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to
genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the
evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to
allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general
new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single
generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous
mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance
of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies
are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always
enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and
clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the
population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-
locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the
potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified.
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Introduction
Mutation rate is a key evolutionary parameter that affects the
level of genetic diversity in a population. Genetic diversity in
turn affects both the population’s current mean fitness and
its capacity to adapt to changes in the environment. Most
theoretical work to date has assumed that mutation rate
takes on a fixed value in all members of the population.
Nonetheless, mutation rate, like any other trait, can be ex-
pected to vary among individuals, due to genetic, environ-
mental, and stochastic effects. The recognition that mutation
rate can vary within a population is implicit in the long-
standing study of mutation rate evolution, and more recently
in considerations of stress-induced mutagenesis, especially in
bacteria. However, a comprehensive conceptual understand-
ing of how mutation rate heterogeneity within a population
affects the de novo appearance of mutations and long-term
availability of standing genetic variation is lacking.

The existence of rare individuals with high mutation rate
could be particularly important when a combination of sev-
eral mutations is relevant for adaptation (Ninio 1991; Boe
1992; Drake et al. 2005; Drake 2007). Given that the mutation
rate is typically low, higher order mutants are generally rare,

yet they can be crucial for adaptation to complex new envi-
ronments. For example, when multiple drugs are applied in
combination—a common treatment approach for cancer
(Al-Lazikani et al. 2012) and several major infectious diseases
(Goldberg et al. 2012)—resistance in the targeted pathogens/
cells generally requires multiple mutations. The prevalence of
such multi-point mutants in the standing genetic variation
before drug treatment starts, when they are generally ex-
pected to carry fitness costs, is predicted to be crucial to
the emergence of resistance during treatment (Ribeiro and
Bonhoeffer 2000; Komarova and Wodarz 2005). Multiple mu-
tations are also involved in the initiation and progression of
many cancers (Knudson 2001).

There is clearly a genetic contribution to mutation rate via
genes involved in replication, proofreading, and repair of the
genetic material. This can result in variation of mutation rate
even among closely related individuals. Laboratory investiga-
tions have identified “mutators” and “antimutators” (having
higher, respectively lower, mutation rate than the wild type),
attributable to one or few specific genetic changes, in a variety
of organisms. Effect sizes range up to hundreds- to thousands-
fold variation in eukaryotic cells, bacteria and DNA viruses,
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and up to around 5-fold in retro- and RNA viruses
(supplementary text I.1, Supplementary Material online).
The abundance of such variants in natural populations is
less clear. Mutators are expected to arise frequently de novo
due to the large target size for mutations causing defects in
replication or repair genes (Drake 1993; Denamur and Matic
2006). Theoretically, under constant conditions, alleles that
alter mutation rate can be expected at mutation-selection
balance in the long term (Johnson 1999; Denamur and
Matic 2006; Lynch and Abegg 2010; Desai and Fisher 2011).
Moreover, by hitchhiking with beneficial alleles they generate
during phases of adaptation, mutators may rise to higher fre-
quency in the short term (Taddei et al. 1997; Loeb and Loeb
2000; Desai and Fisher 2011). In experimental populations of
bacteria, mutators have indeed been observed to spontane-
ously arise and persist (Sniegowski et al. 1997) and be enriched
through selective sweeps (Mao et al. 1997). Surveys of clinical
and other natural isolates in several bacterial species indicate
that strains exhibiting a range of mutation rates also exist
outside the laboratory (LeClerc et al. 1996; Matic et al. 1997;
Oliver et al. 2000; Björkholm et al. 2001; Denamur et al. 2002;
Richardson et al. 2002; Morosini et al. 2003; Prunier et al. 2003;
Baquero et al. 2004; Watson et al. 2004). In RNA virus popu-
lations, mutators appear rapidly in laboratory settings (Su�arez
et al. 1992; Combe et al. 2015) and are expected to be present
in heterogeneous natural populations (Su�arez et al. 1992;
Mansky and Cunningham 2000), but we are not aware of
any surveys of natural isolates. Cancerous tumors, which are
characteristically genetically unstable and highly heteroge-
neous (Lengauer et al. 1998; Gillies et al. 2012; Barber et al.
2015), are also anticipated to be polymorphic in genes affect-
ing mutation rate. It has been hypothesized that a mutator
phenotype arises early in carcinogenesis, and moreover in-
creases the chances of successive mutations affecting genomic
stability, leading to further non-uniform increases in mutation
rate (Loeb et al. 1974; Loeb 1991, 2001; Loeb et al. 2003).
However, there does not appear to be any study quantifying
mutation rate in a representative sample of co-existing indi-
viduals from a single natural population (e.g., pathogens
within one infected patient or cells within one tumor).

Many environmental factors—including temperature, pH,
oxygenation, UV radiation, and chemicals—have also been
implicated in modulating mutagenesis in bacteria, viruses,
and cancerous cells (supplementary text I.2, Supplementary
Material online). In addition to these abiotic factors, there is
some evidence that bacterial mutation rate is modified by
intercellular interactions, which depend on population den-
sity (Kra�sovec et al. 2014). Viral mutation rate could also be
affected by its host cell’s type, physiological state, and antiviral
defenses (supplementary text I.2.3, Supplementary Material
online). However, few quantitative estimates relating environ-
mental variables to mutation rate are available. Some antibi-
otics appear to increase bacterial mutation rates by 2- to
around 100-fold (Gillespie et al. 2005; Kohanski et al. 2010;
Long et al. 2016), whereas certain antiretrovirals increase HIV-
1 mutation rate by roughly 5-fold (Mansky et al. 2003). The
mutation rate of E. coli varied over a 3-fold range with pop-
ulation density (Kra�sovec et al. 2014). While it is clear that the

relevant environmental factors may be heterogeneously dis-
tributed in a population’s habitat, inducing different muta-
tion rates in co-existing individuals, the precise distribution
will be highly context-dependent.

Finally, mutation rate may vary randomly and nonsystem-
atically in a population, due to stochastic effects on individ-
uals’ physiological states (Boe et al. 2000; Drake 2007). For
example, the SOS response, which is associated with produc-
tion of error-prone polymerases in bacteria (Tenaillon et al.
2004), exhibited a distribution of induction levels in E. coli,
with 0.3% of the population at least 20-fold above the average
level (McCool et al. 2004). Even constitutively expressed rep-
lication and repair genes are subject to random errors in
transcription and translation that affect the protein’s fidelity
(Ninio 1991; Boe 1992; Miller 1996). Rough calculations sug-
gested that bacterial populations contain resulting “transient
mutators” at a total frequency of around 5� 10�4, with
mutation rates expected to be enhanced to similar degrees
as in genetic mutators (Ninio 1991). Fluctuations in low copy
number proteins, particularly upon cell division, could also
yield temporary reduction in repair capacity (Drake 2007),
and imbalanced concentrations of protein subunits could
produce polymerases missing the proofreading subunit
(Aoki and Furusawa 2001). Thus, even isogenic populations
in uniform macroenvironments seem likely to contain indi-
viduals with differing propensities to generate mutations, al-
though the few direct tests to date have yielded mixed results
(Elez et al. 2010; Kennedy et al. 2015; Uphoff et al. 2016).

Taken together, this evidence suggests that mutation rate
variation within populations is probably common, though
few quantitative estimates are available. DNA-based organ-
isms appear to have the capacity to vary mutation rate over a
few orders of magnitude, whereas RNA-based viruses appear
to tolerate only modest (up to around 5-fold) changes in their
already high baseline mutation rates (Drake and Holland
1999; Mansky and Cunningham 2000). The frequency of
mutators in a population could vary widely depending on
the source of mutation rate variation and the selective con-
ditions. Furthermore, a broad spectrum arises in the extent to
which mutation rate is correlated between parent and off-
spring. At one extreme, if mutation rate is entirely genetically
controlled, the offspring will inherit its parent’s mutation rate.
At the other extreme, erroneously translated polymerases or
other intracellular components will have limited if any inter-
generational effects before degrading and/or being diluted by
new production. If mutation rate is primarily determined by
the external environment, parent-offspring correlation could
vary widely, depending on the extent to which they share a
common environment. If spatial variation in the environment
is fine-grained relative to the typical offspring dispersal dis-
tance, correlation will be low, while if variation is coarse-
grained, parent and offspring are likely to experience the
same environment and thus mutation rate.

The general evolutionary consequences of mutation rate
heterogeneity cannot readily be determined experimentally,
due to the diversity of its forms and the difficulty of estab-
lishing a comparable population that differs only in the extent
of heterogeneity. This calls for a theoretical approach to
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elucidate its effects. A large body of work on the evolution of
mutation rate [reviewed by Sniegowski et al. (2000)] takes
into account the existence of heritable variants. Though the
majority of this literature assumes the mutation rate is con-
stitutive, evolution of stress-induced mutagenesis has also
been considered (Bjedov et al., 2003; Ram and Hadany,
2012, 2014). A key factor considered to drive evolution of
mutation rate is indirect selection through linkage to
fitness-determining loci, but the focus of these studies is on
the dynamics of a mutator allele itself. Far fewer studies have
considered the converse: how the existence of mutation rate
variability in the population, regardless of its source, affects
mutational dynamics at other loci (Ninio 1991; Furusawa and
Doi 1992; Cairns 1998; Aoki and Furusawa 2001; Gonzalez
et al. 2008; Lynch and Abegg 2010). These few existing models
allow only two possible values of mutation rate, and are
mostly designed for particular organisms and mechanisms
of variation.

In the present study, we develop a more general theoretical
framework to understand the effects of population heteroge-
neity—that is, variability about the mean mutation rate
among co-existing individuals. We address both the proba-
bility of mutation at single or multiple loci and the temporal
dynamics of mutants under ongoing production and selec-
tion. To keep our results as general as possible, we do not
make any assumption as to the biological mechanism under-
lying this heterogeneity, in particular whether it is an adap-
tive/regulated response or an unavoidable byproduct of
random processes or external environmental factors.
Instead we determine how mutant frequency and population
mean fitness depend on the moments of an arbitrary muta-
tion rate distribution and the degree to which mutation rate
is “inherited” (correlated) from parent to offspring. We con-
sider haploid, asexually reproducing individuals, which is a
reasonable first approach for bacteria (neglecting horizontal
gene transfer in some species), viruses (neglecting comple-
mentation and in some cases recombination), and cancerous
cells (neglecting dominance effects).

