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GLUT4 Storage Vesicles: Specialized 
Organelles for Regulated Trafficking
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Fat and muscle cells contain a specialized, intracellular organelle known as the GLUT4 storage vesicle 
(GSV†). Insulin stimulation mobilizes GSVs, so that these vesicles fuse at the cell surface and insert 
GLUT4 glucose transporters into the plasma membrane. This example is likely one instance of a broader 
paradigm for regulated, non-secretory exocytosis, in which intracellular vesicles are translocated in 
response to diverse extracellular stimuli. GSVs have been studied extensively, yet these vesicles remain 
enigmatic. Data support the view that in unstimulated cells, GSVs are present as a pool of preformed small 
vesicles, which are distinct from endosomes and other membrane-bound organelles. In adipocytes, GSVs 
contain specific cargoes including GLUT4, IRAP, LRP1, and sortilin. They are formed by membrane 
budding, involving sortilin and probably CHC22 clathrin in humans, but the donor compartment from 
which these vesicles form remains uncertain. In unstimulated cells, GSVs are trapped by TUG proteins 
near the endoplasmic reticulum – Golgi intermediate compartment (ERGIC). Insulin signals through two 
main pathways to mobilize these vesicles. Signaling by the Akt kinase modulates Rab GTPases to target 
the GSVs to the cell surface. Signaling by the Rho-family GTPase TC10α stimulates Usp25m-mediated 
TUG cleavage to liberate the vesicles from the Golgi. Cleavage produces a ubiquitin-like protein modifier, 
TUGUL, that links the GSVs to KIF5B kinesin motors to promote their movement to the cell surface. In 
obesity, attenuation of these processes results in insulin resistance and contributes to type 2 diabetes and 
may simultaneously contribute to hypertension and dyslipidemia in the metabolic syndrome.
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INTRODUCTION

The trafficking relationships among mem-
brane-bound organelles involved in secretory physiolo-
gy were famously described by Jamieson and Palade in 
their pioneering work on pancreatic exocrine cells [1]. 
These and subsequent studies established the canonical 
endoplasmic reticulum (ER) to Golgi to secretory vesicle 
pathway that is used in diverse cell types. Since then, ad-
ditional membrane-bound compartments have been iden-
tified, and are often derived from the ER/Golgi pathway, 
including peroxisomes, lipid droplets, omegasomes and 
autophagosomes, the ER-Golgi intermediate compart-
ment (ERGIC), and others [2]. It is now recognized that 
membrane trafficking has functions in addition to regulat-
ed secretion, such as non-secretory exocytosis to deliver 
transmembrane proteins to the cell surface action, as well 
as exocytic processes that expand the plasma membrane 
[3].

In this review, prepared for a focus issue of Yale Jour-
nal of Biology and Medicine on Organelles, we describe 
on how work investigating the trafficking dynamics of 
GLUT4, the major insulin-responsive glucose transport-
er, revealed the existence of a novel class of intracellular 
organelle [4]. Specifically, data support the concept that 
in fat and muscle cells, GLUT4 is retained in small 50-
70 nanometer vesicles where it is co-localized with other 
proteins that have very specific functions involving water 
and lipid homeostasis. These vesicles bypass the tradi-
tional secretory pathway and are sequestered near the 
ERGIC as a pre-formed pool, where they are primed for 
insulin-stimulated translocation [4,5]. The mechanisms 
by which these vesicles are formed and are regulated are 
still not defined, and it remains uncertain how this mem-
brane-bound organelle buds from donor membranes, how 
cargoes are selectively incorporated, how the vesicles 
are retained, and how insulin stimulates the mobilization 
of these vesicles. The emerging notion that homologous 
organelles may be present in other cell types represents 
an interesting new development in the understanding of 
subcellular organization.

IDENTIFICATION OF RETAINED SMALL 
VESICLES AS AN INDEPENDENT 
TRAFFICKING COMPARTMENT

The existence of a novel membrane bound com-
partment in adipose and muscle cells was anticipated by 
mathematical modeling of GLUT4 trafficking kinetics. 
Analyses implied that GLUT4 traffics not just between 
the plasma membrane and endosomes, but also through 
an additional, intracellular “insulin-responsive com-
partment” [6]. The modeling implied that the main traf-
ficking rate affected by insulin is that for exocytosis of 

GLUT4 from this compartment [7,8]. Remarkably, the 
escape of GLUT4 from this reservoir in unstimulated 
cells can be undetectable, so that the main effect of in-
sulin is to expand the pool of GLUT4 that cycles at the 
plasma membrane [9-12]. Insulin acts on the sequestered 
GLUT4 to release discrete quanta, in a dose-dependent 
manner, into a cell-surface recycling pathway [13]. This 
“static retention” model adapted an earlier “retention re-
ceptor” concept [14], based on the new recognition that 
retention segregates GLUT4 away from endosomes. This 
static model seemed initially to be incompatible with a 
“dynamic equilibrium” model [15,16], but subsequent 
data resolved these discrepancies and showed that insulin 
also acts dynamically to increase exocytosis from endo-
somes [11,17,18]. Live cell imaging further supported the 
idea that, in unstimulated cells, most insulin-responsive 
GLUT4 is sequestered in a static compartment in cultured 
3T3-L1 adipocytes [19] and in vivo in muscles in mice 
[20,21].

