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A 3D treatment-planning system (TPS) for stereotactic intensity-modulated radio-

therapy (IMRT) using a micro-multileaf collimator has been made available by

Radionics. In this work, we report our comprehensive quality assurance (QA) pro-

cedure for commissioning this TPS. First, the accuracy of stereotaxy established

with a body frame was checked to ensure accurate determination of a target posi-

tion within the planning system. Second, the CT-to-electron density conversion

curve used in the TPS was fitted to our site-specific measurement data to ensure

the accuracy of dose calculation and measurement verification in a QA phantom.

Using the QA phantom, the radiological path lengths were verified against known

geometrical depths to ensure the accuracy of the ray-tracing algorithm. We also

checked inter- and intraleaf leakage/transmission for adequate jaw settings. Mea-

surements for dose verification were performed in various head/neck and prostate

IMRT treatment plans using the patient-specific optimized fluence maps. Both ion

chamber and film were used for point dose and isodose distribution verifications.

To ensure that adjacent organs at risk receive dose within the expectation, we used

the Monte Carlo method to calculate dose distributions and dose-volume histo-

grams (DVHs) for these organs at risk. The dosimetric accuracy satisfied the

published acceptability criteria. The Monte Carlo calculations confirmed the mea-

sured dose distributions for target volumes. For organs located on the beam boundary

or outside the beam, some differences in the DVHs were noticed. However, the

plans calculated by both methods met our clinical criteria. We conclude that the

accuracy of the XKnifeTM RT2 treatment-planning system is adequate for the clinical

implementation of stereotactic IMRT.

PACS numbers: 87.53.Xd, 87.53.Ly, 87.53.Wz

Key words: stereotactic IMRT, Monte Carlo, treatment-planning system

I. INTRODUCTION

The success of stereotactic radiosurgery in treating both benign and malignant tumors within

the cranial region has logically led to attempts to mimic these treatments in extracranial re-

gions. Stereotactic irradiation of extracranial targets has thus emerged as a new concept of

treatment in clinical radiotherapy.(1–4) As a response to these attempts, a commercial treatment-

planning system (TPS), XKnifeTM RT2 (Radionics Inc., Burlington, MA), for stereotactic

extracranial radiotherapy and intensity-modulated radiotherapy (IMRT) has become available.

It is anticipated that the development and accurate commissioning of such systems for clinical

implementation will ensure the widespread use of stereotactic extracranial conformal and IMRT

and facilitate dose hypofractionation/escalation for some diseases.(5–8)
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Stereotactic irradiation of extracranial targets follows the general principles common to

standard radiotherapy, but relies on stereotaxy for target localization and dose delivery, and

generally requires more stringent accuracy criteria.(9) The stereotaxy is established by using a

stereotactic body frame (SBF) combined with a reliable immobilization system. The SBF can

facilitate accurate patient positioning(2,10,11) as well as precise targeting of tumors based on

assigned Cartesian coordinates throughout the body. With this technique, the isocenter of a

target is identified based on the coordinates rather than the patient’s skin and bony landmarks.

Appropriate implementation or use of this technique may result in a significant change in

treatment routine compared to conventional therapy, and the technique may well facilitate CT-

based image-guided radiotherapy.

As the target localization accuracy is improved, the demand for treatment planning accu-

racy of a TPS for stereotactic radiotherapy is also increased. Unlike TPSs for non-stereotactic

radiotherapy, the accuracy of a stereotactic treatment-planning system has two components:

the accuracy of stereotaxy and the accuracy of dose calculation. The first one ensures that a

Cartesian coordinate system associated with a SBF is well established within the TPS for accu-

rate determination of a target position. Both target positional accuracy and dose calculation

accuracy affect dose delivery accuracy to a defined target. Therefore, commissioning a stereo-

tactic TPS should include these two components.