We find that variability of mutation rate about the popu-
lation mean does not affect dynamics at a single focal locus,
but has increasingly large relative effects as more loci are taken
into consideration. Heterogeneity increases the probability of
zero or many simultaneous mutations occurring on a ge-
nome, at the expense of intermediate (usually single-point)
mutations. Over multiple generations, this altered de novo
production in conjunction with selection turns out both to
accelerate the first appearance of multi-point mutants and, in
the long term, to enhance the frequency of costly higher-
order mutants at mutation-selection balance. Inheritance of
mutation rate strengthens these effects, especially when mu-
tations tend to be accumulated sequentially rather than si-
multaneously. The clustering of mutations among population
members also reduces the population’s long-term mutational
load. Our analytical approximations allow quantification of
these effects in terms of moments of the mutation rate dis-
tribution and selection coefficients. Finally, we discuss the
evolutionary implications of these findings, as well as empir-
ical approaches to quantify mutation rate heterogeneity.

Results
We consider the effect of mutation rate heterogeneity on the
frequency of mutants at various timescales. First, in a single
generation before selection operates, we examine the proba-
bility of generating multiple mutations on a genome. Next, we
extend to modeling temporal dynamics of mutants over mul-
tiple generations of mutation and selection. We consider the
initial emergence of double mutants, where mutations are
either beneficial or deleterious, as well as the mutation-
selection balance achieved in the long term by deleterious
mutations.

Since we are interested in the effects of heterogeneity it-
self—that is, variation about the population mean mutation
rate—we focus on comparing a “heterogeneous” population,
in which mutation rate has a given distribution, to a baseline
“homogeneous” population with mutation rate fixed to the
mean of this distribution. This approach contrasts with many
previous studies that compared the presence versus absence
of a “mutator” type, thus changing the mean as well as var-
iance of mutation rate. In order to focus on the effects of
inter-individual heterogeneity, we ignore other forms of het-
erogeneity, such as differences in mutation rate across geno-
mic sites or systematic changes in the distribution of
mutation rate over time (see “Discussion” section). To reflect
the distribution of mutation rate across co-existing individ-
uals, we treat mutation rate per locus (U) or per genome (K)
as a random variable, with a fixed or realized value drawn
from this distribution denoted by u or k, respectively. We use
the notation h�i to denote the expectation over the distribu-
tion of mutation rate.

Probability of Simultaneous Mutations on a Genome
We model the occurrence of mutations in a single generation
(“simultaneously”) across n loci on a genome with a binomial
distribution, i.e. each locus mutates independently with a
probability given by the individual’s mutation rate. (In the
limit as n!1 and the per-locus mutation rate ! 0, the
number of mutations that occur is thus Poisson-distributed,
and our results extend naturally to this case.) An individual’s
mutation rate in turn is drawn from the population distribu-
tion (fig. 1, left). The overall probability pn;j ¼ hpn;jðUÞi of j
simultaneous mutations on a genome is then obtained by
averaging the binomial probabilities pn;jðUÞ [“Methods” sec-
tion, Equation (8)] over the distribution of U. These proba-
bilities can also be interpreted as the expected frequencies of
j-point mutants produced (before selection) by a purely wild
type starting population.

As may be intuitively expected, variability of the mutation
rate about a fixed mean does not change the expected num-
ber of mutations that occur, but does increase the variance
when n � 2 (supplementary text II.1.1, Supplementary
Material online). More precisely, we can ask how variability
affects the probability of exactly j mutations.

For n¼ 1, the functions p1;jðUÞ are linear. Thus, the overall
probability of mutation at a single locus is fully determined by
the mean mutation rate and independent of the extent of
variability: specifically p1;0 ¼ 1� hUi and p1;1 ¼ hUi. On
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the other hand, for n � 2, the functions pn;jðUÞ are non-
linear, and in general hpn;jðUÞi 6¼ pn;jðhUiÞ: that is, the over-
all probability of simultaneous mutations at multiple loci is
not fully determined by the mean. Applying Jensen’s
Inequality (Cover and Thomas 2006, p. 27), we can determine
whether variability in mutation rate increases or de-
creases this probability, for each n and j, by examining
the second derivative of pn;jðUÞ (supplementary text II.1.2,
Supplementary Material online).

Since pn;0ðUÞ ¼ ð1� UÞn and pn;nðUÞ ¼ Un are convex
for all U 2 ð0; 1Þ and n � 2, the probabilities of either all or
none of the loci mutating are clearly always increased by var-
iability in U. Logically, the probability of at least some inter-
mediate numbers of mutations must be reduced. We find that
pn;j will generally be increased by heterogeneity for the small-
est and largest values of j, and decreased in some intermediate
range of j, with the exact switching points of the directional
effect depending on n and on the particular distribution of U.
For realistic ranges of mutation rate in most organisms, het-
erogeneity will increase the chance of zero or of two or more
simultaneous mutations and decrease the chance of a single
mutation occurring, even with many loci under consideration
(fig. 1, centre). For certain RNA viruses with high mutation
rates, and possibly cellular populations containing strong
mutators, the switching points may be shifted upward.

We further analyze the magnitude of the effect of hetero-
geneity in the case of all n loci mutating simultaneously.
Rewriting this probability (supplementary text II.1.3,
Supplementary Material online):

pn;n ¼ hUni ¼ hUin þ
Xn�1

i¼0

ð n

i
Þcn�ihUii (1)

where ci ¼ hðU� hUiÞii is the ith central moment of the
mutation rate distribution. (In particular, c0 ¼ 1; c1 ¼ 0,

and c2 is the variance.) Thus the probability of n simulta-
neous mutations depends on the first n central moments.
For instance, the “boost” in triple mutations increases
with the variance, and is larger when the distribution is
right-skewed than when it is left-skewed. Note that even-
numbered central moments must be positive, whereas
odd-numbered central moments may be positive or neg-
ative; however, according to Jensen’s Inequality, any neg-
ative terms must be outweighed by the positive terms. It
can also be shown (supplementary text II.1.3,
Supplementary Material online) that the relative effect
of heterogeneity on the probability of simultaneous mu-
tation at all n loci under consideration (pn;n) increases
with n (fig. 1, right).

Initial Emergence of Mutants
We now turn to modeling dynamics over multiple genera-
tions. Our starting point is a standard deterministic model
consisting of recursive equations that describe how the fre-
quency xi of each genotype i, defined by the non-mutant (0)
or mutant (1) allele at each locus, changes from generation to
generation under the forces of mutation and selection
(“Methods—Deterministic Model of Genotype Frequency
Dynamics” section). Equivalently, the vector of genotype fre-
quencies x(t) is multiplied by a “mutation-selection matrix”,
M, which incorporates mutation probabilities and selection
coefficients si (relative fitness 1� si). We modify the standard
equations to account for mutation rate heterogeneity within
the population (supplementary text II.2.1, Supplementary
Material online). Note that this model incorporates acquisi-
tion of multiple mutations both simultaneously (in a single
generation) and stepwise (over multiple generations).

When considering dynamics over more than one genera-
tion, the extent to which mutation rate is inherited or corre-
lated from parent to offspring becomes relevant. As described
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FIG. 1. Effect of mutation rate heterogeneity on the probability of simultaneous mutations. Left: the distribution of per-locus mutation rate (U)
obtained by sampling 10000 times from a log-normal distribution, with the thick black vertical line indicating the sample mean. Sample mean
1:9� 10�5 (close to the base substitution rate estimated for HIV-1; Mansky and Temin 1995), sample variance 2:5� 10�9, range 2:3� 10�8–
1:4� 10�3. Centre: probability of j simultaneous mutations among n¼ 10 000 loci (approximately the number of base pairs in the HIV-1 genome),
i.e., pn;j as a function of j, if U is heterogeneous following the chosen distribution (red) versus fixed to the sample mean (black). The directional
effects agree with analytical predictions (keeping in mind that higher probabilities will be less negative on the log scale). Right: probability of all n
particular loci under consideration mutating simultaneously, i.e., pn;n , as a function of n, again for the heterogeneous (red) and homogeneous
(black) cases. The relative effect size increases with n.
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in the “Introduction” section, this correlation could vary over
a broad spectrum, but for mathematical analysis, we model
the two extremes in which mutation rate is inherited either
perfectly or not at all. When mutation rate is non-inherited, in
each generation every individual independently draws anew
from the mutation rate distribution. Each individual thus has
the same overall mutation probabilities, obtained by taking
the expectation over the distribution of mutation rate (pn;j as
described in the previous section). These probabilities are
incorporated into the matrix M representing the entire pop-
ulation. On the other hand, when mutation rate is perfectly
inherited, a fixed mutation rate is maintained in each lineage.
Then the population can be divided into disconnected sub-
populations defined by distinct mutation rates, which com-
bined with the subpopulation frequencies yield the
population-level mutation rate distribution. The dynamical
equations are then iterated separately in each subpopulation,
with the mutant frequencies in the total population obtained
at any given time point by taking a weighted average over
subpopulations (equivalently, taking the expectation over the
mutation rate distribution, now as the final step). By treating
each subpopulation independently and holding subpopula-
tion frequencies fixed, we prevent indirect selection on mu-
tation rate itself, thus ensuring that the mutation rate
distribution does not change over time and remains directly
comparable to the non-inherited case. If subpopulations are
actually competing together, this approach can be considered
an approximation, whose accuracy we discuss in individual
scenarios to follow and in greater detail in supplementary text
II.2.1 and II.2.5, Supplementary Material online.