The idea that GLUT4 is trapped in a unique, intracel-
lular membrane-bound compartment – called “GLUT4 
Storage Vesicles” (GSVs) or “Insulin-Responsive Vesi-
cles” (IRVs) – was also supported by biochemical and 
electron microscopy (EM) data. Early immuno-EM 
studies of unstimulated fat and muscle showed that ~75 
percent of total intracellular GLUT4 resides in 50-80 
nm diameter vesicles and tubules [22]. The remaining 
GLUT4 is in larger structures, likely endosomes and 
the trans-Golgi network (TGN). Biochemically, the 
insulin-responsive GLUT4 can be purified away from 
endosomes and other organelles [23-25]. Yet, the use 
of physicochemical characteristics to purify these small 
vesicles results in the isolation of two distinct pools of 
vesicles, including GSVs, which are rapidly mobilized 
by insulin, and intracellular transport vesicles, which are 
not mobilized and can be distinguished by the presence 
of cellugyrin [26,27]. The cellugyrin-containing vesicles 
may provide a reservoir to replenish the GSVs [28]. The 
GSVs are considered to exist as a pre-formed pool of 
vesicles within unstimulated cells, based primarily on 
in vitro reconstitution of vesicle budding [29]. This is 
important, because it implies that the main effect of insu-
lin is not to stimulate a membrane budding process, but 
rather to act through some other mechanism to mobilize 
vesicles from this sequestered pool. As discussed further 
below, effects on membrane fusion also cannot account 
for release of the GSVs, and insulin-stimulated cleavage 
of TUG proteins is a mechanism to release GSVs that fits 
with the data.

Systematic analysis of proteins residing in GSVs 
reveals that the core constituents of these vesicles are 
GLUT4, IRAP, sortilin, and LRP1 [24,25,27]. IRAP is an 
Insulin-Responsive AminoPeptidase, which is thought to 
co-traffic with GLUT4 throughout most of its intracellu-



Li et al.: GLUT4 storage vesicles and trafficking 455

lar itinerary. Sortilin plays a role in recruiting cargoes into 
the GSVs during vesicle budding and binds LRP1 (lipo-
protein receptor‐related protein 1), as discussed below. In 
addition, GSVs contain Syntaxin-6 (Stx6) and VAMP2, 
which is the main v-SNARE required for fusion of these 
vesicles at the cell surface. Recently, TUSC5/TRARG1 
was identified as another protein that participates in GSV 
trafficking, although precisely how this protein acts re-
mains unknown [30,31]. Several other proteins are also 
enriched in GSVs [32]. These proteins all translocate to 
the plasma membrane after insulin stimulation and are 
dramatically depleted from the intracellular GSV pool. 
The regulation of these small vesicles therefore rep-
resents a unique mechanism by which a set of proteins 
can be held inactive in a sequestered organelle, and then 
coordinately mobilized to the cell surface in response to a 
specific, extracellular stimulus.

FORMATION OF GLUT4 STORAGE 
VESICLES

One question raised by the discovery of GSVs is how 
this compartment can be reconstituted after insulin-stim-
ulated depletion. Cargoes must be sorted into GSVs with 
high fidelity, and the different endocytic rates of various 
cargoes requires a specific sorting step take place during 
GSV formation [33]. Studies of GSV formation are com-
plicated by the fact that these vesicles are concentrated in 
the perinuclear region, so that conventional fluorescence 
microscopy is not able to distinguish these vesicles unam-
biguously [34]. Biochemically, the GSVs may participate 
in an intracellular cycle of budding and fusion with larger, 
“donor” membranes from which they are formed [15,35]. 
A further potential complicating factor is that GLUT4 and 
other cargoes must be able to arrive in this compartment 
from both biosynthetic and recycling pathways. Newly 
synthesized GLUT4 and IRAP are not targeted to the 
plasma membrane, but enter GSVs directly within 6 to 9 
hours after they are translated on ER membranes [36-38]. 
As well, GSV component proteins that have been deliv-
ered to the plasma membrane are internalized into sorting 
endosomes and are delivered to recycling endosomes 
and/or the trans-Golgi network [25,39,40]. The cargoes, 
too, must be sorted to a “donor” membrane compart-
ment and into GSVs. It remains uncertain at what point 
the biosynthetic and endocytic routes reach confluence; 
regardless, the partitioning mechanism must be able to 
recognize cargoes arriving from both pathways.

Specific targeting signals have been identified in the 
cytosolic regions of the main GSV cargoes, which are 
required for the proteins to reach the GSVs and for these 
vesicles to be mobilized upon insulin stimulation. For 
GLUT4, a 12-transmembrane domain protein, these sig-
nals reside in the cytosolic N-terminus and large central 

loop [41]. In particular, the N-terminus contains a critical 
phenyalanine-based motif, which appears to regulate 
GLUT4 in GSVs as well as its internalization from the 
plasma membrane [8,41,42]. In IRAP, which has a cytoso-
lic N-terminus followed by a single transmembrane and a 
large extracellular domain, a dileucine motif at positions 
76 and 77 is required for insulin-regulated trafficking in 
GSVs [37]. These motifs are distinct from those govern-
ing intracellular trafficking of recycling proteins [43]. 
These signals were predicted to interact with proteins 
that are peripherally associated with GSVs, and to permit 
the regulation of GSV trafficking by such proteins [27]. 
This prediction is fulfilled by TUG, which interacts with 
these cytosolic regions of both GLUT4 and IRAP [44-
46]. Another protein that is recruited by binding IRAP is 
AS160/Tbc1D4, a GTPase Activating Protein (GAP) for 
Rab proteins involved in GLUT4 trafficking [47,48]. The 
IRAP-AS160 interaction may be involved in recruiting 
IRAP from endosomes into GSVs [49]. The data imply 
that both AS160 and TUG are present on GSVs, and these 
proteins likely act together. If GSVs are one example of 
a more general organelle for regulated exocytic translo-
cation, as we propose, then cytosolic signals similar to 
those on GLUT4 may be present on other cargoes present 
in other cell types.

In parallel to this work to define cytosolic signals 
displayed outside of the GSVs, it was found that GLUT4, 
IRAP, LRP1, and sortilin interact with each other through 
sequences present in the vesicle lumen [25,34,35,50]. 
These luminal interactions may bring cargoes in the do-
nor membranes together, during vesicle budding, so that 
oligomeric complexes are formed to facilitate protein 
sorting into the GSVs. The key scaffold for this process is 
sortilin, a homolog to the yeast vacuolar sorting receptor 
Vps10p. Sortilin is a multi-ligand protein receptor with 
a DXXLL motif in its cytosolic domain, through which 
it recruits clathrin adaptors such as GGA2 to promote 
vesicle budding [51]. Sortilin thus functions as a trans-
membrane scaffold to link GSV transmembrane cargoes 
with peripherally associated adaptors involved in vesicle 
budding. Its cell type-specific expression in adipocytes is 
necessary for GSV formation, and exogenous expression 
of sortilin in preadipocytes is sufficient to drive formation 
of GSV-like vesicles [35,50,52].

