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Abstract

Background: This study aims to investigate the strength of various sources of phylogenetic information that led to recent
seemingly robust conclusions about higher-level arthropod phylogeny and to assess the role of excluding or
downweighting synonymous change for arriving at those conclusions.

Methodology/Principal Findings: The current study analyzes DNA sequences from 68 gene segments of 62 distinct protein-
coding nuclear genes for 80 species. Gene segments analyzed individually support numerous nodes recovered in
combined-gene analyses, but few of the higher-level nodes of greatest current interest. However, neither is there support
for conflicting alternatives to these higher-level nodes. Gene segments with higher rates of nonsynonymous change tend to
be more informative overall, but those with lower rates tend to provide stronger support for deeper nodes. Higher-level
nodes with bootstrap values in the 80% – 99% range for the complete data matrix are markedly more sensitive to
substantial drops in their bootstrap percentages after character subsampling than those with 100% bootstrap, suggesting
that these nodes are likely not to have been strongly supported with many fewer data than in the full matrix. Data set
partitioning of total data by (mostly) synonymous and (mostly) nonsynonymous change improves overall node support, but
the result remains much inferior to analysis of (unpartitioned) nonsynonymous change alone. Clusters of genes with similar
nonsynonymous rate properties (e.g., faster vs. slower) show some distinct patterns of node support but few conflicts.
Synonymous change is shown to contribute little, if any, phylogenetic signal to the support of higher-level nodes, but it
does contribute nonphylogenetic signal, probably through its underlying heterogeneous nucleotide composition. Analysis
of seemingly conservative indels does not prove useful.

Conclusions: Generating a robust molecular higher-level phylogeny of Arthropoda is currently possible with large amounts
of data and an exclusive reliance on nonsynonymous change.

Citation: Regier JC, Zwick A (2011) Sources of Signal in 62 Protein-Coding Nuclear Genes for Higher-Level Phylogenetics of Arthropods. PLoS ONE 6(8): e23408.
doi:10.1371/journal.pone.0023408

Editor: Sergios-Orestis Kolokotronis, American Museum of Natural History, United States of America

Received January 24, 2011; Accepted July 15, 2011; Published August 4, 2011

Copyright: � 2011 Regier, Zwick. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants from the National Science Foundation, U.S.A. (grant numbers 1042845 and 0120635). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: regier@umd.edu (JCR); andreas.zwick@smns-bw.de (AZ)

Introduction

The robust resolution of higher-level arthropod phylogeny has

been a challenging problem, as evidenced by numerous publica-

tions with alternative proposals of relationships [1-10]. However, a

recent molecular report [11] describes fully resolved relationships

within and among four all-inclusive, extant arthropod clades --

Pancrustacea, Myriapoda, Euchelicerata, and Pycnogonida -- with

generally high levels of node support, with some exceptions,

particularly inside Euchelicerata (redrawn in Figure 1 of this

report; see also Table 1 and Materials & Methods for character set

definitions used in this and previous reports). The apparent success

of this study is likely due to its relatively broad taxon sample (75

arthropod spp. from all major lineages +5-10 diverse outgroup

spp.), large data matrix (up to ca. 40 kilobase pairs / taxon from 62

protein-coding nuclear genes), and focus on appropriate method-

ologies (e.g., likelihood analyses under a codon model and under

models that are informed by nonsynonymous change). Reassur-

ingly, high node support is a general feature across a broad range

of analytical methods and character codings. Of perhaps greatest

taxonomic interest because of their relative novelty are six newly

named groups within Pancrustacea (i.e., Altocrustacea, Vericrus-

tacea, Multicrustacea, Communstraca, Miracrustacea, Xeno-

carda; see Figure 1) plus a group within Myriapoda (i.e., Symphyla

+ Pauropoda) that receives strong bootstrap support (i.e., $80%).