For the one- and two-locus models, we derive approximate
solutions valid for the short-term temporal dynamics starting
from a purely wild type population, for arbitrary mutational
fitness effects (supplementary text II.2.2 and II.2.3,
Supplementary Material online). At a single locus, dynamics
are driven by the mean mutation rate and heterogeneity has a
negligible effect, in the sense that the leading-order term in
the mutant frequency is proportional to hUi, and terms in-
volving higher moments are of smaller orders of magnitude.
We therefore focus on the two-locus case, in which dynamics
are driven by both mean and variance of the mutation rate
distribution. More generally, with n loci, M contains non-
linear terms up to Un, and n-point mutants will have fre-
quency on the order of hUni. Thus, we expect the first n
moments of the mutation rate distribution generally to
play a non-negligible role in genotype frequency dynamics.

Figure 2 illustrates the temporal dynamics of double mu-
tant frequency, x11ðtÞ, in the two-locus model, in an example
where heterogeneous populations have two distinct muta-
tion rates. During the initial rise in frequency, our analytical
approximations [“Methods” section Equations (13)–(15)]
show excellent agreement to results obtained by numerical
iteration of the recursions, for both deleterious (upper panels)
and beneficial (lower panels) mutants. At later times, the
approximations break down for a beneficial mutant as it
approaches fixation. This deviation occurs smoothly for fixed
or non-inherited mutation rate, in which the population is
well-mixed. In the perfectly inherited case, a shoulder appears

in the frequency trajectory as the fittest mutant approaches
fixation first in the subpopulation with higher mutation rate,
followed by that with lower mutation rate.

During the early phase for which the approximations hold,
double mutant frequency is higher when mutation rate is
heterogeneous, for all choices of selection coefficients.
Indeed, our analytical approximations indicate that the abso-
lute increase in double mutant frequency compared with the
homogeneous case is proportional to the variance in muta-
tion rate, V, whereas the relative increase is proportional to
the squared coefficient of variation, c2 ¼ V=hUi2 [compare
Equations (14) and (15) to Equation (13)]. The magnitude of
this increase is larger (for t> 1) when mutation rate is per-
fectly inherited than when it is non-inherited. However, while
the non-inherited case falls substantially below the perfectly
inherited case when single mutants are beneficial or mildly
deleterious, the two cases become similar when single mu-
tants are strongly deleterious. These effects will be clarified
later (“Mutation-Selection Balance in the Two-Locus Model”
section). Note that after a brief transient reflecting initial de
novo production of the double mutant, its exponential rate of
increase (slope in the log-linear plot) when beneficial is ap-
proximately the same across mutation models (fig. 2, lower
panels). This reflects the fact that mutation rate determines
the initial appearance of a mutant, but selection plays the
predominant role in driving the rise of a beneficial mutant
once it is present.

Except in very large populations, there will be a substantial
and variable waiting time for the first appearance of a higher-
order mutant. The initial dynamics can thus better be de-
scribed by a stochastic model. For this purpose we develop a
multi-type branching process model that captures mutation
rate heterogeneity in an analogous way to the deterministic
model (supplementary text II.3, Supplementary Material on-
line). Numerical calculations yield the probability that a given
mutant has appeared in an exponentially growing but finite
population by a given time. For illustration we take a simple
two-locus model in which individuals have a fixed total num-
ber of offspring, which mutate at either of two rates
(“Methods—Branching Process Model” section). Fixing the
mean, hUi, fully determines the homogeneous case, while
varying qh (the probability or fraction of individuals with
high mutation rate) and q (the ratio of the high to the low
mutation rate) yields heterogeneous cases with a range of
variances V.

Figure 3 illustrates the difference in waiting time for the
first double mutant between the heterogeneous and homo-
geneous cases (specifically, the difference DT0:5 in time until
the probability of appearance reaches 50%), as a function of
qh and q. In all cases, we observe that DT0:5 � 0, indicating
that heterogeneity accelerates the first appearance. The iso-
clines of DT0:5 closely match those of V, indicating that for
fixed mean mutation rate, variance appears to determine the
extent of the acceleration. The role of mutation rate inheri-
tance is consistent with the deterministic model: when single
mutants are neutral (upper panels), perfect inheritance yields
a significant acceleration in the appearance of double mu-
tants, whereas non-inheritance yields hardly any difference
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from the homogeneous case. On the other hand, when single
mutants produce no surviving offspring (lower panels), the
acceleration due to heterogeneity is virtually identical in both
cases of inheritance. Although we are limited to illustrating
selected cases of the stochastic model numerically, we expect
the reduction in waiting time due to heterogeneity to arise
more generally, in correspondence with the deterministic
model.

Recall that we neglected mutation rate evolution (when
heritable) in order to clarify the effect of a fixed level of var-
iation. Since indirect selection on mutation rate can only
operate once mutations are present, it cannot affect the wait-
ing time for the first mutation in a purely wild type popula-
tion, but could conceivably affect the waiting time for
multi-point mutants via selection on single-point mutants.
However, when mutations are deleterious with selection

coefficients that are large compared with the absolute differ-
ences in mutation rate among subpopulations, mutation rate
evolution occurs on a much slower timescale than dynamics
at the focal loci and can reasonably be neglected in the short
term (supplementary text II.2.1 and II.2.5 and fig. S4,
Supplementary Material online). If mutations are beneficial,
indirect selection favoring higher mutation rates, given initial
heritable variation, would accelerate the appearance of sub-
sequent mutations beyond our prediction when holding the
mutation rate distribution fixed. Of course, these issues do
not affect the results when mutation rate is non-inherited.

Mutation-Selection Balance and Mutational Load
Finally, returning to our deterministic model, we analyze the
mutation-selection balance achieved in a population in the
long term when all mutants are less fit than the wild type.
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FIG. 2. Temporal dynamics of the double mutant. The population is initially composed entirely of the wild type. Mutation rate takes on either of two
values: U ¼ u‘ ¼ 3� 10�9 with frequency 0.995 or U ¼ uh ¼ 6� 10�7 with frequency 0.005, thus hUi ¼ 6:0� 10�9 and V ¼ 1:8� 10�15. The
rates u‘ and uh are parameterized approximately from E. coli normal and hypermutator (mismatch repair defective MutL� strain) mutation rates to
rifampicin resistance (Lee et al. 2012), while the chosen hypermutator frequency maximizes c2 (“Methods—Quantifying Effects with Two Mutation
Rates” section). The selection coefficients vary across panels—top left: s01 ¼ s10 ¼ 0:1 and s11 ¼ 0:19 (all mutants deleterious relative to the wild type;
low-cost single mutants); top right: s01 ¼ s10 ¼ 0:9 and s11 ¼ 0:19 (all mutants deleterious; high-cost single mutants); bottom left: s01 ¼ s10 ¼ 0:1 and
s11 ¼ �0:21 (deleterious single mutants, beneficial double mutant); bottom right: s01 ¼ s10 ¼ �0:1 and s11 ¼ �0:21 (all mutants beneficial; double
mutant fittest). Black shows the homogeneous case with mutation rate fixed to hUi; blue shows the heterogeneous case with no inheritance; red shows
the heterogeneous case with perfect inheritance; and grey shows the case when U � u‘ . Thus comparing black to grey indicates the effect of changing
the mean mutation rate by adding a hypermutator, while comparing blue/red to black indicates the effect of increasing variance with fixed mean. The
dots in each case show the result of numerically iterating the recursions, while the solid lines show the analytical approximation for the short-term
temporal dynamics. When all mutants are deleterious, the “�” at the end of each curve shows the analytical approximation of the equilibrium.

Alexander et al. . doi:10.1093/molbev/msw244 MBE

424

Deleted Text: to
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw244/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw244/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw244/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw244/-/DC1
Deleted Text: u
Deleted Text: 2.3
Deleted Text: s
Deleted Text: b
Deleted Text: m
Deleted Text: l


This amounts to finding the equilibrium solutions, x�, to the
genotype frequency recursions (or equivalently, the eigenvec-
tors of the mutation-selection matrix M). For sufficiently large
selection coefficients relative to mutation rates, as also re-
quired for the analytical approximations we make in the
one- and two-locus models to hold, we again expect dynam-
ics at the focal loci to equilibrate on a faster timescale than
mutation rate evolution would occur in the inherited case
(supplementary text II.2.1 and II.2.5, Supplementary Material
online).

At a single focal locus, regardless of the inheritance as-
sumption, the classic mutant frequency of u/s is simply
replaced by hUi=s where hUi is the mean mutation rate in
the population and s is the cost of the mutation. Population
mean fitness at equilibrium is correspondingly given by
�w� ¼ 1� hUi.

When multiple loci are involved, again higher moments
come into play. We conduct an in-depth analysis of the two-
locus case, while a brief consideration of an infinite-locus
model confirms our key qualitative conclusions. Detailed
mathematical results are given in supplementary text II.2,
Supplementary Material online. As a short-hand to distin-
guish models under comparison, “het” will indicate a hetero-
geneous mutation rate characterized by a distribution, and
“hom” a homogeneous mutation rate fixed to the mean of

this distribution. Further, H¼ 0 will indicate that mutation
rate is non-inherited and H¼ 1 will indicate perfect
inheritance.