Another adaptor protein that may act on GSVs or on 
other GLUT4-containing vesicles is ACAP1, which binds 
to the central loop of GLUT4 [26,53]. ACAP1 has GAP 
activity toward ARF6, a GTPase involved in vesicle bud-
ding, and also recruits clathrin coats. It may work together 
with sortilin. Ubiquitination is another signal on GLUT4 
itself that binds GGA proteins to drive vesicle budding, 
and which is required for entry of GLUT4 into GSVs 
[54]. Finally, in human but not mouse cells, muscle- and 
adipose- specific expression of a clathrin heavy chain, 
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disruption. These data imply that control of the GSVs by 
TUG is a major site of insulin action to regulate overall 
glucose uptake into fat and muscle.

IRAP and Vasopressin Degradation
Like GLUT4, Insulin-regulated aminopeptidase 

(IRAP) translocates to the plasma membrane in response 
to insulin [71]. Cloning of the cDNA revealed that IRAP 
is an aminopeptidase consisting of a cytoplasmic N-ter-
minal tail, a single transmembrane segment, and an intra-
luminal/extracellular C-terminal domain [72,73]. Though 
the molecular weight of IRAP is theoretically 120 kDa 
the protein is known to be heavily glycosylated such that 
the molecular mass of the processed protein is signifi-
cantly larger, in the range of 165 kDa [74]. IRAP has a 
wide tissue distribution, but is most notably expressed 
in skeletal muscle cells and adipocytes, as well as in the 
corresponding adipocyte and muscle cell lines, 3T3-L1 
adipocytes and L6 myotubes, respectively [75,76]. In 
these cells, insulin stimulation leads to a six- to eight-fold 
increase of IRAP at the cell surface within ~5 minutes 
[45].

Although IRAP’s function at the time of its identifi-
cation was unclear, subsequent studies have shown that 
it is important in the regulation of water homeostasis via 
its role in degrading vasopressin. This function was es-
tablished by experiments demonstrating that vasopressin 
did not undergo N-terminal proteolysis in the presence 
of IRAP-deficient muscle or fat cells [77]. This decrease 
in proteolytic activity corresponded to a two-fold eleva-
tion of endogenous vasopressin in the serum of IRAP 
deficient mice. Although the clearance of vasopressin 
in IRAP-deficient mice also suggested that additional 
peptidolytic pathways may exist for the processing of 
vasopressin, these were unable to compensate for the 
absence of IRAP-mediated cleavage [77]. Furthermore, 
insulin stimulation of fat and muscle cells increased the 
clearance of circulating vasopressin by ~30 percent in 
wildtype control mice, measured using a 125I-vasopressin 
label, and this effect was absent in IRAP-deficient mice. 
Notably, mice lacking IRAP also had a 3-fold increase in 
the half-life of circulating vasopressin, as well as a com-
pensatory decrease in vasopressin abundance in brain, 
where vasopressin is produced. Conversely, an increased 
rate of vasopressin inactivation is observed when IRAP is 
displayed constitutively at the cell surface. Specifically, 
in transgenic mice with disrupted TUG-mediated GSV 
intracellular retention in muscle, IRAP is translocated 
to T-tubule membranes and results in accelerated inac-
tivation of circulating vasopressin [45]. This caused an 
impairment in urine concentration by the kidneys, so that 
the mice consumed more water, compared to wildtype 
control animals. Together, the data support the concept 
that the regulation of IRAP at the cell surface has marked 

CHC22, is involved in regulated GLUT4 trafficking and 
is required for insulin-responsiveness [55-57]. It seems 
likely that this protein acts in the formation of GSVs 
themselves, and not at some other site in the intracellular 
itinerary of GLUT4. Yet, the specific membrane of origin 
at which this unique clathrin coat acts to promote the bud-
ding vesicles remains to be fully elucidated.

FUNCTIONS OF GSV CARGO PROTEINS

The distinct GSV cargo proteins are anticipated to 
act in membrane trafficking or in organism-level physi-
ology. These can highlight the physiological significance 
of this organelle and its regulation by insulin signaling.

GLUT4 and Glucose Transport
Postprandial glucose uptake into muscle and adipose 

tissues is a key homeostatic function for mammals that is 
regulated by insulin [58]. Insulin promotes hepatic gly-
cogen synthesis, suppresses hepatic gluconeogenesis, in-
creases adipose and muscle glucose uptake, and suppress 
lipolysis [59]. Together, these functions allow for storage 
of glycogen and triglyceride, which can serve as energy 
sources for future mobilization [60].

Glucose uptake from the circulation in humans is 
mediated by a family of facilitative transporters, known 
as GLUTs, that are energy-independent and transport glu-
cose across cellular membranes down its concentration 
gradient [61]. Although several structural components are 
conserved among all GLUT family members, including 
12 transmembrane helices, GLUT isoforms vary in terms 
of tissue-specific expression and substrate specificity 
[62,63]. Among the GLUT proteins, GLUT4 is unique 
because it is expressed primarily in adipose and muscle 
tissues, and it is sequestered intracellularly in GSVs in 
cells not stimulated by insulin [22,64]. The regulated, 
exocytic translocation of GSVs promotes glucose uptake 
by inserting GLUT4 into the plasma membrane.