While analyses of nucleotides, codons, and amino acids all recover

these seven groups in their maximum likelihood topologies,

analysis of amino acids is unique in that support for six of the

seven is significantly lower than with other approaches, in which

bootstrap support is always strong. In that report, it was suggested

that the failure of amino acid models to distinguish two clusters of

serine codons, standardly called Ser1 (TCN) and Ser2 (AGY), is a

cause of lower node support, rather than any problem specific to

the nucleotide-based analyses, and this has now been further

supported (Zwick, Regier & Zwickl, in preparation). Thus, all

analytical approaches now appear to be in close agreement.
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However, this amino acid issue, among others, highlights the

important further question as to what in particular provides the

supportive and conflicting signals that determine node support for

the higher-level arthropod clades.

Taxon sampling is clearly important [12,13]. No pancrustacean

groups other than Pancrustacea itself are strongly supported when

taxon sampling is reduced from 80 to 13 species, even when the

taxa are represented by an identical gene sample and are similarly

analyzed [5,11].

Features of gene analysis are also important in assessing

phylogenetic informativeness. For example, while it is commonly

acknowledged that not all genes are equally informative, what is to

be made of the finding that six of the seven arthropod nodes

mentioned above are never recovered with strong bootstrap

support by any of the 62 genes (see Supplementary Table 3 in

[11]). A reasonable suggestion would be that their strong node

support in the combined-gene analyses results from the cumulative

weak signal of multiple genes. This hypothesis raises at least two

important questions: 1) How many data are needed to resolve

nodes with strong support [14]? and 2) How are we to know

whether the cumulative bootstrap signal is actually phylogenetic

signal, given the increased sensitivity of large data sets to

systematic error, despite their decrease in stochastic error [15–18]?

A second feature of gene analysis is that inclusion of more

rapidly evolving genes can result in relatively lower node support

values for higher-level groupings [19–24]. For example, it was

found that when the 10 most rapidly evolving genes were deleted

from a 13-taxon data matrix, bootstrap support for Hexapoda

(represented by 2 spp.) increased from ,50% to 79% and for

Malacostraca + Copepoda (represented by 2 spp., included in

what is now called Multicrustacea) from 68% to 97% [5]. But, does

this correlation permit a practical generalization for designing data

sets for arthropod phylogeny?

A third feature of gene analysis is that synonymous change can

have a deleterious effect on inferring higher-level phylogeny [25–

28], although the appropriateness of their exclusion is controver-

sial [29–33]. At least in part, this results from increased

compositional heterogeneity of its underlying characters relative

to those driving nonsynonymous change [34,35]. Even modest

amounts of synonymous change (e.g., the amount contributed by

some first-codon-position characters in a standard first- + second-

codon analysis) can result in strong node support for incorrect

groups (see Figure 1 in [5]. Such compositional effects are widely

acknowledged and documented (e.g., [36–51; but see 52], but even

more widely ignored in practice, probably because most readily

available software packages do not address the problem. Recently,

there has been an increased interest in directly accounting for

compositional changes in phylogenetic analyses [53–56], but for

now this remains a work in progress. Implementation of a codon

model can indirectly diminish the contribution of compositional

heterogeneity because synonymous change occurs relatively

rapidly [57,11 but see 58,59]. A conceptually similar, but much

less computationally demanding, approach is to partition data and

apply separate models or parameters [26,28,32,60]. When

synonymous and nonsynonymous changes are enriched in

separate bins, the synonymous change becomes effectively down-

weighted, an approach that has been shown in Lepidoptera to give

results similar to implementation of a codon model, with both

approaches showing improvement over likelihood analysis under

the unpartitioned GTR + gamma + Inv model [61,62]. The effect

of partitioning on the arthropod data set of Regier et al. (2010)

[11] is documented for the first time in the current report.

Table 1. Definitions of degen1 coding and of character sets.

degen1

A coding method for nucleotides in which codons in a data matrix are completely degenerated, e.g., CAT -- . CAY and TTA
--. YTN. The consequence of applying this method to nucleotide character sets is that all and only nonsynonymous
change between any two sequences in a multisequence alignment can now be parsimony informative.

nt123 A data set consisting of all nucleotide characters (after exclusion of a mask) in a multisequence alignment.

nt1, nt2, nt3 A data subset consisting of all and only first-, second-, or third-codon-position characters, respectively, in a multisequence alignment.