Mutation-Selection Balance in the Two-Locus Model
At equilibrium, double mutant frequency is increasing with
variance and single mutant frequency is decreasing with var-
iance, regardless of mutational costs. Interestingly, however,
the effect on wild type frequency can go in either direction.
Generally, mutation rate heterogeneity boosts the wild type
when the double mutant is sufficiently costly relative to the
single mutants, with the precise condition depending on the
inheritance case (supplementary eq. S22 and S25,
Supplementary Material online). This result can be explained
intuitively by the competition exerted by mutants on the wild
type. Mutation rate heterogeneity produces more double
mutants at the expense of single mutants, so to yield a higher
frequency of wild types, the double mutants must exert suf-
ficiently less competition than the single mutants. Similarly,
the effect of variance on the frequency of the mutant allele at
any given locus and on the mean number of mutations per
genome depends on the extent of epistasis (supplementary
text II.2.3.4, Eq. S28, Supplementary Material online). Epistasis
is positive when the double mutant is fitter than the
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FIG. 3. Waiting time for first appearance of a double mutant in a branching process model. The population initially consists of N¼ 100 wild type
individuals. Wild types have exactly two offspring; single mutants are neutral (top row) or lethal (bottom row). The mean mutation rate hUi is fixed
to 10�7, fully determining the homogeneous case, while the fraction/probability of high mutation rate (qh) and the ratio of high to low mutation
rate (q) define a range of heterogeneous populations. Left: the probability that a double mutant has not appeared in the population by generation
t, P2;popðtÞ, when qh ¼ 1=100 and q¼ 1000 (yielding the maximal variance illustrated in the color plots). Black curve—homogeneous; blue—
heterogeneous, no inheritance; red—heterogeneous, perfect inheritance. For comparison, the grey dashed curves show the results for a population
consisting entirely of high- or low-mutators. The color plots (centre: no inheritance; right: perfect inheritance) indicate the difference in waiting
time to reach 50% chance of appearance of a double mutant, DT0:5, for a heterogeneous versus homogeneous population, as a function of qh and q.
The resulting variance V in mutation rate is indicated by the black contour lines [labeled with log10ðVÞ values].
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multiplicative expectation from the two single mutants’ fit-
ness values, and negative when the double mutant is less fit
than this expectation. When epistasis is sufficiently positive
(exceeding zero in the perfectly inherited case or exceeding a
positive threshold in the non-inherited case, given by
Equations S31 and S33, Supplementary Material online), the
gain in double mutants outweighs the loss in single mutants,
such that the mutant allele frequency and mean number of
mutations show a net increase with variance. The magnitude
of the variance effect on the frequencies of the wild type
(order 1), single mutants (order hUi), and mutant allele (order
hUi) is relatively small (supplementary fig. S1, Supplementary
Material online), since V < hU2i 	 hUi for U	 1.
Nonetheless, our reasoning points to effects that should
also play out, potentially with larger magnitude, when more
loci are under consideration.

Double mutant frequency (x�11) is of order maxðhUi2;VÞ
and may thus be substantially affected by variance. Analytical
approximations of x�11 under each model case are summarized
in table 1. Although these approximations can break down for
extreme mutation rate distributions, particularly when at
least one selection coefficient is small (not illustrated), we
find a good match to numerical results over a wide parameter
range (e.g., top panels of fig. 2) and thus we will base our
following analysis on these approximate solutions.

The absolute increase in the equilibrium double mutant
frequency is proportional to the variance of the mutation rate
distribution (V) and the relative increase is proportional to
the squared coefficient of variation (c2), as also found for the
short-term frequency. The form of the proportionality con-
stants, in particular the roles of mutation rate inheritance and
selection coefficients, can be understood by considering how
the pathways generating the double mutant are affected by
heterogeneity in the mutation rate. The intuitive explanations
also apply to the short-term dynamics, but can most readily
be seen from the equilibrium expressions.

In the absence of inheritance, the mutation rate experi-
enced by multiple loci on a genome only shows an association

over one generation. Any boost in multi-point mutant fre-
quency due to heterogeneity must thus be achieved through
a boost in simultaneous mutations. Indeed, if we modify our
model to disallow simultaneous mutations (supplementary
text II.2.3.5, Supplementary Material online), we find that the
frequency of double mutants is no different to the homoge-
neous case (right-hand column of table 1 and dashed curves
in fig. 4). Conversely, in the full model, the absolute increase in
double mutant frequency

D�absðH ¼ 0Þ ¼ V=s11 (2)

is due entirely to the increased influx of simultaneous double
mutations, which are filtered with selection coefficient s11,
and independent of the selection coefficients of the single
mutants (s01 and s10). On the other hand, the relative increase
in double mutant frequency

D�relðH ¼ 0Þ ¼ c2 1

s01
þ 1

s10
� 1

� ��1

(3)

increases with s01 and s10, because the less fit single mutants
are, the more relatively important simultaneous double mu-
tation becomes. In figure 4, we see that x�11ðhet;H ¼ 0Þ
approaches x�11ðhomÞ as the single mutant cost approaches
zero, but shows a growing gap above the homogeneous case
as the single mutant cost increases.

When mutation rate is inherited, correlations arise across
generations and the accumulation of multiple mutations can
be boosted not only by simultaneous acquisition, but also by
stepwise acquisition over several generations. Perfect inheri-
tance manifests itself as distinct subpopulations with differing
fixed mutation rates, but the same action of selection. Thus
heterogeneity affects all mutational pathways equally, and
double mutant frequency in the total population is simply
scaled up by a constant factor, independent of selection
coefficients:

D�relðH ¼ 1Þ ¼ c2 (4)

Plotting x�11 on a log scale as a function of single mutant cost,
this effect manifests itself as parallel curves in the homoge-
neous and heterogeneous cases (fig. 4). The absolute differ-
ence, on the other hand, is decreasing with all selection
coefficients:

D�absðH ¼ 1Þ ¼ 1

s01
þ 1

s10
� 1

� �
V

s11
(5)

When single mutants are sufficiently fit, double mutants
are mainly generated by stepwise accumulation of mutations,
and blocking simultaneous mutations has little effect; how-
ever, when single mutants are very costly, blocking simulta-
neous mutations has a drastic effect. As s01 ¼ s10 ! 1, the
non-inherited and perfectly-inherited cases converge, since all
double mutants must be generated directly by simultaneous
mutation from the wild type.

The precise ranking of x�11 across model cases is fully de-
termined by the selection coefficients of the single mutants
and c2 of the mutation rate distribution (supplementary text

Table 1. Approximate Equilibrium Frequency of Double Mutants
(x�11) in the Two-Locus Model.

With Simultaneous
Mutation

Without Simultaneous
Mutation

Homog. mut.
ratea

1
s01
þ 1

s10
� 1

� �
hUi2
s11

1
s01
þ 1

s10
� 2

� �
hUi2
s11

Heterog. mut.
rate, no
inheritanceb,c

1
s01
þ 1

s10
� 1

� �
hUi2
s11
þ V

s11

1
s01
þ 1

s10
� 2

� �
hUi2
s11

Heterog. mut.
rate, perfect
inheritance b,d

1
s01
þ 1

s10
� 1

� �
hUi2þV

s11

1
s01
þ 1

s10
� 2

� �
hUi2þV

s11

Selection coefficients s01; s10 > 0 for single mutants, s11 > 0 for double mutants; cf.
figure 4.
aMutation rate fixed to hUi; error O(hUi3), cf. supplementary Eq. S17,
Supplementary Material online.
bMutation rate distribution with mean hUi and variance V.
cErrorO(maxðhUi3; hUiV;V2Þ), cf. supplementary Eq. S21, Supplementary Material
online.
dError O(maxkqku3

k), cf. supplementary Equation S24, Supplementary Material
online.
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II.2.3.6, Supplementary Material online). Importantly, the
above reasoning implies that double mutant frequency is
expected to increase with the degree of inheritance, which
more generally falls on a continuum. Thus, the ð1þ c2Þ-fold
increase over the homogeneous case obtained with perfect
inheritance in fact provides an upper bound on the effect of
mutation rate heterogeneity across all choices of selection
coefficients and inheritance assumptions. This upper bound
holds not only at equilibrium, but also during the short-term
dynamics in the deterministic model.

Mutation-Selection Balance in an Infinite-Locus Model
Although an analysis of increasingly many loci with arbitrary
selection coefficients becomes infeasible, we can gain some
insights into the general behaviour at many loci by consider-
ing an infinite-locus model in which fitness is simply deter-
mined by number of mutations.

In the particularly simple case where each mutation has
cost s with multiplicative fitness effects, under a fixed geno-
mic mutation rate k, the equilibrium mutant frequencies are
Poisson-distributed with mean k=s (Haigh 1978). In this case,
we find similar effects of heterogeneity on the equilibrium
distribution as on the mutational production in a single gen-
eration: the frequency of zero- or possibly few-point mutants,
as well as many-point mutants, increases, while that of inter-
mediate mutants decreases (supplementary text II.2.4,
Supplementary Material online and fig. 5). The switching
points in the directional effect of heterogeneity shift to higher
mutant classes as s decreases. Among the higher-order mu-
tants, the relative magnitude of this boost in frequency is

again increasing with the number of mutations. The mean
number of mutations per genome is unchanged by hetero-
geneity with perfect inheritance, but reduced in the case of no
inheritance. Since there is no epistasis in this model, these
results are consistent with the two-locus results.

Clearly, increasing the variance of the mutation rate distri-
bution generally increases the effects of heterogeneity (supple
mentary fig. S2, Supplementary Material online). However, the
differences in mutant frequencies are not directly proportional
to variance, since all higher moments of the mutation rate
distribution now also play a role. Consistent with the intuition
developed for the two-locus results, heterogeneity has a
greater impact on the mutant frequency distribution when
the mutation rate is inherited: more precisely, there is a larger
increase in the frequency of the lowest- and highest-order
mutants, and correspondingly larger decrease in the frequency
of intermediates. Again, the relative importance of inheritance
varies with the strength of selection: the non-inherited case is
similar to the homogeneous case when s is small, and becomes
more similar to the perfectly inherited case as s increases
(supplementary fig. S2, Supplementary Material online).

If we allow epistatic fitness effects, it is possible to find
more complex patterns in the mutant frequency distribution,
though we are generally limited to numerical investigations.
In particular, it is possible to find examples where the wild
type frequency is instead decreased by heterogeneity; where
the directional effect of heterogeneity switches more than
twice over the mutant classes; and where the mean number
of mutations per genome is either increased or decreased
(supplementary fig. S3, Supplementary Material online).
Nonetheless, the frequency of sufficiently high-order mutants
always appears to be boosted by heterogeneity.

These results should be taken with the caveat that for
realistic mean genomic mutation rates and the levels of var-
iance considered here, evolution of the mutation rate in the
perfectly inherited case, if subpopulations were to compete
with one another, could occur on the same timescale as
evolution at the focal loci (supplementary text II.2.5 and fig.
S5, Supplementary Material online). Thus, heritable variation
in mutation rate would be lost and the population would
approach an equilibrium determined by the lowest available
mutation rate. For consistency in our modeling approach,
such changes in subpopulation frequencies are nonetheless
neglected in our main results.