Genetic manipulation of GLUT4 in muscle and 
adipose in mice demonstrated its critical importance for 
overall glucose homeostasis and revealed crosstalk be-
tween tissues [65,66]. During the development of type 
2 diabetes, in insulin resistant states, insulin-regulated 
GLUT4 trafficking is impaired. Although this may in part 
reflect attenuation of insulin signaling [59], older studies 
imply that the GSVs are not properly formed and/or re-
tained within unstimulated cells [67,68]. The importance 
of GLUT4 in glucose uptake and diabetes pathogenesis 
has been extensively reviewed previously and will not 
be discussed further here [4,64,69]. Of note, similarly 
increased glucose uptake was observed after insulin stim-
ulation and TUG disruption, both in 3T3-L1 adipocytes 
and in vivo in muscle in mice [44,70]. In both cases, in-
sulin had a minimal further effect in the setting of TUG 
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translocation, and constitutive membrane recycling [91]. 
Furthermore, syntaxin-4 and SNAP23 form ternary com-
plexes, together with VAMP2 and the Sec1-Munc18 (SM) 
protein Munc18c. This SNARE-SM complex is thought 
to play an integral role in fusion of GSVs at the plasma 
membrane [92,93]. VAMP2 has broader functions as well 
and plays a role in the release of hormones from pancre-
atic islet cells, neurons, and gastric parietal cells [94,95].

INSULIN SIGNALING, GLUT4 
TRAFFICKING, AND GSV REGULATION

The regulation of GLUT4 translocation to the plasma 
membrane requires the intersection of insulin signaling 
and vesicle trafficking pathways. Yet, many of the vesicle 
trafficking processes that are involved in GLUT4 targeting 
are not major sites of insulin regulation. A key challenge 
for the field has been to understand not only what steps 
are regulated by insulin, but what step is quantitatively 
most important for the control of glucose uptake. As not-
ed, mobilization of a preformed pool of GSVs is highly 
regulated, and does not involve membrane budding, sort-
ing, or fusion. We propose that this action is controlled 
by TUG cleavage, as detailed below. Of course, insulin 
does regulate classical membrane trafficking processes as 
well. For example, the fusion of vesicles at the plasma 
membrane is highly regulated by insulin [96]. Yet, the 
availability of vesicles for this fusion depends upon an 
upstream step, in which the GSVs are first mobilized 
from their intracellular sequestration. The GSVs do not 
accumulate in a tethered or docked state at the plasma 
membrane of unstimulated cells but are trapped more 
deeply within the cell while awaiting an insulin signal. A 
further consideration is that the major insulin-regulated 
step may not be the one that is most affected in insulin 
resistance. Thus, a detailed map of GLUT4’s intracellular 
itinerary, and of the sites that are regulated by insulin and 
affected in insulin resistance, is necessary to understand 
physiology and pathophysiology.

In unstimulated cells, GLUT4 and other GSV 
cargoes are internalized by endocytosis into early (or 
sorting) endosomes [97]. These cargoes then enter recy-
cling endosomes and follow a retrograde pathway to the 
trans-Golgi network and possibly to the ERGIC or other 
donor membrane compartments [4]. GSVs then bud from 
these membranes and are held in a relatively static con-
figuration to await insulin stimulation. An insulin signal 
then releases the trapped GSVs and loads these vesicles 
onto microtubule motors for translocation to the plasma 
membrane (Figure 1). As detailed below, intact TUG can 
trap the GSVs, and TUG cleavage can liberate these ves-
icles and load them onto microtubule motors. After trans-
location, GSV cargoes recycle through endosomes during 
ongoing insulin exposure [4,17]. GSV vesicle budding, 

effects on vasopressin turnover.

LRP1 and Wnt Signaling
The low-density lipoprotein receptor-related protein 

1 (LRP1 or CD91) is a transmembrane protein belonging 
to the low-density lipoprotein receptor (LDL-R) family 
[78]. LRP1 binds and internalizes more than 40 unrelated 
ligands, such as the α2-macroglobulin-protease complex 
(α2M) and triglyceride-rich lipoproteins bearing apolipo-
protein E (apoE) [79]. In addition, the endocytosis and in-
tracellular trafficking of LRP1 plays a key role in regulat-
ing the cellular functions and activities of other receptors 
and plasma membrane proteins that interact with LRP1, 
such as platelet-derived growth factor receptor β, insulin 
receptor (IR), and insulin-like growth factor receptor-1 
(IGFR-1) [80]. Finally, LRP1 modulates Wnt signaling, 
which also impacts cholesterol and fatty acid metabolism 
[81-83].

More specifically with regards to its role within mus-
cle and fat tissue, LRP1 has multiple functions in regulat-
ing cholesterol and lipid metabolism. For example, LRP1 
participates in ApoE-mediated uptake of triglyceride-rich 
lipoprotein remnants such as chylomicrons and very 
low-density lipoproteins [84]. Insulin-induced LRP1 
translocation correlates with increased postprandial chy-
lomicron remnant uptake [85]. LRP1 also binds another 
apolipoprotein, ApoA-V, which is present both on lipo-
protein particles and also on intracellular lipid droplets; 
LRP1 thus acts to control adipocyte triglyceride metabo-
lism [86]. ApoA-V treatment of cultured adipocytes leads 
to decreased triglyceride uptake and may also contribute 
to increased lipolysis. Thus, the data suggest that regula-
tion of LRP1 within GSVs may have an important effect 
to control lipid homeostasis, and to coordinate this with 
glucose uptake.

VAMP and Membrane Fusion
Vesicle associated proteins (VAMPs) are the vesi-

cle (v-)SNARE proteins that mediate membrane fusion. 
VAMP2 and VAMP3 are concentrated in GSVs, and their 
cleavage by botulinum neurotoxin D caused impaired 
GLUT4 translocation [87,88]. These two VAMP isoforms 
may be present in different GLUT4 pools, as VAMP3 
containing GLUT4 vesicles had almost unnoticeable lev-
els of VAMP2 [87]. VAMP3 is important in constitutively 
recycling pathways and reduction of the protein does not 
interfere with insulin dependent translocation of VAMP2 
containing GLUT4 vesicles [89]. In muscle, VAMP3 is 
limited to endosomal pathways, while VAMP2 is simi-
larly present within insulin-responsive GLUT-4 vesicles 
[90].