LRall1 A data subset consisting of all and only those nt1-characters that encode one or more leucine or arginine residues in a multisequence
alignment. Only leucine and arginine codons can directly undergo synonymous change at nt1.

LRall1nt3 LRall1 + nt3.

noLRall1 A data subset consisting of all and only those nt1-characters that do NOT encode any leucine or arginine residues in a multisequence
alignment. In combination, noLRall1 and LRall1 constitute nt1.

noLRall1nt2 noLRall1 + nt2. In combination, noLRall1nt2 and LRall1nt3 constitute the entire data set, or nt123.

nt123_degen1 A nt123 data set subjected to degen1 coding.

nt3_degen1 A nt3 data set subjected to degen1 coding.

LRall1nt3_degen1 A LRall1nt3 data subset subjected to degen1 coding.

nt3_4foldsynon A data subset consisting of all and only those nt3 characters that are potentially fourfold synonymous, e.g., those encoding glycine and
alanine. In nt3_4foldsynon, non-degenerate (i.e., tryptophan and methionine) and potentially twofold- and sixfold-degenerate codons are
completely degenerated so as to be uninformative.

doi:10.1371/journal.pone.0023408.t001

Figure 1. Higher-level arthropod relationships based on likelihood analysis of aligned, concatenated nt123_degen1 sequences. The
maximum-likelihood topology derived from up to 68 gene segments and 80 "panarthropod" taxa is shown with bootstrap percentages (BP) displayed
above branches. Below branches is displayed the number of gene fragments that individually support the adjoining node with a BP $75%. Numbers
$2 are in boldface. Terminal taxa are labeled by their genus name. Higher classificatory names are also labeled. Those higher-level taxa that were
strongly supported and newly named in Regier et al., 2010 [11], plus Symphyla + Pauropoda, are italicized with an open gray circle on the node. In
this figure and throughout this report, Pycnogonida: Colossendeidae: Colossendeis sp. used in references [5,11] has been renamed Pycnogonida:
Nymphonidae: Nymphon sp. due to an original misidentification (see Materials and Methods, Acknowledgments).
doi:10.1371/journal.pone.0023408.g001
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Two other approaches for reducing the effect of synonymous

change have recently been developed specifically for higher-level

phylogeny. In one approach, all characters in a data matrix are

removed that have the possibility of undergoing synonymous

change [5], yielding a so-called noLRall1nt2 character set (see

Table 1 for definition). The other builds on the original idea of R-Y

coding at the third codon position [63,44,64,65]. In this approach,

which we have previously called degen1 [11], all sites at first and

third codon positions that have the potential to undergo

synonymous change are individually fully degenerated, yielding a

nt123_degen1 character set (see Table 1 for character set definitions).

In the studies carried out to date, degen1 generally supports higher-

level nodes as well as or better than all other approaches tested,

particularly those that include synonymous change [11,61,62]

(Zwick, Regier & Zwickl, in preparation).

The current report is a further exploration of the characters that

have been analyzed in Regier et al. (2010) [11] to infer arthropod

phylogeny, with the aim of deciding whether their phylogenetic

conclusions remain warranted, particularly as regards the newly

named groups. The major issues (re)addressed are 1) the

phylogenetic signal of the individual genes and the effect of their

rates on node support, 2) the amount of data required to achieve

strong node support, 3) the effect of character partitioning, and 4)

the contribution of synonymous change to node support.

Results

Phylogenetic signal in individual gene segments
A more thorough bootstrap analysis of individual gene segments

has been performed than previously [11], but the results remain

very similar (Tables S1, S2). For visualization purposes, the

number of individual gene segments that support particular nodes

with bootstrap values $75% is plotted beneath branches on the

combined-gene phylogeny (Figure 1). Numerous lower-level and

some higher-level groups receive support from multiple individual

genes, e.g., up to 43 for Branchiopoda: Anostraca. Notable among

the higher-level groups are Arthropoda (4 genes) and Pancrustacea

(3 genes). However, many of the nodes along the backbone,

including five of the six recently named groups [11] and Symphyla

+ Pauropoda (see open gray circles in Figure 1), have no individual

genes supporting them at that level of the bootstrap. Other higher-

level taxonomic groups that have been inconsistently recovered in

published studies (i.e., Hexapoda, Oligostraca, Progoneata,

Mandibulata) similarly have no individual gene support at that

level.