Mutational Load
The reduction in mean fitness compared with a purely wild
type population due to the production of deleterious mu-
tants, i.e., 1� �w, is known as the “mutational load” (Bürger
2000, p. 105). We find that heterogeneity in mutation rate
always reduces the mutational load at equilibrium.

Specifically, in the two-locus model, the equilibrium pop-
ulation mean fitness is given by:

�w� ¼ hð1� UÞ2i ¼ ð1� hUiÞ2 þ V (6)

regardless of whether mutation rate is inherited (supplemen
tary text II.2.3, Supplementary Material online). Thus,
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FIG. 4. Frequency of the double mutant at mutation-selection bal-
ance. The analytical approximations for the equilibrium double mu-
tant frequency in the two-locus model, x�11 (table 1), are plotted as a
function of single mutant cost for each mutation model: black—
homogeneous; blue—heterogeneous, no inheritance; red—
heterogeneous, perfect inheritance. Simultaneous mutations are
allowed (solid lines) or blocked (dashed lines; blue and black overlap).
hUi ¼ 1:9� 10�5 and V ¼ 2:5� 10�9 as in figure 1. The double
mutant cost is fixed to s11 ¼ 0:1, but does not affect relative differ-
ences among mutation models, since x�11 / 1=s11 in all cases.
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heterogeneity decreases mutational load by an amount equal
to the variance of mutation rate in the population. This effect
is relatively small in magnitude (�w� is of order hUi 
 V), but
in a consistent direction.

In the infinite-locus model in which fitness is determined
by number of mutations (with arbitrary costs relative to the
wild type), the equilibrium population mean fitness is given by

�w� ¼ he�Ki (7)

again regardless of inheritance (supplementary text II.2.4,
Supplementary Material online). An application of Jensen’s
Inequality demonstrates that �w� is enhanced by mutation
rate heterogeneity. Since K is not necessarily 	 1 (Drake
et al. 1998), this effect may be non-negligible: for example,
with the log-normal mutation rate distribution used in figure
5 (right), �w� is increased from 0.364 to 0.408. (In the perfectly
inherited case, this points to the strong selection on mutation
rate that could be anticipated, as mentioned above, when
deleterious mutations are occurring at many loci.)

It is not immediately obvious that heterogeneity should
consistently increase mean fitness. Transiently, mean fitness
can indeed be either increased or reduced by heterogeneity,
depending on the initial genotype frequencies, the relation-
ships among selection coefficients, and the inheritance as-
sumption. Furthermore, as seen in the previous section,
heterogeneity does not necessarily increase the equilibrium
frequency of mutation-free genomes, nor does it necessarily
reduce the total number of mutations carried by the popu-
lation. The result also cannot be explained simply by hetero-
geneity providing more material on which selection can act,
because higher variance in the number of mutations does not
necessarily lead to higher variance in fitness. (As a simple
counterexample, suppose that single mutants are very costly
while double mutants are nearly as fit as the wild type. Then
mutation rate heterogeneity that produces more wild types
and double mutants will reduce the population’s variance in

fitness.) In fact, at equilibrium, population mean fitness is
independent of selection coefficients and only depends on
mutational production. Heterogeneity then seems to have
the advantage of clustering deleterious mutations and pro-
ducing more mutation-free genomes in any given generation.

Discussion
The critical role of mutations in producing the raw material
for evolution has long been recognized by biologists and
mathematically analyzed by population geneticists. In the
vast majority of analyses, mutation rate is assumed to be
constant. However, given the available evidence for genetic,
environmental, and random physiological influences on mu-
tation rate, there is a strong case to suggest that a constant
mutation rate is the exception rather than the norm. We
therefore investigated the population genetic consequences
of heterogeneity in mutation rate, and found that it will gen-
erally increase the frequency of higher order mutants and
reduce long-term mutational load relative to a homogeneous
population with the same mean mutation rate. However, the
magnitude of mutation rate heterogeneity under natural con-
ditions and hence its typical significance for evolution is
largely unknown. We thus proceed to discuss empirical
approaches to tackle this question.

The Effect of Heterogeneity on Mutant Frequencies
Mutation rate heterogeneity promotes the production of
multi-point mutants. This effect of variability itself is to be
distinguished from the effect of simply raising mutation rate
in all or a subset of individuals: while the latter increases the
frequency of all mutants, the former disproportionately in-
creases the frequency of multi-point mutants relative to
single-point mutants. This effect is fairly intuitive and has
occasionally been pointed out in the literature (Ninio 1991;
Drake et al. 2005; Drake 2007; Elez et al. 2010). Clearly, a
heterogeneous mutation rate will also increase the chance
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FIG. 5. Equilibrium mutant frequencies in an infinite-locus model with no epistasis. The genotype frequency at the numerically determined
equilibrium is plotted as a function of number of mutations carried, in each model case (black—homogeneous; blue—heterogeneous, no
inheritance; red—heterogeneous, perfect inheritance). The cost per mutation is s¼ 0.1. Left: Per-genome mutation rate K takes on two values,
0.0015 with frequency 0.99 or 0.15 with frequency 0.01. Mean¼ 0:0030 (bacteria-like; Drake et al. 1998), variance¼ 2:2� 10�4. The mean number
of mutations per genome at equilibrium is m�ðhomÞ ¼ m�ðhet;H ¼ 1Þ ¼ 0:0298 and m�ðhet;H ¼ 0Þ ¼ 0:0289. Right: K is given by 1000 draws
from a log-normal distribution. Sample mean¼ 1:01 (RNA-/retrovirus-like; Drake et al. 1998), sample variance¼ 0:29, range¼ 0:19–4.2. Here,
m�ðhomÞ ¼ m�ðhet;H ¼ 1Þ ¼ 10:1 and m�ðhet;H ¼ 0Þ ¼ 9:0.
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of no mutation. With a more general model and rigorous
analysis, we could give precise conditions for the threshold
numbers of mutations at which heterogeneity has increasing
versus decreasing effects, depending on the population’s
range of mutation rates (“Probability of Simultaneous
Mutations on a Genome” section).

Previous calculations of the contribution of mutators to
single- and multi-point mutations have usually considered
only a single generation (Ninio 1991; Cairns 1998; Drake
et al. 2005; Gonzalez et al. 2008). It is less obvious how
heterogeneity will affect mutant frequencies over multiple
generations, in which mutations can accumulate both si-
multaneously and sequentially, and their frequencies are
modified by selection. In a two-locus model, we found
that heterogeneity accelerates the first appearance of a dou-
ble mutant, regardless of whether mutations are beneficial
or deleterious (“Initial Emergence of Mutants” section). At
mutation-selection balance, when all mutants are less fit
than the wild type, heterogeneity boosts the frequency of
the double mutant in the two-locus model, and generally
increases the frequency of higher order mutants, with in-
creasingly large relative effects, in an infinite-locus model
(“Mutation-Selection Balance and Mutational Load” sec-
tion). However, the subtle interplay of altered mutational
production and selection can yield more complex effects of
heterogeneity on the wild type and lower order mutants.
Roughly speaking, when the over-produced (higher order)
mutants are sufficiently fit relative to the under-produced
(lower order) mutants, the increased competition faced by
the wild type can outweigh the increased chance of
mutation-free reproduction, such that the net effect of het-
erogeneity is to reduce wild-type frequency. Likewise, de-
pending on the extent of epistasis, the total number of
mutations carried by the population at equilibrium may
be increased or decreased by heterogeneity, even though
the mean number of de novo mutations produced in
each generation is unchanged. Though the magnitude of
these effects is small when considering only two loci, the
intuition developed here should carry over to more loci,
where effect sizes could be larger.

Our analytical approximations clarify how these effects
depend on moments of the mutation rate distribution and
selection coefficients. We could thus generalize conclusions to
an arbitrary distribution of mutation rate (not limited to two
distinct values) and separate the effect of changing mean
mutation rate from variability itself. The dynamics of mutants
at n focal loci are driven by the first n moments of the mu-
tation rate distribution. Thus if examining only one locus, the
population mean mutation rate is sufficient to predict mu-
tant dynamics, but to predict the joint dynamics at two loci,
variance must be considered, and so on. We analyzed the
two-locus case in detail and found that the frequency of
double mutants in a deterministic model is boosted both
in the short term and, for deleterious mutations, at equilib-
rium. The absolute increase in frequency is proportional to
the variance, while the relative increase is proportional to, and
at most equal to, the squared coefficient of variation. In a
stochastic model, the reduction in waiting time for the first

double mutant was likewise determined by variance. Since
variance can mathematically be of comparable or even larger
order than the squared mean mutation rate, these effects can
potentially be substantial. Furthermore, we predict that mu-
tation rate heterogeneity becomes increasingly significant as
more loci are taken into account.

These results make it possible to quantify the effect of
heterogeneity, given a distribution of mutation rate. Even if
selection coefficients and inheritance patterns are unknown,
in the two-locus deterministic model we have an upper
bound on the relative increase in double mutant frequency
given by the squared coefficient of variation (c2) of the mu-
tation rate distribution. However, very few studies to date
have detected and quantified mutation rate heterogeneity.
In one study with budding yeast, a model in which 35% of
replications are “hypomutator” (�4� 10�8 mutations/bp/
cell division) and 65% “hypermutator” (�4� 10�7 muta-
tions/bp/cell division) provided the best fit to experimental
data (Kennedy et al. 2015). This distribution has c2 ¼ 0:39
(“Methods—Quantifying Effects with Two Mutation Rates”
section); thus, we predict a modest increase in the frequency
of double mutants at two focal loci of at most 39%.
Nonetheless, stronger genetic hypermutators are known to
exist (supplementary text I.1) and could be present at highly
variable frequencies in populations, depending on selective
conditions and timing (Mao et al. 1997; Boe et al. 2000; Desai
and Fisher 2011). For example, consider E. coli hypermutators
with 200-fold elevated mutation rate (Lee et al. 2012). If pre-
sent at 0.5% frequency, they would increase the population’s
mean mutation rate by less than 2-fold, and thus increase the
frequency of double mutants by less than 4-fold via the mean,
but up to �51-fold further through variance itself at fixed
mean (cf. fig. 2). Although this choice of hypermutator fre-
quency maximizes relative effect size [Equation (25)], taking
hypermutators at a frequency of only 5� 10�4 (Ninio 1991)
still yields up to�17-fold increase in double mutant frequency
due to variance. It is thus plausible that mutation rate hetero-
geneity plays a significant role in the acquisition of multi-point
mutations in some populations, though the typical situation
remains unclear.