The XKnifeTM RT2 system is designed for both intracranial and extracranial conformal and

IMRT treatment planning. Although XKnifeTM RT2 has evolved from the XKnifeTM system,

which was designed only for stereotactic intracranial conformal radiotherapy planning and has

been well accepted and in use for more than a decade, the extended application to extracranial

targets makes XKnifeTM RT2 different from its predecessor in the following ways: new types

of fixation systems are used, and a treatment/simulation couch must be considered. In addition,

IMRT adds treatment planning complexity, especially when the main application of XKnifeTM

RT2 has been used with a detachable micro-multileaf collimator (Radionics Inc., Burlington,

MA) on either Siemens (Siemens Medical Solutions, Concord, CA) or Varian linear accelera-

tors (Varian Medical Systems, Inc., Milpitas, CA), whose connectivity and compatibility with

the LINAC have to be rigorously ensured. In this work, we report our comprehensive proce-

dures to commission this system for our clinical implementation of stereotactic IMRT for

extracranial radiotherapy.

II. MATERIALS AND METHODS

A. The accuracy of stereotaxy
Stereotaxy refers to a 3D superposition of a fixed coordinate system upon a given structure

(e.g., human head or body). Stereotaxy is commonly achieved with special mechanical frames,

such as the SBF for extracranial applications. The frame can be rigidly attached to a baseboard

to which an immobilization device is also affixed while the patient is positioned in the immo-

bilization device for CT scanning. The accuracy of stereotaxy refers to the accuracy of the

coordinate system in relation to the treatment geometry in the stereotactic planning system.

One must distinguish this from the setup accuracy of a patient within the stereotactic frame

because the latter refers to the reproducibility of the patient geometry in the frame. The setup

accuracy of the SBF and a head/neck frame (Radionics Inc., Burlington, MA) has already been

reported in the literature(11,12) and will not be discussed here.

We used a phantom supplied by Radionics for the purpose of evaluating the accuracy of

stereotaxy of the TPS. The phantom, shown in Fig. 1(a), is a plastic globe with a removable top

and precisely located structures (cone, cylinder, sphere, and cube) at known positions within

the phantom. The exact stereotactic coordinates for the top center of each object are known

(provided by Radionics); thus we can compare them with the calculated coordinates from the
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planning system. Three CT scans of the phantom were acquired on a Picker PQ 5000 CT

scanner (Philips Medical Systems, Cleveland, OH) with 2-mm slice spacing, a field of view of

480 mm, and with a matrix size of 512 × 512 (pixel size 0.94 mm). The phantom was attached

to a plastic plate that has three sets of bins and can hold the phantom in three reproducible

positions (upper, middle, and lower) (see Fig. 1(b)). The plastic plate was latched onto the

baseboard within the SBF while the SBF was attached to the baseboard.

Fig. 1. (a) The phantom used for the verification of the accuracy of stereotactic coordinate system for XKnifeTM RT2. The
phantom contains four geometric structures (cone, cylinder, sphere, and cube), each located at fixed positions within the
phantom. (b) Setup for phantom scanning in a stereotactic body frame. The phantom is attached to a plastic plate that has
three holes (upper, middle, and lower) for holding the phantom in three reproducible positions.

After scanning, the CT images were transferred to the XKnifeTM RT2 system through DICOM

transfer. We contoured each of the four objects and used the Autocenter function to position the

isocenter to each of the structures. Then, by moving the isocenter superiorly until it reached the

top of each structure, we determined the coordinates of the top centers of these objects. The

coordinates determined on the TPS were compared with the vendor-provided values.

B. Quality assurance of CT-to-electron density conversion
Although corrections for beam hardening and scattering have been implemented in currently

available CT scanners, systematic differences exist between a real CT image and an ideal,

artifact-free and monochromatic image. Therefore, a well-designed TPS should allow the user

to input the site-specific CT data measured in a phantom embedded with different materials.