The maximum likelihood tree shown in Figure 1 is based on a

combined-gene analysis of the nt123_degen1 data matrix (see

Figure 1 in [11]). In that tree [11], 71 groups out of 78 are

recovered by at least three of the four phylogenetic approaches

(always including degen1,) and all but one of these groups

(Oligostraca: Ichthyostraca + Mystacocarida) receive .70%

bootstrap by at least one of four implemented approaches (groups

listed in Table S1). Sixty-three of these have strong combined-gene

bootstrap support (i.e., bootstrap $80%) by at least one approach,

and 46 of the 63 receive single-gene bootstrap support $75% from

two or more gene segments. The remaining 17 groups, plus all

eight that do not have strong combined-gene bootstrap support,

receive $75% single-gene bootstrap support from one or no gene

segments. The latter includes six of the seven nodes of particular

interest.

We have defined an approximate metric for the phylogenetic

utility of a sequence that takes into account sequence length and

number of groups recovered, and that corrects for the variable

success rate of amplification and sequencing (see Materials &

Methods). This metric has been calculated for each of the 68 gene

segments and plotted against its average rate of nonsynonymous

change (Figure 2). Over an approximately 18-fold range in

average rate, there is a significant (at the level of two standard

deviations), but not pronounced, tendency for faster-evolving gene

segments to have higher utility. However, there is much scatter,

with numerous segments of similar average rates displaying an

approximately fourfold difference in utility.

Quantity of data required for strong node support
A random resampling of characters (also called "sites") without

replacement from the complete data matrix has been undertaken

to estimate the amount of data needed to achieve the observed

levels of combined-gene node support (Figure 1; Tables 2, S3),

based on the idea that fewer data of the same sort should provide

less phylogenetic signal. As a control, a shuffling and reanalysis of

the complete data matrix without data reduction results in

bootstrap values that vary by #2%. However, when the size of

the data matrix is reduced to 85%, three nodes (Ammotheidae,

Vericrustacea, Entognatha) show a .10% decrease (maximum of

22% for Vericrustacea) in bootstrap support relative to the original

data matrix. With a 50% reduction in size for each of five

complementary replicated data sets, bootstrap values of 32 nodes

decrease by .10% in one or more of the 10 analyses. (Values

,50% are treated as = 49% for purposes of computation. Given

this, no observations about possible major reductions in bootstrap

values are made about nodes having values ,60%.) Nodes with

bootstrap values in the 60 – 99% range for the original data matrix

are preferentially affected by 50% reduction in the data set size. In

particular, all 29 nodes in this range show at least one instance of a

.10% reduction, while only five of the 32 nodes with 100%

bootstrap support show such a reduction (Tables 2, S3). Further

emphasizing the abruptness of the boundary, 9 of 11 nodes with

bootstrap values from 97 – 99% for the original data set show a

$30% variation in bootstrap support across the 10 pseudo-

replicates, while of the 41 nodes with 100% bootstrap in the

original, only one (Oligostraca) shows such a high level of

variability. Similar observations hold with further reductions in

data set size, i.e., to 33% and 15% of the original matrix (Table

S3), although of course even more nodes are now affected.

An additional, intriguing result is that there are seven instances

affecting five nodes in which bootstrap values show a .10%

increase with data set reduction relative to the original data set, and

this is even more striking when one considers that 59 of the 71

nodes already have values $90% and, hence, are excluded from

the statistic. The complementary, paired bootstrap value for each

of the seven instances is always $25% less than for the original

data set, indicating that phylogenetic signal is not equally

distributed across characters and that the most informative

characters may be relatively few in number.