Studies with VAMP3 null mice found that its function 
is not necessary for normal glucose metabolism, GLUT4 
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fects including impaired adipocyte differentiation, as well 
as impaired GSV biogenesis [99]. Retrograde trafficking 
of GSV cargoes is eventually coupled to their capture by 
golgins, particularly Golgin-160 and p115, which engage 
vesicles at the cis-side of the Golgi complex [100-102].

Broadly, insulin signaling pathways that coordinate 
GLUT4 regulation can be divided into those centered on 
the serine/threonine kinase Akt [103,104], the cytoskele-
tal factors such as Rho-family small GTPase Rac1, and 
wortmannin insensitive pathways including that involved 
in vesicle fusion at the plasma membrane [105] and 
that involving TC10α, PIST, and TUG [106,107]. Both 
the Akt and TC10α–PIST–TUG pathways impinge on 
GSVs, and the Akt pathway likely also directs GLUT4 
in endosomes to return to the plasma membrane during 
ongoing insulin exposure. The Rac1 pathway regulates 
actin remodeling at the cell cortex and facilitates GLUT4 
translocation during muscle contraction as well as after 
insulin stimulation [108,109]. Vesicle fusion at the plas-
ma membrane involves a VAMP2-SNAP23-Syntaxin-4 
SNARE complex, and is regulated by insulin-stimulated 

retention, insulin-stimulated release, cytoskeletal trans-
port, and vesicle targeting must all be highly coordinated.

Disruption of TUG-mediated GSV retention results 
in increased lysosomal degradation of GLUT4, as well 
as in its targeting to the plasma membrane, in cultured 
3T3-L1 adipocytes [44]. It is not clear whether this re-
sults from lysosomal targeting of GLUT4 present in 
endosomes, or whether the GSVs themselves may fuse 
with a lysosomal compartment when TUG-mediated re-
tention is disrupted. As noted above, the luminal Vps10p 
domain of sortilin binds the first luminal loop of Glut4. 
This may prevent endocytosed GLUT4 from entering 
lysosomes, because the cytoplasmic tail of sortilin then 
binds retromer to facilitate GLUT4 retrograde trafficking 
[98]. Of note, inhibition of retromer function decreases 
the stability of GLUT4 and blocks entry of endocytosed 
GLUT4 into the insulin-responsive GSV compartment. 
Some data support the idea that retromer subunits are 
translocated to the plasma membrane after insulin stimu-
lation, yet knockdown of the retromer protein, VPS35, as 
well as Sorting nexin-27 (SNX27), led to confounded ef-

Figure 1. GLUT4 trafficking pathways. After GLUT4 undergoes endocytosis from the plasma membrane (1), it un-
dergoes retrograde trafficking through recycling endosomes to donor membranes such as trans-Golgi network and the 
endoplasmic reticulum-Golgi intermediate compartment (ERGIC) (2). GLUT4 storage vesicles (GSVs) then bud from 
donor membranes (3) and are sequestered by TUG proteins in a static configuration (4). Insulin stimulates TUG cleav-
age subsequent loading of GSVs onto kinesin motors for transport to the cell surface (5). GSVs are tethered, docked, 
and fused with the plasma membrane (6) to insert GLUT4. During ongoing stimulation by insulin, GSV components 
may return to the plasma membrane directly from endosomes, thereby bypassing the GSV compartment. The origin of 
GSVs remain largely unknown or not fully described.
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TC10α to various downstream targets to translocate 
GLUT4 [106,118]. Upstream mediators in this signal-
ing pathway may include both positive and negative 
regulators, so that a feed-forward circuit may be formed 
and TC10α may be activated transiently, in response to 
fold-changes in insulin concentration [5,119]. Some of 
these mediators include CAP and Cbl, which in conjunc-
tion with TC10α contribute to actin remodeling dynamics 
in adipocytes [120]. In fact, TC10α has been shown to 
regulate both perinuclear and cortical actin, and it binds 
directly to COPI coat proteins through a dilysine motif to 
control actin polymerization on membrane transport ves-
icles [121]. TC10α signaling is coupled to TUG through 
its effector, PIST, which binds TUG directly and regulates 
its cleavage [70,102].

TUG AND INTRACELLULAR 
SEQUESTRATION OF GSVs

The TUG protein, encoded by the ASPSCR1 gene, 
was identified in a functional screen for proteins that 
modulate GLUT4 distribution [46]. Initial data showed 
that a truncated form of TUG caused a decrease in the 
size of the insulin-responsive pool of GLUT4; converse-
ly, overexpression of full-length TUG increased the size 
of the insulin-responsive pool in 3T3-L1 adipocytes. 
TUG binds specifically to GLUT4, but not GLUT1, and 
regulates the trafficking of GLUT4 but not endosomal 
proteins. Insulin stimulates the dissociation of intact TUG 
from GLUT4; this precedes GLUT4 translocation and 
the number of TUG-GLUT4 complexes that are disso-
ciated controls the magnitude of the initial translocation 
response. Based on these data, it was hypothesized that 
TUG binds an intracellular anchoring site and traps the 
GSVs at this location, and that insulin then releases this 
tether to mobilize the GSVs. TUG was named as a func-
tional “Tether, containing a ubiquitin like UBX domain, 
for GLUT4.”

Subsequent data confirmed and extended this model. 
RNAi-knockdown studies showed that TUG depletion 
mimics the effect of insulin stimulation, not only on 
GLUT4 translocation but on glucose uptake [44]. TUG 
depletion, like insulin stimulation, reduced GLUT4 pro-
tein stability; together these data implied that it acts at 
a major insulin-regulated step for GLUT4 translocation 
[44,122]. Other data used total internal reflection fluo-
rescence microscopy (TIRFM) to characterize the rate of 
vesicle exocytosis in basal and insulin-stimulated, control 
and TUG-depleted 3T3-L1 cells [17]. Similar increases in 
exocytosis rates were observed after TUG depletion and 
insulin stimulation; insulin had only a transient effect in 
the TUG-depleted cells. Importantly, the approach could 
distinguish GSVs from endosomes, based on vesicle size, 
and TUG regulated the exocytosis of GSVs. The data 

phosphorylation of the SNARE regulator Munc18c as 
well as by action of Munc13 and DOC2B [110].