Our analysis also elucidated the role of inheritance of mu-
tation rate, by comparing cases where an individual’s muta-
tion rate is either identical to its parent’s or drawn
independently at random, while the population-level distri-
bution is the same. More generally, the extent of parent-
offspring correlation could fall on a broad spectrum between
these two extremes, yielding intermediate effects of mutation
rate variation. The more strongly mutation rate is correlated
through a lineage, the greater the effect of variation, since
stepwise as well as simultaneous accumulation of mutations
can be boosted. A previous study concluded that simulta-
neous mutations make a negligible contribution to multi-
locus adaptation (Lynch and Abegg 2010), but only tested
cases where single mutants were neutral or slightly deleteri-
ous. However, if intermediates are highly deleterious, simul-
taneous mutations play a crucial role. In this case, the extent
of mutation rate inheritance is unimportant, so long as the
population exhibits variability.
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While we modeled asexually reproducing populations, we
expect qualitatively similar but weaker effects to hold in sex-
ual populations. Recombination can bring together muta-
tions generated in different lineages, thus reducing the
importance of hypermutators in accelerating the first appear-
ance of multi-point mutants. In the longer term, recombina-
tion would counteract positive linkage disequilibrium,
reducing the excess of multiple mutants generated by muta-
tion rate heterogeneity.

Evolutionary Consequences
Given these findings, mutation rate heterogeneity could
clearly play a role in multi-locus adaptation. We are aware
of only two previous models of adaptation from de novo
mutations under more specific forms of mutation rate het-
erogeneity. Aoki and Furusawa (2001) found through stochas-
tic simulations that having two distinct, non-inherited
mutation rates (versus mutation rate fixed to the mean) pro-
motes adaptation on a rugged fitness landscape, but lacked
analytical expressions to elucidate parameter effects. Lynch
and Abegg (2010) developed analytical approximations for
the waiting time until appearance of multi-point mutants
that ultimately fix, which included contributions from genetic
or transient hypermutators. Our findings suggest that the
accelerated appearance of double mutants is a general con-
sequence of mutation rate heterogeneity, whether or not
differences are heritable. Thus, in particular, heterogeneity
could help populations to cross fitness valleys, a classic prob-
lem in evolutionary biology (Wright 1932). By clustering mu-
tations onto the same genetic background, it should also shift
the regime in which clonal interference operates (cf. Desai
et al. 2007). Nonetheless, the magnitude of these effects de-
pends on the actual mutation rate distribution. Indeed, Lynch
and Abegg (2010) found a limited role for mutators under
their parameterization of frequency and effect size.

An important caveat in our discussion of adaptation at
focal loci is that we have neglected deleterious mutations
occurring at other loci; the availability of such mutations
could imply that indefinitely increasing variance does not
actually maximize overall adaptation rate. Lynch and Abegg
(2010) modeled the cost of deleterious background muta-
tions phenomenologically and concluded that it inhibited
genetic mutators from making a significant contribution to
adaptation. On the other hand, a non-heritably elevated mu-
tation rate would reduce the accumulation of both beneficial
and deleterious mutations relative to the heritable case.
Altogether, similar to considerations for fixed mutation rate
(Sniegowski et al. 2000), the level of variance maximizing ad-
aptation will likely depend on the balance of beneficial and
deleterious mutations available. Furthermore, on a rugged
fitness landscape, Aoki and Furusawa (2001) observed a
breakdown in the advantage of heterogeneity when mean
mutation rate was high and the proportion of hypermutators
was low, which forced all mutations into very few individuals.
This finding suggests that optimal variance will also depend
on mean mutation rate. Clarifying these effects would provide
an interesting direction for further analytical work.

Our analysis of equilibrium as well as transient dynamics
appears to be novel in the context of mutation rate hetero-
geneity, and points to implications for adaptation from stand-
ing genetic variation as well as from de novo mutations. We
found that costly multi-point mutants are harbored at a
higher long-term frequency in a heterogeneous population.
If the environment changes and these genotypes become
favorable, they could make an important contribution to
adaptation (Barrett and Schluter 2008), subject to the same
caveats regarding background mutations that remain
deleterious.

In an applied context, these findings call for caution in the
use of typical mutation rate estimates. According to our
single-locus results, scoring a phenotype that can be con-
ferred by a single point mutation will yield an estimate of
the population’s mean mutation rate, even if the rate varies
among individuals. Similarly, pooling sequenced individuals
and taking the total number of point mutations divided by
the total number of examined sites yields an estimate of the
mean mutation rate. While these estimates are reasonable in
themselves, naive extrapolations assuming this mutation rate
to be fixed will underestimate the chance of overcoming
higher genetic barriers if the population is actually heteroge-
neous. This issue is particularly concerning for analyses of the
likelihood that multi-drug resistant pathogens or cancerous
cells “pre-exist” or are generated during drug treatment
(Ribeiro and Bonhoeffer 2000; Komarova and Wodarz 2005;
Colijn et al. 2011). In addition, while the significance of gen-
erally elevated mutation rate in cancerous cells has previously
been pointed out (Loeb et al. 1974; Loeb 1991, 2001; Loeb
et al. 2003), our results suggest that, even when controlling for
changes detected in mean mutation rate, progression to can-
cer via accumulation of multiple mutations may occur faster
than expected.

Finally, in a well-adapted population with only deleterious
mutations available, mutation rate heterogeneity reduces
long-term mutational load. We demonstrated analytically
that this effect is quite general and independent of mutation
rate inheritance. Taken together with the enhanced fre-
quency of higher-order mutants, then, inter-individual het-
erogeneity allows a population both to maintain higher mean
fitness and to explore genotype space more widely, which
could be advantageous for facing future adaptive challenges.
This possibility has previously been suggested verbally
(Furusawa and Doi 1992; Drake et al. 2005; Combe et al.
2015), and uncovered in simulations of evolution on a rugged
fitness landscape, in which heterogeneous populations
tended to more efficiently find and remain on global fitness
peaks (Aoki and Furusawa 2001). More broadly, other forms
of heterogeneity—including variation of mutation rate
through time or across the genome—have also been
suggested to balance evolvability against fitness loss
through deleterious mutations (Sniegowski et al. 2000;
Galhardo et al. 2007).

These findings suggest that mutation rate variance, if de-
termined by heritable mechanisms, could itself evolve. In the
long term in a constant environment, where all mutations are
expected to be deleterious, increasing variance will always
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benefit the population by reducing mutational load. In the
shorter term or in a changing environment, increasing vari-
ance (perhaps only up to an intermediate optimum) could
have benefits by accelerating adaptation. However, we expect
stronger selection on mutation rate itself as an individual trait,
than on the mutation rate distribution as a population-level
trait; a formal analysis of their joint evolution is beyond the
scope of this study.

Interestingly, recent work has suggested evolutionary ben-
efits of a mutation rate that depends on fitness (Ram and
Hadany 2014; Belavkin et al. 2016), which implicitly induces
inter-individual heterogeneity, but contrasts with our as-
sumption that fitness does not affect mutation rate, and
implies that the mutation rate distribution will change over
time according to population composition. Furthermore, the
identified evolutionary advantage is relative to a population in
which mutation rate is fitness-independent and thus uniform,
but not necessarily with the same mean. Due to these fun-
damental model differences, the advantages attributed to
fitness-dependent mutation rates cannot be unambiguously
extended to inter-individual heterogeneity in general. A bet-
ter understanding of the potential evolutionary benefits pro-
vided by diverse forms of variability in mutation rates remains
open to future work.

Empirical Approaches
Currently, empirical estimates of mutation rate distributions
in populations are almost completely lacking. However, we
see considerable potential to employ both well-established
and novel techniques to quantify the extent of mutation rate
heterogeneity due to either systematic or random effects.

If mutation rate is systematically affected by a particular
variable (genetic or environmental), one can indirectly quan-
tify its distribution in a population by combining an estimate
of fixed or mean mutation rate under each condition (using
standard methods, e.g., fluctuation tests) with a measurement
or model of how this variable is distributed. Although many
factors affecting mutation rate are qualitatively well estab-
lished (supplementary text I, Supplementary Material online),
estimates suitable for parameterizing population genetic
models are often lacking. It has been a common practice,
especially in past studies of stress-induced mutagenesis and
characterizations of natural isolates, only to report the mean
frequency of mutants after culture growth, as opposed to
mutation rate per generation (see also Rosche and Foster
2000; MacLean et al. 2013). Thus, standard methods are far
from exhausted in investigating relationships between muta-
tion rate and relevant genetic and environmental variables in
populations.

Another approach to quantifying mutation rate heteroge-
neity (from any source, including random effects) is to exam-
ine whether mutant counts or frequencies in a population
deviate from the expectation under homogeneity. The data
could come from experiments not originally conducted for
this purpose, but should provide the following features: (1)
cover a sufficiently long stretch of the genome (relative to
mutation rate) such that multi-point mutants are likely to be
found; (2) preserve linkage information among these mutated

sites; (3) provide a sufficiently large, representative sample of
individuals, or highly resolved population-level mutant fre-
quencies; and (4) be conducted under conditions in which
selection can essentially be ruled out. The last point arises
because it is problematic to distinguish mutation rate hetero-
geneity from positive epistasis, as both yield an over-
representation of multi-point mutants (supplementary text
II.2.4.4, Supplementary Material online).