The corresponding ranges of electron density (  /cm3) relative to water and the CT numbers of

these materials were experimentally determined previously.(13) The XKnifeTM RT2 system al-

lows site-specific CT data to be measured for a phantom with various known electron density

materials embedded. In XKnifeTM RT2, the conversion of the CT number to electron density is

calculated by two linear equations, represented by four fitting parameters:

j(x) = f
0
 + f

1
 × CT, where CT <1000;

k(x) = f
2
 + f

3
 × CT, where CT >1000;

One curve (fitted by two parameters) is for CT numbers <1000; the other is for CT numbers

>1000. Based on our site-specific CT data for a phantom consisting of different materials with

known electron densities, the fitted curves are discontinuous at a CT number of 1000. This will

result in an inconsistency in the electron density values for the material with a CT number

equal to 1000, depending on which curve is used. In addition, the fitting curve above the CT

number of 1000 does not reproduce the correct conversion value for a polymethylmethacrylate

(a) (b)
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(PMMA) or acrylic phantom used for IMRT QA. In a separate study,(14) we demonstrated that

whether using the site-specific CT-to-electron density conversion curve or a fit for a general-

ized CT scanner, the patient dose distribution does not alter significantly (<2%). In contrast,

for IMRT planning and QA, ensuring the accuracy of CT-to-electron density conversion for the

QA phantom is important, since the whole phantom is made of PMMA or acrylic, with dimen-

sions of approximately 30 cm wide, 20 cm high, and 20 cm long, and a small variation in

electron density can introduce a significant change in the equivalent path length calculated for

large depths. Therefore, we have readjusted the fitting parameters to ensure the continuity and

uniqueness of the conversion curve, as well as the conversion accuracy for the PMMA phan-

tom. For the acrylic phantom, relative electron density is a factor 1.14 larger than that of water.

This factor is smaller than the relative physical density of 1.17. Since it is the electron density

that determines radiological path length, this parameter should be correctly reflected in the CT-

to-electron density conversion. Since the most probable CT number for our PMMA phantom is

1200, this CT number has been assigned to have a relative electron density of 1.14. The fitting

parameters were adjusted accordingly based on this data point.

C. Quality assurance of leaf transmission and interleaf leakage of the micro-
multileaf collimator
One of the advantages of XKnifeTM RT2 is that it can perform treatment planning for intensity

modulation based not only on commonly available multileaf collimators (MLCs) (e.g., Si-

emens MLC and Varian Millennium 120 MLC), but also by modeling a micro-MLC (mMLC)

(Radionics Inc., Burlington, MA) with a leaf width of 4.0 mm at the isocenter. Our commis-

sioning has been for this detachable mMLC on a Siemens Primart machine. When IMRT plans

are delivered by the mMLC, there are two options for setting up the Siemens jaws: one is

BestAll, and the other is Fixed. As shown in Fig. 2, the BestAll option sets the Siemens jaws to

encompass each of the mMLC fields (per gantry angle), while the Fixed option sets a fixed jaw

position (e.g., 10 × 10 cm2) for all the mMLC fields. It is obvious that from the radiation

leakage point of view, the BestAll option is superior. On the other hand, the Fixed option may

present technical simplicity for treatment delivery when the leaf leakage is negligible.

Fig. 2. LINAC jaw settings when the attached mMLC is used for IMRT delivery. Figure 2(a) shows the BestAll option,
which sets the LINAC jaws to encompass each of the mMLC fields (per gantry angle). Figure 2(b) shows the Fixed
option, which sets a fixed jaw position (e.g., 10 × 10 cm2) for all the mMLC fields (per gantry angle).

(a) (b)

To ensure that the leaf leakage is acceptable, we measured the mMLC transmission and

interleaf leakage by ion chamber and film. The chamber measurements were performed at the

calibration conditions (source-to-surface (SSD) =100 cm, field size 10 × 10 cm2 at d
max

) for
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both open and closed mMLC exposure. The chamber orientation was perpendicular to the leaf

motion direction and was about 2 cm away from the central line of leaf closure. The film

measurement was scanned by film dosimetry software (RIT113 V4) to measure the inter- and

intraleaf leakage.