Insulin action through the classical Akt pathway 
involves tyrosine phosphorylation of insulin receptor 
substrate proteins (e.g. IRS1), which recruit phosphatidy-
linositol-3-kinases (PI3K) to generate phosphatidylinosi-
tol 3,4,5-triphosphate at the inner leaflet of the plasma 
membrane. This recruits Akt, which is phosphorylated on 
Ser473 by mTORC2 and on Thr308 (Thr309 in Akt2) by 
phosphoinositide-dependent protein kinase 1 (PDPK1) 
[4,111]. The second of these is the main site required for 
GSV translocation, and activates Akt activity to phos-
phorylate AS160/Tbc1D4, a Rab GTPase Activating 
Protein (GAP) that controls vesicle trafficking. As noted 
above, AS160 binds IRAP and is likely present on GSVs 
[47,48]. Insulin action through both AS160/Tbc1D4 and 
the related Tbc1D1 protein has recently been reviewed 
[32,112]. Phosphorylation inactivates the GAP activity of 
these proteins, and so activates downstream Rab proteins. 
In particular, this is thought to activate Rab10 on GSVs 
in adipocytes and Rab8A, which may act similarly, in 
muscle cells [32,113].

Data support the idea that GSVs fuse directly with 
the plasma membrane, and that these vesicles carry 
Rab10 [17, 18]. Previous literature showed that insulin 
stimulates the release of GLUT4 from storage compart-
ments into the endosomal recycling system, but this does 
not imply that the GSVs fuse directly with recycling en-
dosomes [10]. The more recent data indicate that entry of 
released GSV cargoes into the endosomal system likely 
follows indirectly, from endocytosis at the plasma mem-
brane, rather than as a direct result of GSV fusion [17,18]. 
A related question is where the effectors for activated 
Rab10 or Rab8A are localized, since that may identify a 
target membrane with which GSVs fuse. A downstream 
target of Rab10 is Sec16A [114]. Sec16 proteins are 
described to act as scaffolds for the budding of COPII 
vesicles at ER exit sites, however the function of Sec16A 
in GLUT4 trafficking appears to be independent of this 
function. Its localization is not well defined, and it is not 
clear if it identifies a target membrane for GSV fusion. 
Another Rab10 effector is the myristoylated alanine-rich 
C-kinase substrate (MARCKS), which is present on the 
plasma membrane [115]. This pathway mediates the in-
sertion of membrane at the cell surface to promote axon 
development, but it is not clear if MARCKS functions 
in GSV trafficking. Finally, Rab10 has been suggested to 
play a role in fusion of lysosomes with the plasma mem-
brane [116], and Rab8A is thought to function through 
myosin-Va in muscle cells to promote GLUT4 vesicle 
exocytosis [117]. Further studies will be required to un-
derstand how these mechanisms may function together in 
GSV regulation.

Insulin also signals through the Rho family GTPase 
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the assembly of a protein complex in which TUG is able 
to be cleaved. In addition, the NAD+-dependent deacety-
lase SIRT2 binds and selectively deacetylates TUG and 
modulates insulin-stimulated TUG cleavage and glucose 
clearance in vivo. It remains uncertain whether the GSVs 
are maintained in an entirely static configuration, or if 
they cycle into and out of Golgi/ERGIC membranes. As 
well, some data suggest that TUG may be modified by 
fatty acylation, as well as by acetylation (unpublished); 
this can also be controlled by SIRT2 [124], and it may 
link the TUG C-terminus to particular Golgi/ERGIC 
membrane domains. Action of SIRT2 may shed light how 
cytosolic reduction-oxidation status may be linked to in-
sulin action and control insulin sensitivity.

TUGUL AND TRANSLOCATION OF GSVs

How is cleavage of TUG linked to translocation of 
GSVs to the plasma membrane? Early work had shown 
that GLUT4 translocation requires microtubules and sug-
gested that active transport of GSVs on microtubules by 
kinesin motor proteins may be involved in this process 
[125]. These results fit with the idea that GSVs are lo-
cated in a perinuclear region, some distance away from 
the plasma membrane. An intriguing hypothesis was that 
TUG cleavage might both liberate the GSVs from their 
site of sequestration and also activate microtubule-based 
transport machinery to carry these vesicles toward the 
cell surface.

The 18 kDa N-terminal TUG cleavage product 
contains tandem ubiquitin-like domains and ends in a 
diglycine motif (residues 163-164), which is typical of 
ubiquitin-like protein modifiers [102]. Such proteins are 
covalently attached to target substrates; data showed that 
the TUG N-terminal cleavage product functions in this 
manner and it was named TUGUL, for “TUG Ubiqui-
tin-Like.” TUGUL modifies ubiquitin itself in transfected 
cells, but this is likely the result of overexpression of 
mature TUGUL and not the physiologic substrate. In 
cultured 3T3-L1 adipocytes, an antibody to the TUG 
N-terminus detects not only intact, 60 kDa TUG, but also 
an additional ~130 kDa protein. If TUGUL contributes 18 
kDa of this mass, then the physiologic target substrate is 
predicted to have a relative mass of ~110 kDa. Of note, 
this 130 kDa TUGUL-modified (“tugulated”) protein 
cofractionates with GSVs and the plasma membrane, im-
plying that it may have a role in GSV trafficking.

Recent data show that the 110 kDa kinesin motor, 
KIF5B, is the major TUGUL-modified protein in 3T3-L1 
adipocytes. KIF5B had previously been shown to carry 
GLUT4 from the perinuclear region to the cell surface 
after insulin stimulation [126]. Adipose-specific deletion 
of KIF5B resulted in glucose intolerance and insulin 
resistance in mice, supporting the physiological signifi-

also showed that immediately after insulin addition, exo-
cytosis of GSVs was increased, but after more prolonged 
insulin exposure, GSV cargoes recycled to the plasma 
membrane from endosomes. Thus, insulin causes a 
switch in the exocytic circuit, possibly by acting through 
AS160 on Rab14 [18]. Finally, data showed that TUG is 
localized at the ERGIC. Together with evidence that the 
GSVs fuse directly at the plasma membrane [17], this 
suggested that these vesicles follow an unconventional, 
Golgi-bypass pathway for exocytic translocation [4].