Thus, while models of a few loci of interest under selection
are valuable for predicting evolutionary dynamics, as we did
here, they are less useful for data analysis aiming to detect
mutation rate heterogeneity. For this purpose, the most
straightforward approach is to use experimental protocols
minimizing selection and examine the longest possible
stretch of the genome, pooling individuals simply according
to number of mutations. Then an infinite-locus model with
neutral mutations is appropriate for determining the ex-
pected distribution of mutant counts. Under the null model
of fixed mutation rate, clearly a single round of replication will
yield Poisson-distributed mutant counts (“Methods—
Occurrence of Mutations” section, and Drake et al. 2005;
Drake 2007; Elez et al. 2010; Kennedy et al. 2015). Actually,
even over multiple generations, a Poisson distribution arises if
mutations are neutral, or under the unrealistic restriction that
they have equal and multiplicative fitness effects, but not
when they exhibit epistasis (supplementary text II.2.4.4,
Supplementary Material online).

An analysis of published mutant collections from a wide
range of taxa found that higher-order mutants were often
over-represented relative to a Poisson distribution, which the
authors interpreted as evidence of mutation rate heteroge-
neity (Drake et al. 2005; Drake 2007). However, the data came
from a wide range of experimental systems and it was unclear
whether selection could be ruled out in all cases. Most of the
experiments also relied on reporter genes, which have several
pitfalls and are increasingly being replaced by whole genome
sequencing (Long et al. 2016). The intriguing finding by Drake
and colleagues thus encourages follow-up studies that care-
fully consider confounding factors and statistically quantify
the extent of heterogeneity.

At first glance, the abundance of recent studies applying
population-level deep sequencing appears to offer a wealth of
genotype frequency data to test for mutation rate heteroge-
neity. However, selection will generally be acting in these
populations; indeed the focus of many such studies is to
provide insights into adaptation (e.g. Lang et al. 2013).
Furthermore, the high error rates of next-generation sequenc-
ing (NGS) technologies (Beerenwinkel and Zagordi 2011)
limit the detection of very rare mutations before their fre-
quencies have been increased by positive selection.
Promisingly, the recently developed “maximum-depth se-
quencing” (MDS) method has sufficiently high yield and
low error rate to estimate de novo mutation rates at specific
target loci (Jee et al. 2016). However, both standard NGS
methods (Beerenwinkel and Zagordi 2011) and, so far, the
MDS method (Jee et al. 2016) operate by sequencing short
reads of at most a few hundred nucleotides. This eliminates
linkage information between all but the closest sites and
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thereby makes the chance of detecting multi-point mutants
vanishingly small. Global haplotype reconstruction algorithms
exist, but require sufficient genetic diversity to align overlap-
ping reads (Beerenwinkel and Zagordi 2011). On the other
hand, barcoding single DNA molecules before sequencing
avoids loss of linkage information, with novel techniques at-
taining high throughput (Borgström et al. 2015). For the se-
quencing step, standard short-read methods (Borgström et al.
2015) or potentially MDS (Supplementary Information in Jee
et al. 2016) can be adopted. Therefore, if selection in the
source population of interest can be avoided, these new de-
velopments in sequencing methods appear to have potential
to generate useable data to test for mutation rate heteroge-
neity through the frequencies of multi- versus single-point
mutants.

Alternatively, techniques isolating individual cells and pin-
pointing mutations in single replications have recently been
applied to investigate mutation rate heterogeneity in samples
that are unbiased by selection against all but perhaps lethal
mutations. These approaches enable enumeration of de novo
mutations either by fluorescently labelling nascent mutation
foci (in E. coli; Elez et al. 2010) or by comparing whole genome
sequences of mother and daughter cells (in budding yeast;
Kennedy et al. 2015), with the potential for extension to other
organisms. The biggest hurdle is the cost and labor involved in
obtaining a large enough sample size.

In parallel with experimental developments, rigorous sta-
tistical methods will be crucial. Ideally, empirical studies
should not only detect deviations from the null model of
fixed mutation rate, but also fit an alternative model to quan-
tify a mutation rate distribution (cf. Kennedy et al. 2015).
Formal power analyses, identifying the minimal statistically
detectable effect size for a given sample size, would be valu-
able both to interpret existing data and to prospectively aid
experimental design.

Importantly, factors besides inter-individual heterogeneity
could also cause deviations from the null model. Besides the
aforementioned issue of selection, other forms of mutation
rate variation could conceivably affect mutant counts.
Mutation rate that changes over time will not by itself yield
deviations from a Poisson distribution, as long as population
members within each generation have the same rate (supple
mentary text II.2.4.4, Supplementary Material online).
Mutation rate that consistently varies across genome sites
(Rogozin and Pavlov 2003; Lang and Murray 2008) will lead
to an over-representation of intermediate mutants, i.e., an
effect opposite to variation among individuals with unifor-
mity across a genome (supplementary text II.2.4.4,
Supplementary Material online). On the other hand, if a single
mutational event introduces changes at multiple nearby nu-
cleotides (Averof et al. 2000; Schrider et al. 2011), clearly
multi-point mutants will be over-represented, though in con-
trast to our model, with non-random spacing. For the pur-
poses of analyzing mutant counts, proximal multi-nucleotide
changes may simply be counted as single “mutations” (Drake
et al. 2005; Drake 2007). On the other hand, going beyond our
present model, mechanisms yielding inter-individual hetero-
geneity may act only locally in the genome, and using

information on mutation spacing could yield insights into
these underlying processes (Hill et al. 2004). Generally, data
analyses should consider this (non-exhaustive) range of alter-
native models, perhaps applying formal model selection, in
order to draw robust conclusions regarding mutation rate
heterogeneity.

Conclusions
Novel technologies and the falling cost of genome sequencing
are opening exciting new avenues to test proposed muta-
tional models and quantify the extent of mutation rate het-
erogeneity, in natural isolates as well as laboratory strains.
These empirical advances, combined with statistical methods,
could enable parameterization of models that evaluate the
evolutionary consequences of this variability. Our findings
suggest that variability of mutation rate among population
members could enhance multi-locus adaptation both from
beneficial de novo mutations and previously deleterious mu-
tations in the standing genetic variation, as well as reducing
the mutational load in a well-adapted population. The vast
majority of population genetic analyses, fixing mutation rate
to an estimate representing the mean, may thus underesti-
mate the potential for adaptation.

Methods
We model a haploid, asexually reproducing population with
non-overlapping generations, extending classic population
genetic models to incorporate a mutation rate that varies
among co-existing population members. We focus on geno-
type dynamics at one or more fitness-determining loci, and
assume throughout that mutation rate neither depends on
the genotype at the focal loci, nor has any direct fitness effect.
There are, however, notable cases in which this assumption
will not hold; for example, a correlation between replicative
fitness and mutation rate, due to mutual dependency on
speed of replication, has been demonstrated in viruses
(Furi�o et al. 2005; Dapp et al. 2013), and environmental factors
could affect both fitness and mutation rate.

Numerical results and plots were generated with R (R Core
Team 2015), and some analytical results were derived with
use of Mathematica (Wolfram Research, Inc. 2016).

Occurrence of Mutations
We assume that mutation rate is uniform across loci within
one individual, and that given this rate, mutations occur in-
dependently among loci. We do not distinguish different mu-
tant alleles at one locus, and we neglect back mutations. Then
among n non-mutant loci in an individual with realized mu-
tation rate u, the number of new mutations that arise “simul-
taneously” (i.e., in one generation) follows a binomial
distribution, where the probability of j mutations is:

pn;jðuÞ ¼ ð n

j
Þu jð1� uÞn�j (8)

In the limit as n!1 and u! 0 such that nu � k, we
obtain an “infinite-locus” model in which every new mutation
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occurs at a unique site. Then the number of mutations oc-
curring in an individual with per-genome mutation rate k
follows a Poisson distribution; that is, the probability of j
mutations is:

pjðkÞ ¼ e�kkj=j! (9)

This model does not address the complexity of multi-step
intracellular replication cycles in viruses, for which a Poisson-
distributed number of mutations per genome is not neces-
sarily expected after a single infection cycle (Duffy et al. 2008;
Sanju�an et al. 2010).

Deterministic Model of Genotype Frequency
Dynamics
We denote the frequency of genotype i at generation t by
xiðtÞ and its relative fitness by wi. Without loss of generality
we take the wild type (carrying no mutations) to have rel-
ative fitness 1, while type i has wi ¼ 1� si (thus si > 0 for
a deleterious mutant and si < 0 for a beneficial mutant).
Population mean fitness is given by

�wðtÞ :¼
X

i

wixiðtÞ: (10)

Generally, then, for any collection of types i and propor-
tions pij of type i offspring from a type j parent, one can write
a set of recursions:

xiðtþ 1Þ ¼
X
8j

wjpijxjðtÞ
�wðtÞ (11)

where census occurs after mutation and before selection. For
a finite collection of types, these recursions can be rewritten
as a matrix equation:

xðtþ 1Þ ¼ 1

�wðtÞMxðtÞ (12)

where x(t) collects the frequencies of each genotype at time t
into a vector, and M is the 2n � 2n “mutation-selection ma-
trix” where Mij ¼ wjpij. These equations are valid even if total
population size or absolute fitness values change over time, as
long as the relative fitness values are constant (Day 2005, p.
278). Extending the model to heterogeneous mutation rate,
with or without inheritance, essentially involves defining the
appropriate matrices M (supplementary text II.2.1,
Supplementary Material online).