Informativeness of subsets of genes with different
average nonsynonymous rates

The complete nt123_degen1 data matrix has been partitioned

into two equal-sized submatrices consisting of faster and slower

evolving gene segments (nonsynonymous changes only), and their

maximum likelihood topologies and bootstrap values estimated

(Tables 3, S4). Seven nodes are recovered with bootstrap values

that are $30% higher for the faster genes than the slower genes,

while there are 10 nodes for which the slower genes have $30%

higher bootstrap values than the faster ones. Nodes for which slower

genes have higher values tend to have accumulated less overall

change (to be more "ancestral") than those for which faster genes

have higher values (for visual estimate, see Figure 3; for
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quantitative estimate, see inserted table in Figure 3). Although not

as decisive, a noLRall1nt2 analysis yields similar results (Table S4).

The findings are similar, although slightly more complicated,

when the original nt123_degen1 matrix is partitioned into three

equal-sized submatrices -- fastest, medium, and slowest (Tables 3, S4).

The fastest and slowest results are largely unchanged from those for

the faster and slower submatrices. Additionally however, there are

three new nodes for which the medium matrix yields bootstrap

values that are $30% higher than in the fastest or slowest (both in

two of three cases) matrices. Only one of these three nodes receives

strong bootstrap support with the complete (nt123_degen1) data

matrix, although all do in the medium analysis. Conversely, there

are four cases for which the medium matrix yields bootstrap values

that are $30% lower than in the fastest or slowest matrices. All four

of these nodes fail to receive strong support in the medium analysis,

but three receive strong support with the complete data set, and

the fourth nearly so. Results with noLRall1nt2 data sets yield similar

results (Table S4).

Does partitioning by rate lead to strong support for any groups

that conflict with those recovered with the complete data set?

Indeed, there are four instances of this (Tables 3, S4): 1) 82%

bootstrap support for Nymphonidae + Endeididae with the slower

genes versus 93% bootstrap support for Ammotheidae +
Endeididae (all Pycnogonida) with the complete matrix; 2) 91%

bootstrap support for Arthropoda minus Pycnogonida with the

slower genes versus 74% bootstrap support for Chelicerata with the

complete matrix; 3) 93% bootstrap support for Spirobolida +
Polyzoniida with the slower genes versus 67% bootstrap support for

Callipodida + Polyzoniida (all Diplopoda) with the complete

matrix; and 4) 79% bootstrap support for Chilopoda + Diplopoda

with the slower genes versus 67% bootstrap support for Progoneata

(all Myriapoda) with the complete matrix.

Figure 2. Phylogenetic utility of 68 gene segments plotted relative to its average rate of nonsynonymous change. As described in
greater detail in Materials & Methods, phylogenetic utility (units are displayed on Y axis) is the number of taxonomic groups present in Figure 1 that
are recovered with BP $75% / nucleotides sequenced for that gene segment61023, corrected for the fraction of missing data. Units for the average
rate of nonsynonymous change for each of the 68 gene segments (displayed on X axis) are the number of substitutions at nt2 per site across a 13-
taxon tree, corrected for missing taxa (from Table 2 in [5]). The straight line y = bx + c that best fits the data, using linear regression, is shown,
together with values for the slope (61 standard deviation) and the Y-intercept (61 standard deviation).. For convenient cross-reference and
identification, individual gene segments are numbered (1 = fastest, 68 = slowest) as in Table 2 of Regier et al., 2008 [5].
doi:10.1371/journal.pone.0023408.g002
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Utility of data partitioning for phylogenetic
reconstruction

Partitioning the nt123_degen1 data matrix (without exclusion other

than unalignable portions) into two or three linked submatrices that

differ in their average rate of nonsynonymous change yields no

nodes whose bootstrap values vary by .10% from the unparti-

tioned nt123_degen1 analysis (Table S4). By contrast, when nt123 is

partitioned into two linked submatrices that largely separate

synonymous and nonsynonymous change (i.e., noLRall1nt2,

LRall1nt3), there is a substantial improvement over the unparti-

tioned nt123 results. In particular, seven nodes in the nt123

partitioned analysis yield bootstrap values that are .10% higher

than nt123 unpartitioned, while there are none lower by .1%. Even

so, the nt123_degen1, unpartitioned analysis yields 28 nodes that have

.10% higher bootstrap values than in the nt123, partitioned

analysis, while only one is .10% lower (a generally problematic

node at that, namely, Arthropoda minus Pycnogonida).