D. Quality assurance of dose calculation by measurements
Before conducting any clinical measurements, we checked the dose calculation algorithm, in

particular, the ray-tracing algorithm in the planning mode. Since XKnifeTM RT2 is based on

XKnifeTM, which was designed for stereotactic intracranial treatment planning, it is important

to verify that the ray-tracing algorithm has been correctly modified to deal with the CT couch,

a device that will not appear in the intracranial situation but will be involved in the CT scans

for extracranial applications. We scanned our QA phantom made of PMMA and checked the

radiological path lengths for beams that pass through the couch. Based on the known geometri-

cal depths and the electron density of the phantom, we could check the accuracy of the ray-tracing

algorithm when a CT couch is involved. Our work revealed a limitation of the previous version

of the TPS, which incorrectly accounts for the CT couch in the dose calculation. Thus, we

notified the vendor and had this error corrected in the new release. The results reported here

were all based on the new version (XKnifeTM RT v.2.1.2) using fixed jaw options.

Film measurements were performed to ensure that the measured fluence maps agreed with

the planned maps. We then conducted chamber measurements in the QA phantom for 10 test

cases to verify point doses. These 10 cases included IMRT plans for prostate cancer, lung

tumor, brain tumor, and head and neck tumor. Treatment planning included both coplanar and

noncoplanar beam arrangements. Isodose distributions were measured using the Kodak EDR

film. The exposed film was scanned into the RIT film dosimetry system (Radiological Imaging

Technology Inc., Colorado Springs, CO, v.4). The XKnifeTM RT2 calculated isodose distribu-

tions were also imported to the RIT system. Comparisons between the calculated and the

measured dose distributions were made within the RIT system.

E. Quality assurance of DVHs by the Monte Carlo method
In XKnifeTM RT2, a measurement-based pencil beam algorithm is used(15) for forward dose

calculation, and a fast tissue maximum ratio (TMR) method is used for inverse optimization

dose calculation. The pencil beam kernel includes primary and limited scatter dose with a

predefined Gaussian spread. The limitation of not separating the scatter from the primary dose

should not cause significant problems in a homogeneous medium. However, the limitation that

only the fast TMR method can be used for IMRT planning could be a problem for modulated

fields if neighboring beam elements are taken into account in an approximate manner during

implementation using the Monte Carlo kernels. In addition, the inhomogeneity correction in

XKnifeTM RT2 is based on equivalent path length calculations along the primary beam direc-

tion. To test the degree of the inaccuracy due to these approximations, we used the Monte

Carlo method in our comprehensive commissioning process. We have developed several EGS4-

based user codes in our group for both beam simulation and dose calculation for direct in-patient

Monte Carlo dose calculation.(16,17) These source codes were all validated by measurements.(18,19)

In the Monte Carlo dose calculation, the average leakage resulting from intra- and interleaf

leakages is considered. The tongue-and-groove effect is not included. However, Deng et al.(20)

demonstrated this effect to be small (<1.6%).

One limitation with the current version of XKnifeTM RT2 is that it does not allow for RTOG

Export/Import. Therefore, the contours of tumor target and organs at risk cannot be used di-

rectly in our Monte Carlo dose calculation. To get around this limitation, contours were drawn

by a physician on the AcQsim (Philips Medical Systems, Cleveland, OH) treatment-planning
system instead of on XKnifeTM RT2. The same contours were then exported to the Monte

Carlo dose calculation program and to XKnifeTM RT2, for which a small program was written

to compile the contour files with the format that XKnifeTM RT2 accepts.
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We performed the Monte Carlo dose calculation for nine prostate IMRT plans using the

patient-specific CT data, the same beam configurations, and the same intensity maps generated

in XKnifeTM RT2. Based on the patient-specific CT data, one can define the computational

geometry and electron density information. The intensity maps were built based on the leaf

sequence files generated by XKnifeTM RT2. The effects of photon scattering and leakage were

considered in this process. The photon beam was represented using a three-source model, and

it was commissioned using a standard set of measured data.