By solving Equation (12) and then taking Taylor series ex-
pansions of x(t) about zero of the mutation rate moments, we
obtain approximations that hold for positive or negative se-
lection coefficients at sufficiently small times (supplementary
text II.2.2 and II.2.3, Supplementary Material online). In the
two-locus model, in a population initially composed only of
the wild type, the double mutant frequency in a homoge-
neous population takes the form:

x11ðt; homÞ � bðtÞhUi2 (13)

where

bðtÞ ¼ s01 þ s10 � s01s10

s01s10s11
� ð1� s01Þtþ1

s01ðs11 � s01Þ
� ð1� s10Þtþ1

s10ðs11 � s10Þ

� ðs01 þ s10 � s01s10 � 2s11 þ s2
11Þð1� s11Þt

s11ðs11 � s01Þðs11 � s10Þ

when mutation rate is heterogeneous, in the non-inherited
case,

x11ðt; het;H ¼ 0Þ � bðtÞhUi2 þ 1� ð1� s11Þt
� � V

s11

(14)

and in the perfectly inherited case,

x11ðt; het;H ¼ 1Þ � bðtÞðhUi2 þ VÞ (15)

The equilibrium frequencies x� are given by the eigenvec-
tors of M, with equilibrium population mean fitness �w� given
by the corresponding eigenvalues. When all mutants are del-
eterious, the dominant eigenvalue is associated with the poly-
morphic equilibrium (mutation-selection balance). The
solutions are again approximated using Taylor series expan-
sions (supplementary text II.2.2 and II.2.3, Supplementary
Material online; table 1).

When comparing double mutant frequency across model
cases, the absolute increase due to heterogeneity of the mu-
tation rate is defined by

DabsðtÞ :¼ x11ðt; hetÞ � x11ðt; homÞ (16)

and the relative increase by

DrelðtÞ :¼ ðx11ðt; hetÞ � x11ðt; homÞÞ=x11ðt; homÞ (17)

such that the fold-change is ð1þ DrelÞ.
The infinite-locus model (supplementary text II.2.4,

Supplementary Material online), based on Kimura and
Maruyama (1966), assumes that a Poisson-distributed num-
ber of de novo mutations arises on a genome in each gener-
ation (as in the “Occurrence of Mutations” section) and
fitness (wi) is fully determined by the number of mutations
carried (i). The special case in which mutations have equal
and multiplicative effects takes wi ¼ ð1� sÞi. We obtain
equilibrium genotype frequencies by numerical iteration up
to a specified tolerance (supplementary text II.2.4.3,
Supplementary Material online).

Branching Process Model
A general multi-type branching process model incorporating
mutation rate heterogeneity is laid out in the supplementary
text II.3, Supplementary Material online. The illustrated results
use a specific case of the two-locus model in which the wild
type has exactly two offspring in total, while single mutants
have either two offspring (neutral) or zero offspring (lethal).
Among these offspring, mutations at the two loci occur prob-
abilistically as described in the “Occurrence of Mutations”
section.

We derive the following recursions for the probability
P2;0ðtÞ that a double mutant has not yet appeared in a
lineage initiated by a single wild type individual
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(supplementary text II.3.3, Supplementary Material online).
Given non-inherited mutation rate with mean hUi and
variance V, in the neutral single mutant case,

P2;0ðtþ 1; hUi;VÞ ¼ ððð1� hUiÞ2 þ VÞP2;0ðt; hUi;VÞ
þ 2ðhUið1� hUiÞ � VÞð1� hUiÞ2

tþ1�2Þ2

(18)

while in the lethal single mutant case,

P2;0ðtþ 1; hUi;VÞ ¼ ððð1� hUiÞ2 þ VÞP2;0ðt; hUi;VÞ
þ 2ðhUið1� hUiÞ � VÞÞ2

(19)

If mutation rate is perfectly inherited, Equations (18) and (19)
apply within a lineage with fixed mutation rate U � uk by
substituting hUi ¼ uk and V¼ 0.

For illustration, mutation rate equals uh with probability qh

or ul with probability 1� qh, and there are in total N wild-
type progenitors in generation 0. In the non-inherited case,
the probability that no double mutant has yet appeared in
the entire population is then

P2;popðt; het;H ¼ 0Þ ¼ P2;0ðt; hUi;VÞN (20)

where hUi and V are given by Equation (23). When mutation
rate is perfectly inherited, we take Nl progenitors with muta-
tion rate ul and Nh with rate uh, such that Nl þ Nh ¼ N and
Nh=N ¼ qh (thus restricting qh to increments of 1=N). Then

P2;popðt; het;H ¼ 1Þ ¼ P2;0ðt; uh; 0ÞNh P2;0ðt; ul; 0ÞNl (21)

In the homogeneous case, all individuals have mutation rate
fixed to hUi, and we calculate

P2;popðt; homÞ ¼ P2;0ðt; hUi; 0ÞN (22)

As a scalar measure of the waiting time, we evaluate T0:5, the
first generation at which P2;popðtÞ � 0:5.

Quantifying Effects with Two Mutation Rates
If mutation rate simply takes on either of two values, uh (high)
with probability qh or ul (low) with probability 1� qh, where
uh=ul ¼ q � 1, particularly simple expressions are available
for the mean and variance of mutation rate:

hUi ¼ ulð1� qh þ qqhÞ (23a)

V ¼ hUi
2qhð1� qhÞðq� 1Þ2

ð1� qh þ qhqÞ2
(23b)

Thus, the squared coefficient of variation, which provides an
upper bound on the relative effect of heterogeneity (Drel) on
the frequency of double mutants in the deterministic two-
locus model, is simply

c2 ¼ qhð1� qhÞðq� 1Þ2

ð1� qh þ qqhÞ2
(24)

For fixed q, it can readily be shown that c2 takes on a maximal
value of

max
qh

c2 ¼ 1þ q2

4q
(25)

when the fraction of individuals with the higher mutation
rate is qh ¼ 1

1þq. Since c2 depends on the mutation rates only
through their ratio, scaling up both uh and u‘ by the same
factor (e.g. by considering a larger target size as a locus) will
not affect these results.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
This work was supported by the ETH Zurich; the European
Research Council under the 7th Framework Programme of
the European Commission (PBDR: grant number 268540 to
SB); and the Swiss National Science Foundation (grant num-
ber 155866 to SB). The authors thank members of the
Theoretical Biology group at ETH Zurich for insightful com-
ments on this work, particularly Dominique Cadosch and
Antoine Frenoy for discussion of stress-induced mutagenesis.
The authors also thank Antoine Frenoy and Oskar
Hallatschek for comments on a draft of this manuscript,
and the editors and anonymous reviewers for their insightful
and constructive critique.

References
Al-Lazikani B, Banerji U, Workman P. 2012. Combinatorial drug

therapy for cancer in the post-genomic era. Nat Biotechnol.
30:1–13.

Aoki K, Furusawa M. 2001. Promotion of evolution by intracellular co-
existence of mutator and normal DNA polymerases. J Theor Biol.
209:213–222.

Averof M, Rokas A, Wolfe KH, Sharp PM. 2000. Evidence for a high
frequency of simultaneous double-nucleotide substitutions.
Science 287:1283–1286.

Baquero MR, Nilsson AI, Turrientes MC, Sandvang D, Gal�an JC, Mart�ınez
JL, Frimodt-Møller N, Baquero F, Andersson DI. 2004. Polymorphic
mutation frequencies in Escherichia coli: emergence of weak muta-
tors in clinical isolates. J Bacteriol. 186:5538–5542.

Barber LJ, Davies MN, Gerlinger M. 2015. Dissecting cancer evolution at
the macro-heterogeneity and micro-heterogeneity scale. Curr Opin
Genet Dev. 30:1–6.

Barrett RDH, Schluter D. 2008. Adaptation from standing genetic vari-
ation. Trends Ecol Evol. 23:38–44.

Beerenwinkel N, Zagordi O. 2011. Ultra-deep sequencing for the analysis
of viral populations. Curr Opin Virol. 1:413–418.

Belavkin R, Channon V, Aston A, Aston E, Kra�sovec JR, Knight CG. 2016.
Monotonicity of fitness landscapes and mutation rate control. J
Math Biol. 73:1491–1524.

Bjedov I, Tenaillon O, Gérard B, Souza V, Denamur E, Radman M, Taddei
F, Matic I. 2003. Stress-induced mutagenesis in bacteria. Science
300:1404–1409.

Björkholm B, Sjölund M, Falk PG, Berg OG, Engstrand L, Andersson DI.
2001. Mutation frequency and biological cost of antibiotic resistance
in Helicobacter pylori. Proc Natl Acad Sci U S A. 98:14607–14612.

Boe L. 1992. Translational errors as the cause of mutations in Escherichia
coli. Mol Gen Genet. 231:469–471.

Boe L, Danielsen M, Knudsen S, Petersen JB, Maymann J, Jensen PR. 2000.
The frequency of mutators in populations of Escherichia coli. Mutat
Res. 448:47–55.

Alexander et al. . doi:10.1093/molbev/msw244 MBE

434

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw244/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw244/-/DC1
Deleted Text:  
Deleted Text: 4.4
Deleted Text: e
Deleted Text: t
Deleted Text: m
Deleted Text: r
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw244/-/DC1


Borgström E, Redin D, Lundin S, Berglund E, Andersson AF, Ahmadian A.
2015. Phasing of single DNA molecules by massively parallel barcod-
ing. Nat Commun. 6:7173.

Bürger R. 2000. The Mathematical Theory of Selection, Recombination
and Mutation, 1st edn. Chichester: Wiley.

Cairns J. 1998. Mutation and cancer: the antecedents to our studies of
adaptive mutation. Genetics 148:1433–1440.

Colijn C, Cohen T, Ganesh A, Murray M. 2011. Spontaneous emergence
of multiple drug resistance in tuberculosis before and during ther-
apy. PLoS One 6:e18327.

Combe M, Garijo R, Geller R, Cuevas JM, Sanju�an R. 2015. Single-cell
analysis of RNA virus infection identifies multiple genetically diverse
viral genomes within single infectious units. Cell Host Microbe
18:424–432.

Cover TM, Thomas JA. 2006. Elements of Information Theory, 2nd edn.
Hoboken (NJ): John Wiley & Sons, Inc.

Dapp MJ, Heineman RH, Mansky LM. 2013. Interrelationship between
HIV-1 fitness and mutation rate. J Mol Biol. 425:41–53.

Day T. 2005. Modelling the ecological context of evolutionary change:
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