A critical insight to understand how TUG regulates 
GLUT4 was the demonstration that TUG is cleaved in a 
site-specific manner at the peptide bond connecting res-
idues 164 and 165, out of 550 total residues in the intact 
protein [102]. This reaction creates an 18 kDa N-terminal 
cleavage product and a 42 kDa C-terminal cleavage prod-
uct. Cleavage separates an N-terminal region of TUG that 
binds GLUT4 from a C-terminal region that binds Golgi/
ERGIC-associated proteins, which shows how cleavage 
can release GSVs that are trapped at the Golgi/ERGIC. 
The production of cleavage products was dramatically 
increased after insulin stimulation [5,102]. Importantly, 
a cleavage-resistant form of TUG was unable to rescue 
highly insulin-responsive GLUT4 translocation and 
glucose uptake in TUG-depleted 3T3-L1 adipocytes 
[4]. Together, the data showed that TUG cleavage is a 
critical mechanism by which insulin regulates GSV 
translocation, and that understanding this biology would 
be important for elucidating these organelles and their 
physiologic role.

TUG cleavage is controlled by insulin signaling 
through TC10α and its effector PIST, which binds direct-
ly to TUG [5,102,106,107]. RNAi-mediated depletion of 
TC10α blocked insulin-stimulated GLUT4 translocation 
and glucose uptake [106], as well as the production of 
TUG cleavage products [102]. Remarkably, an unsta-
ble fragment of TUG (“UBX-Cter,” residues 377-550) 
recruits PIST for degradation and results in constitutive 
cleavage of intact TUG in unstimulated cells [70]. These 
results indicate that PIST normally inhibits TUG cleav-
age; when loaded with GTP, after insulin stimulation, 
TC10α removes this inhibition to promote TUG cleavage 
and GSV mobilization.

The ability of TUG to trap GSVs in an insulin-re-
sponsive configuration near Golgi/ERGIC compartments 
is regulated by acetylation of TUG on lysine residues 
near its C-terminus [123]. Acetylation modulates the 
interaction of TUG with Golgin-160 (a cis-Golgi matrix 
protein) and ACBD3 (acyl-CoA binding domain contain-
ing 3), which maintain TUG-bound GSVs in a primed 
pool ready for insulin-stimulated translocation [123]. 
Mutation of the acetylated residues caused impairment of 
GLUT trafficking and blocked TUG cleavage in 3T3-L1 
adipocytes, suggesting that these residues are critical for 
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tured 3T3-L1 adipocytes and is also sufficient for TUG 
cleavage and GLUT4 translocation in transfected cells. 
Usp25m binds to both TUG and GLUT4 and dissociates 
from these proteins after insulin stimulation. Together, 
these studies show that the TUGUL-mediated associa-
tion of GSVs and KIF5B couples release of the GSVs to 
activation of transport machinery to carry these vesicles 
to the cell surface (Figure 2). Precisely how an insulin 
signal activates Usp25m activity toward TUG is not 
known, but presumably this process involves activation 
of TC10α and release of PIST-mediated inhibition. A full 
understanding of this process will require further work.

PHYSIOLOGICAL IMPLICATIONS OF GSV 
TRAFFICKING

cance of this protein [127]. In 3T3-L1 adipocytes, insulin 
activates the KIF5B-dependent movement of GLUT4 in 
a manner that is insensitive to wortmannin, an inhibitor of 
insulin signaling through PI3K–Akt [126]. Because TUG 
cleavage is also stimulated by insulin in a PI3K-indepen-
dent manner, KIF5B was considered likely to be the main 
TUGUL-modified protein [128]. Both biochemical and 
RNAi-mediated depletion experiments confirm this hy-
pothesis, and further show that TUG cleavage is required 
to load GLUT4 onto KIF5B motors in response to insulin 
stimulation.

Results further show that a splice form of the Usp25 
protease, Usp25m, is expressed in adipose as well as 
in muscle cells and is the TUG protease [128]. Specif-
ically, Usp25m is both necessary for insulin-stimulated 
TUG cleavage and translocation of GSV cargoes in cul-

Figure 2. A model for how insulin-stimulated cleavage of TUG and subsequent trafficking of GSVs coordi-
nately regulates multiple physiologic effects. Insulin signals through at least two pathways. Upstream components 
in the TC10α pathway remain incompletely understood and are shown in gray. Signaling through TC10α removes an 
inhibitory effect of PIST to trigger Usp25m-mediated TUG proteolysis. Cleavage releases GSVs from an anchoring 
site comprising Golgin-160 and ACBD3. Acetylation of TUG mediates its binding to this site and controls the size of 
a GSV pool and, thus, insulin sensitivity. After cleavage, the TUG N-terminal product (TUGUL) modifies the kinesin 
motor protein KIF5B and translocates with the GSV to the cell surface. The GSV cargos are inserted into the T-tubule 
membrane in muscle tissue and the plasma membrane in adipose tissue. The GSV cargos mediate glucose uptake 
(GLUT4), vasopressin inactivation (IRAP), and possibly effects on lipids (LRP1, sortilin).
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both increased plasma membrane abundance during 
the basal state as well as decreased plasma membrane 
abundance in stimulated states [68]. Thus, the increased 
copeptin observed in insulin resistant individuals may 
reflect, at least in part, increased degradation of vasopres-
sin by surface-exposed IRAP. One study demonstrating 
the potential importance of understanding integrated 
GSV organelle physiology tested the association between 
vasopressin pathway single nucleotide polymorphisms 
(SNPs) and outcomes in patients with septic shock [144]. 
These investigators found that a particular variant in the 
IRAP gene was associated with dramatically increased 
mortality rate, 51.0%, vs 34.5% in control patients, as 
well as with effects on vasopressin clearance and serum 
sodium concentrations. Together, the data imply that un-
derstanding these coordinately regulated physiologic pro-
cesses may yield significant translational medical value.