Monte Carlo dose calculations for these IMRT plans were compared with those generated

by XKnifeTM RT2. We specifically compared D
95

 and D
05

 for the target (the doses received by

the 95% and 5% of the target volume). We also compared V
40

 and V
65

 for the rectum and

bladder to determine whether there are significant differences in the beam penumbra regions

that will affect the doses to critical structures.

III. RESULTS

A. The accuracy of stereotaxy
The coordinates of the top centers of each of the four objects determined by the TPS (XKnifeTM

RT2) are shown in the Table 1. The known phantom specifications are also listed in the table.

The differences between the two are presented in the last three columns. The study was per-

formed at three different locations, and the table includes data comparisons for the three positions.

The average differences and standard deviations of the differences, which reflect the error bars

in determining these coordinates, were derived by summing all the differences in the last three

columns. It is found that the accuracy of the stereotaxy as determined by the treatment-plan-

ning system is 0.63±0.5 mm, 0.57±0.28 mm, and 0.58±0.46 mm in A-P, lateral, and vertical

directions, respectively, when using a slice thickness of 2 mm. An increase in slice thickness

may affect the accuracy in the inferior-superior (vertical) direction.
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Table 1. Comparison of coordinates of the top centers of each object determined in the TPS with the known
specification at three different positions

Position 1

Position 2

Position 3

B. CT-to-electron density conversion
Figure 3 compares the fitted CT-to-electron density curve and that adjusted using the relative

electron density of the PMMA phantom. Although the second curve deviates from the first one,

the effect on patient dose calculation is negligible.(14) Nevertheless, the accuracy of dose calcu-

lation in the PMMA phantom (our QA phantom) and the agreement with the measured dose

were greatly improved, depending on the depth used. For example, for a geometrical depth of

10 cm, the correct radiological path length in acrylic phantom should be about 11.3 cm, or

about 1 cm larger than that calculated using the direct fitting curve (which gives a CT-to-

electron density ratio of 1.096). For a 6-MV photon beam, a difference of 1 cm results in a

difference in the depth dose of approximately 3% to 4%.
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Fig. 3. The directly fitted CT-to-electron density conversion curve using the site-specific CT scanning data for a density
phantom (red line). The curve was modified to ensure the CT-to-electron density conversion accuracy for the PMMA
phantom.

C. Transmission and interleaf leakage
Figure 4(a) shows the image of the film exposed to 1000 MU when all the leaves were closed.

Figures 4(b) and 4(c) show the transmission profiles along the two major directions: one is

perpendicular to the leaf motion (along the green line in Fig. 4(a)), and the other is parallel to

the leaf motion (along the red line). Figure 4(b) shows that the intraleaf leakage is about 14

cGy for a 1000 cGy delivery, and the interleaf leakage is about 8.5 cGy for 1000 cGy. There-

fore, the intraleaf leakage is about 1.4%, while the transmission under the leaf is about 0.85%.

The average transmission measured by a Farmer chamber of 2.7 cm length and 0.6 cm in

diameter is 0.89%. The transmission at the position where the two banks of leaves meet (or

intrabank leakage) is 1.5% (see Fig. 4(c)).