Testing the informativeness of synonymous signal
The data matrix of Regier et al. (2010) [11] provides a

convenient venue for testing the informativeness of synonymous

change in supporting ancient divergences. To do this, several

approaches have been taken to separate synonymous and

nonsynonymous signals, using as a reference the analysis of the

nt123_degen1 data matrix, which yields 63 strongly supported nodes

(Figure 1). Comparisons of particular note are summarized in

Table 4, while the complete trees and their node support values

are displayed (Figures 1, 4–8). The noLRall1nt2 data matrix, which

largely undergoes only nonsynonymous change, yields 59 strongly

supported nodes, and all are in agreement with the nt123_degen1

result (Table 4). The matrix that is complementary to noLRall1nt2,

called LRall1nt3 and which is enriched in synonymous change, is

approximately equal in size to noLRall1nt2 but recovers only 31

strongly supported nodes that are in agreement with the

nt123_degen1 result, plus seven others that strongly conflict

(Table 4, Figure 4). Although LRall1nt3 is greatly enriched for

synonymous change, some nonsynonymous signal remains. This is

directly demonstrated by analysis of the LRall1nt3_degen1 data

matrix, in which the number of strongly recovered nodes in

agreement with nt123_degen1 increases to 47, while the number of

strongly conflicting nodes decreases to one (Table 4, Figure 5).

To further assess the value of synonymous change, the nt3 data

matrix was analyzed (Table 4, Figure 6). Now, only 19 nodes in

agreement with nt123_degen1 are strongly supported, plus six more

that strongly conflict. However, this data set too still contains

nonsynonymous signal, albeit even less than that in LRall1nt3. To

demonstrate this, analysis of the nt3_degen1 data matrix, which is

almost entirely polymorphic (i.e., almost no A, C, G or T)

nevertheless recovers 31 strongly supported nodes in agreement with

nt123_degen1, plus only one that strongly conflicts (Table 4, Figure 7).

Table 2. Highly variable bootstrap values for selected taxa upon analysis of shuffled, half-sized data matrices.a

taxonomic group
100%
unshuffled

50%
shuffled (1)

50%
shuffled (2)

50%
shuffled (3)

50%
shuffled (4)

50%
shuffled (5)

Ammotheidae + Endeididae 93 89 – 83 97 – (,50) 95 – 70 (,50) – 96 63 – 95

Ammotheidae 99 100 – 52 72 – 98 86 – 97 94 – 86 89 – 96

Tanystylum + Achelia 98 58 – 100 90 – 96 95 – 83 (,50) – 100 86 – 96

Chelicerata 74 54 – 78 62 – 72 69 – 73 67 – 62 (,50) – 90

Pulmonata 65 51 – 89 (,50) – 89 64 – 86 64 – (54) (,50) – 96

Tetrapulmonata 99 100 – (,50) 100 – 59 99 – 63 91 – 95 91 – 96

Pleurostigmophora 93 91 – 59 82 – 82 79 – 82 77 – 85 92 – 67

Scolopendromorpha + Lithobiomorpha 99 (,50) – 100 87 – 99 78 – 100 96 – 95 100 – 82

Diplopoda 99 50 – 100 78 – 100 74 – 99 77 – 99 95 – 95

Callipodida + Polyzoniida 55 (,50) – (,50) (,50) – (,50) (,50) – (,50) ,50 – 53 86 – (,50)