Another example of how regulation of GSVs can 
have physiological implications is the role of the energy 
sensor AMPK (5’ adenosine monophosphate-activated 
protein kinase). AMPK is activated in low energy states 
by sensing the ratio of AMP and ADP to ATP [145]. 
AMPK is implicated in skeletal muscle glucose transport 
in response to exercise and can therefore link physical 
activity to GSV translocation [146]. For example, AMPK 
is required for insulin-independent GLUT4 translocation 
during states of energy stress, such as cardiac ischemia or 
skeletal muscle contraction [147,148]. AMPK activation 
also enhances the sensitivity of muscle cells to insulin-de-
pendent GLUT4 translocation and glucose uptake and 
may mediate the enhanced insulin sensitivity that occurs 
after exercise [149,150]. Finally, recent results show that 
TUG is cleaved after cardiac ischemia, in an AMPK-de-
pendent manner, which at least partly explains increased 
GLUT4 and other GSV cargos at the plasma membrane 
after reperfusion [151]. Together, these effects suggest 
that understanding how AMPK regulates GSV transloca-
tion could be important in diabetes, cardiac ischemia, and 
other disease states.

The concept that GSVs serve as a novel organelle 
that integrates the physiological activities of multiple 
cargo proteins has significant implications for physiolo-
gy and pathophysiology. GLUT4 regulation is impaired 
in states of insulin resistance, which contributes to the 
pathogenesis of diabetes [129]. Altered GSV trafficking 
may be causally linked to this pathophysiology in hu-
mans, because a mutation found in Greenlandic individ-
uals that causes a premature stop codon in AS160 leads 
to post-prandial hyperglycemia and increased incidence 
of diabetes [130]. The more common type 2 diabetes is 
remarkably prevalent and affects 9 percent of the popu-
lation in the United States [131]. Diabetes is associated 
with a wide array of comorbidities including peripheral 
neuropathy, retinopathy, vasculopathy, and kidney fail-
ure and it is now the leading cause of blindness and end 
stage renal disease in working age adults [129]. Diabetes 
is also often associated with hypertension, dyslipidemia, 
and obesity in a constellation known as the metabolic 
syndrome. Investigation of the pathogenesis underlying 
insulin resistance in diabetes is one of the reasons that 
GSVs were discovered.

The colocalization of multiple additional proteins 
within GSVs, however, suggests that defective GSV 
translocation may have additional physiologic effects 
beyond glucose intolerance.

For example, since TUG cleavage integrates trans-
location of both GLUT4 and IRAP, dysregulation of 
GSVs may account for the association between insulin 
resistance and hypertension within the metabolic syn-
drome [59,132]. Furthermore, since GSVs also contain 
LRP1, which binds to apolipoproteins such as ApoE and 
ApoA-V; thus, it is possible that dysregulation of GSVs 
also contributes to altered lipid metabolism [45]. Under-
standing these interactions may help to explain otherwise 
mysterious associations, such as why the vasopressin by-
product copeptin is correlated with insulin resistance in 
muscle in type 2 diabetes, obesity, and polycystic ovary 
syndrome [133-143]. Importantly, the impaired regula-
tion of GSV proteins in these resistant states can reflect 

Table 1. Regulated Non-secretory Exocytic Translocation of Membrane Proteins

Protein Localization Function Signal Reference
AMPA Receptor Neurons Neurotransmission Calcium / CaMKII [154]
Aquaporin – 2 Kidney Tubules Water transport Vasopressin [155]
Beta-1-Integrin Diverse Cell Migration Rab1 [156]
CFTR Lung Epithelia Chloride transport Unknown [159,160]
GLUT4 Adipose / Muscle Glucose uptake Insulin [4,5]
H/K Pump Stomach Acidification Histamine [95]
H+ Pump Kidney Tubules Acid/Base Balance Vasopressin [157]
Integrin-alpha Drosophila Epithelial Remodeling dGRASP [158]
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GLUT4 is retained by an intracellular cycle of vesi-
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Cell. 2004;15(2):870-82. Epub 2003/11/05 https://doi.
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17. Xu Y, Rubin BR, Orme CM, Karpikov A, Yu C, Bogan 

CONCLUSIONS AND OUTLOOK

Small Regulated Vesicles in Other Cell Types
It seems likely that GSV-like vesicles are present in 

other differentiated cell types, where they may regulate 
the cell surface expression of a wide range of physiolog-
ically important membrane proteins. Possibly, this path-
way is a cell type-specific adaptation of a more basic cel-
lular pathway. TUG is expressed ubiquitously, although 
its cleavage is differentiation-dependent. What purpose 
does intact TUG serve in fibroblasts? Present data imply 
that it functions in assembly of the Golgi complex, likely 
in part by controlling the activity of p97/VCP ATPases 
[152]. Other data show that, in adipocytes, TUG disrup-
tion alters the targeting of the SNARE protein, Syntaxin-6 
(Stx6) [102]. Stx6 regulates the retrograde trafficking of 
GLUT4 from endosomes back into GSVs [153]. Yet, 
Stx6 is also present in a wide range of cell types; thus, 
we hypothesize that TUG regulates Stx6 function at the 
Golgi/ERGIC, and this pathway is adapted in a differen-
tiation-dependent manner to control GSVs or GSV-like 
vesicles. Examples of proteins that may participate in 
such a pathway for regulated non-secretory translocation 
have been suggested previously [3], and are also listed in 
Table 1 [95,154-158]. Not all of these processes need in-
volve TUG cleavage. For example, data suggest that the 
cystic fibrosis transconductance regulator, CFTR, may 
participate in a similar trafficking pathway, although not 
involving TUG cleavage [159,160]. Other potential car-
goes in other cell types may also participate in a similar 
pathway for unconventional, signal-mediated secretion, 
subject to various upstream regulatory mechanisms. If 
so, then GSVs may represent the first example of a class 
of small organelles, in various tissues, that are yet to be 
characterized and that may have important roles in phys-
iology and disease.
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