Fig. 4(a) The image of film exposed to 1000 MU when all the mMLC leaves were closed; (b) the transmission profile
along the green line, which is perpendicular to the leaf motion; (c) the transmission profile along the red line, which is
parallel to the leaf motion.
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D. Quality assurance of dose calculation by measurements

D.1 Output factor

Because of the low transmission of the mMLC, we decided to use the Fixed option for its

technical simplicity. The dose algorithm implemented in XKnifeTM RT2 only accounts for the

effective field size created by the beam segment formed by the mMLC. Thus, the unaccounted

for increase in output due to the wider fixed jaws could result in a higher measured dose com-

pared to the calculation. To overcome this problem, we used a scaling factor to apply to the

output factor to reduce the monitor units (and dose) for the fixed open jaws. Table 2 shows the

comparison between the calculated and the measured doses for 10 IMRT plans using a scaling

factor of 1.04 (e.g., increase the output factor by 4% in order to reduce the MUs by approxi-

mately 4%). The average difference for all 10 cases is +0.4%. This implies that, in general, this

scaling factor has always made the measured dose equal to the calculated dose.

Table 2. Comparison of isocenter doses between the calculated and the measured doses for 10 IMRT plans

a Prostate patient. Isodose distributions are shown in this paper.
b Brain tumor patient. Isodose distributions are shown here.
c Head/neck tumor patient. Noncoplanar beams were used, and isodose distributions are shown here.

D.2 Fluence map

The calculated intensity maps were checked against the measured fluence maps for a head/

neck patient. Such comparisons are used mainly to check the geometrical accuracy of the mMLC

leaf movement. The intensity map does not include the effect of the extended source and leak-

age and scatter from the mMLC leaves. Figure 5 shows both images to demonstrate the

agreement.

Fig. 5. Comparison of a calculated intensity map (right) with the measured fluence map (left) for a head/neck patient. Note
that high intensity (lighter pixels in the intensity map) corresponds to darker exposure on the film.
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D.3 Isodose distributions

Film measurement was performed for several IMRT plans. Here, we show distribution com-

parisons for three cases: (1) a prostate patient using six coplanar beams; (2) a brain tumor

patient using five coplanar beams; and (3) a head/neck tumor patient with five noncoplanar

beams. In Figs. 6 to 8, the measured distributions are represented by thick lines, and the calcu-

lated distributions are shown by thin lines. Figure 6 compares the dose distributions with 90%,

80%, 70%, 50%, and 30% isodose lines for a prostate IMRT plan. Figure 7 shows the dose

distributions for a brain IMRT plan. Figure 8 displays the isodose distribution comparisons for

a head/neck noncoplanar IMRT plan. For noncoplanar beams, the isodose accuracy was checked

in the plane 1 cm superior to the isocenter plane . From these figures it is seen that the agree-

ment between the calculated and the measured dose is within 2% in the high-dose regions for

all cases.

Fig. 6. Isodose distribution comparison for a prostate IMRT plan. Isodose lines of 90%, 80%, 70%, 50%, and 30% are
shown.

Fig. 7. Isodose distribution comparison for a brain IMRT plan. Isodose lines of 90%, 80%, 70%, 45%, and 30% are shown.
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Fig. 8. Isodose distribution comparison for a head/neck noncoplanar IMRT plan. Isodose lines of 80%, 70%, 50%, and
30% are shown in the isocenter plane (left), while only 80%, 50%, and 30% isodose lines are shown in the plane 1 cm
superior to the isocenter (right).

E. Monte Carlo verification of DVHs
Figures 9 and 10 compare D

95
 and D

05
 of the planning tumor volume, respectively, in histo-

grams between Monte Carlo dose calculations and XKnifeTM RT2 treatment planning. The

differences between the two methods are shown in the upper figures. It is seen that, except for

one case, the differences in D
95

 and D
05

 are within 2.5%.

Fig. 9. Comparison between Monte Carlo dose calculations and XKnifeTM RT2 treatment planning for D
95

 of the planning
tumor volume for nine patients. The percentage differences between the two methods are shown in the upper figure.
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Fig. 10. Comparison between Monte Carlo dose calculations and XKnifeTM RT2 treatment planning for D
05

 of the plan-
ning tumor volume for nine patients. The percentage differences between the two methods are shown in the upper figure.