Symphyla + Pauropoda 92 ,50 – 73 50 – 84 56 – 83 70 – 64 ,50 – 90

Oligostraca 100 95 – 87 99 – 55 95 – 85 84 – 80 84 – 90

Altocrustacea 93 68 – 75 87 – ,50 95 – (,50) ,50 – 93 60 – 77

Communostraca 84 ,50 – 87 (,50) – 95 88 – (,50) 54 – 82 ,50 – 87

Eucarida + Peracarida 87 90 – ,50 62 – 94 58 – 69 78 – 68 63 – 86

Sessilia 97 82 – 94 83 – 93 99 – 66 81 – 93 85 – 86

Miracrustacea 94 70 – 58 79 – ,50 94 – (,50) 73 – 80 ,50 – 92

Xenocarida 93 75 – 78 100 – (,50) 94 – ,50 77 – 80 52 – 91

Entognatha 86 74 – 73 74 – 83 63 – 91 88 – 65 (51) – 91

Entomobryomorpha 98 88 – 93 99 – 67 96 – 82 69 – 99 93 – 91

Pterygota 99 77 – 95 93 – 79 96 – 85 50 – 89 82 – 67

Neoptera 97 73 – 91 84 – 75 75 – 89 92 – 73 98 – ,50

Blattodea + Orthoptera 94 86 – 84 59 – 98 86 – 84 99 – (,50) 99 – (57)

aThis table shows results for only those taxa in the "50% shuffled" analyses that have one or more highly variable ($30%) bootstrap values. In the five columns at the
right (columns 3 – 7) are shown the bootstrap results of five complementary pairs of "50% shuffled" analyses. Complementary results (that is, from different characters
within the same bootstrapped data set) are separated by a dash (-). Taxonomic groups not present in the ML topology for that analysis have their bootstrap
percentages within parentheses. Results for the complete matrix are shown in the second column for comparison and match those in Figure 1. Complete results for
"100% shuffled", "85% shuffled", "50% shuffled", "35% shuffled", and "15% shuffled" are shown in Table S3.

doi:10.1371/journal.pone.0023408.t002
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In order to restrict the analysis almost entirely to synonymous

change, all character states at nt3 positions that do not encode a

fourfold synonymous codon were fully degenerated (i.e., coded as

N making them uninformative), and the resulting nt3_4foldsynon

data matrix was analyzed (Table 4, Figure 8). Under these

conditions, only 10 nodes in agreement with nt123_degen1 are

Figure 3. Phylogram of higher-level arthropod relationships based on likelihood analysis of aligned, concatenated nt123_degen1
sequences. The cladogenic relationships of 80 "panarthropod" taxa based on analysis of 68 gene segments are the same as those in Figure 1. Nodes
with BP that are at least 25% higher with the faster genes than the slower genes are marked with an asterisk. Groups with BP that are at least 25%
higher with the slower genes than with the faster genes are marked with a filled square. The shortest distance in number of substitutions / character
from the base of a group to a terminal taxon in that group ("minimum distance" in inserted table) was calculated by summing the likelihood branch
lengths. Groups are numbered from those with the shortest distance to a terminal (no. 1 = Tanystylum + Achelia) to those with the longest distance
(no. 17 = Multicrustacea).
doi:10.1371/journal.pone.0023408.g003
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strongly supported, plus one that strongly conflicts. None of these

nodes defines a group with more than three terminal taxa,

consistent with the hypothesis that synonymous change signifi-

cantly supports only more recently derived nodes.

A Euclidean distance analysis of the nucleotide composition of

nt3_4foldsynon shows evidence of strong compositional heterogene-

ity, when the absolute values of these distances are compared with

those in other studies (cf. insert to Figure 8 and [66]). Furthermore,

shared bias, as evidenced by the Euclidean tree (Figure 8, insert),

correlates with, and is a reasonable explanation of, almost all of the

nodes with bootstrap values $50% that conflict with the

nt123_degen1 likelihood analysis, including

N 83% bootstrap: Armillifer (Oligostraca: Pentastomida) + Podura

(Hexapoda: Collembola);

N 66%: Armillifer (Oligostraca: Pentastomida) + Podura (Hexapo-

da: Collembola) + Heterometrus (Arachnida: Scorpiones) +
Hadrurus (Arachnida: Scorpiones);

N 52% bootstrap: Streptocephalus (Branchiopoda: Anostraca) +
Ammothea (Pycnogonida); and

Table 3. Bootstrap values for selected taxa that are sensitive to nonsynonymous rate properties of the data matrix.a

taxonomic group
complete, 1–68
gn, 39261 bp

faster, 1–37
gn, 19842 bp

slower, 38–68
gn, 19419 bp

fastest, 1–24
gn, 13173 bp

middle, 25–43
gn, 12834 bp

slowest, 44–68
gn, 13254 bp

1: Ammotheidae + Endeidae 93 91 57 99 86 (,50)