We also compared V
40

 for the rectum in Fig. 11(a) and V
65

 for the bladder in Fig. 11(b) for

all nine patients because these parameters are checked clinically for plan acceptance. It is seen

that except for patient 1, who presented a 17% difference in V
40

, the rest of the patients showed

a maximum difference of 3.8% in V
40

 (the volume receiving 40 Gy) of the rectum for the dose

prescription of 74 Gy in 37 fractions. For all patients, the average difference is 3.75% in V
40

.

The differences in V
65

 of the bladder are even smaller, with a maximum difference of 2.1% and

an average difference of 0.56%.

Fig. 11. Comparison between Monte Carlo dose calculations and XKnifeTM RT2 treatment planning for V
40

 of the rectum
and V

65
 of the bladder for nine patients.

IV. DISCUSSION AND CONCLUSION

The accuracy of the Radionics image fusion package (v.2) has been assessed and reported by

other investigators.(21) In this work, we focused mainly on commissioning of IMRT functional-
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ity of XKnifeTM RT2. To commission this system for IMRT delivery using a mMLC, we took

a few extra steps for the quality assurance of the system. Our first step was to check the accu-

racy of stereotaxy that is established with a SBF within the TPS to ensure accurate determination

of target position. For accurate IMRT dose verification by measurement, the fitting parameters

of the CT-to-electron density curve were not only rederived from the site-specific CT scan data

but also readjusted to correctly convert the CT number of the IMRT QA phantom to the elec-

tron density.

As mentioned above, our commissioning procedure is for a detachable mMLC on a Si-

emens Primart accelerator. The use of an add-on mMLC for IMRT delivery may create

incompatible problems because treatment delivery is not controlled only by a record-and-verify

system but by a second system, called the mMLC controller. Another issue is the Siemens jaw

(and MLC) settings. Although the BestAll option may reduce radiation leakage by setting the

Siemens jaws to encompass each of the maximum mMLC fields (per gantry angle), the current

version has resulted in an incompatibility problem in which the Siemens jaw setting is incon-

sistent with or exceeds the maximum mMLC setting when the mMLC travels to its maximum

limit. In order to use the Fixed option, we measured inter- and intraleaf transmission (or leak-

age). The measurement results show that the Fixed option is adequate for stereotactic IMRT

treatment planning.

Based on the measurement data presented in this paper, the dosimetric accuracy has met the

published acceptance criteria.(22–24) Our Monte Carlo dose verification has provided additional

quality assurance. For the planning target volumes, the Monte Carlo dose calculation agrees

well with the treatment planning, in terms of D
95

 and D
05

. For the rectum, the two methods

presented an average difference of 3.8% for the percentage volume of the rectum receiving 40

Gy. Part of the difference may result from the pixel compression (from 512 × 512 to 128 × 128

pixels) for the Monte Carlo dose calculation, which could affect contour definition and, thus,

DVHs. This may also be attributed to the fact that parts of the critical structures are located in

the dose falloff regions; thus any inaccuracy in dose calculation and modeling of scatter varia-

tions due to the changes of depth and medium density could result in significant changes in the

values of DVHs for the adjacent critical structures. Judging from our clinical criteria, the DVH

of the rectum and the V
40

 parameter predicted by both methods are all acceptable for treatment

execution. In fact, given that the dose is delivered in 37 fractions, and daily setup uncertainty

may be a bigger contribution to changes in DVHs of the adjacent structures, the above differ-

ences may not be clinically significant. From this point of view, the influence on DVHs caused

by dosimetric differences should not be clinically significant. The difference in the DVH of the

bladder is generally very small, with an average of 0.56% for the percentage volume of the

bladder receiving 65 Gy when the total dose prescription is 74 Gy in 37 fractions.

In summary, the accuracy of XKnifeTM RT2 is acceptable for stereotactic IMRT treatment

planning, and it has been used clinically at the Fox Chase Cancer Center since 2004.
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