2: Nymphonidae + Endeididae (,50) (,50) (,50) (,50) (,50) 82

Ammotheidae 99 79 95 87 (,50) 60

Tanystylum + Achelia 98 97 68 99 81 (,50)

1: Chelicerata 74 73 55 53 96 (,50)

2: Arthropoda minus Pycnogonida (,50) (,50) (,50) (,50) (,50) 91

Arachnida 68 (,50) 89 (,50) (,50) 83

Pulmonata 65 (,50) 93 56 57 94

Tetrapulmonata 99 99 67 92 76 67

Pleurostigmophora 93 94 ,50 95 (,50) (,50)

Scolopendromorpha
+ Lithobiomorpha

99 99 88 89 95 52

1: Progoneata 67 64 (,50) 74 (,50) (,50)

2: Chilopoda + Diplopoda (,50) (,50) 58 (,50) ,50 79

Diplopoda 99 98 83 95 (,50) 97

1: Callipodida + Polyzoniida 55 (,50) 72 (,50) 99 (,50)

2: Spirobolida + Polyzoniida (,50) (,50) (,50) (,50) (,50) 93

3: Callipodida + Spirobolida (,50) ,50 (,50) 55 (,50) (,50)

Symphyla + Pauropoda 92 59 78 65 (,50) 88

Ostracoda 60 (,50) 85 (,50) (,50) 95

Altocrustacea 93 ,50 94 (,50) ,50 88

Phyllopoda 100 100 100 100 61 100

Multicrustacea 100 ,50 100 65 ,50 98

Communostraca 84 (,50) 94 (,50) (,50) 95

Sessilia 97 93 82 97 (,50) 87

Miracrustacea 94 (,50) 98 (,50) ,50 91

Xenocarida 93 (,50) 98 (,50) 76 94

Hexapoda 100 64 100 ,50 100 100

Entognatha 86 ,50 88 ,50 (,50) 91

Entomobryomorpha 98 99 (,50) 93 90 (,50)

Pterygota 99 96 71 80 80 ,50

Neoptera 97 77 96 (,50) 91 78

Polyneoptera 99 100 (,50) 100 96 (,50)

Blattodea + Orthoptera 94 76 94 86 (,50) 86

aThis table shows results only for those taxa that show sensitivity in their bootstrap values to the rate properties of the underlying data submatrix. All submatrices are
fully degenerated ("degen1 coding"). The results for all taxa are shown in Table S3. Results for the complete matrix are shown for comparison in the second column and
match those in Figure 1. Columns 3 and 4 show the results of splitting the complete data matrix into two approximately equal-sized subsets (referred to as faster and
slower in the text). Column 5–7 show the results of splitting the complete data matrix into three approximately equal-sized subsets (referred to as fastest, medium,
slowest in the text). Alternative groupings for three taxa in Figure 1, namely, Ammotheidae + Endeididae, Chelicerata, Progoneata, and Callipodida + Polyzoniida, are
also included because they receive strong support in the tripartite division of the complete data matrix (see text). Bootstrap values for nodes not recovered in the
maximum-likelihood topology of a particular analysis are within parentheses. bp, base pair; gn, gene segment.

doi:10.1371/journal.pone.0023408.t003
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N 60%: Cypridopsis (Ostracoda: Podocopa) + Metajapyx (Hexapo-

da: Japygidae).

Shared bias in composition may also at least partially explain

the level of bootstrap support for many of the presumably correct

groupings, including

N 100%: Heterometrus + Hadrurus (both Arachnida: Scorpiones);

N 87%: Stenochrus + Mastigoproctus + Phrynus (all Arachnida:

Pedipalpi);

N 100%: Peripatoides + Euperipatoides (both Onychophora: Peripa-

topsidae);

N 97%: Peripatoides + Euperipatoides + Peripatus (all Onychophora);

N 100%: Limulus + Carcinoscorpius (both Xiphosura);

N 100%: Pedetontus + Machiloides (both Hexapoda: Archaeog-

natha);

N 99%: Acanthocyclops + Mesocyclops (both Copepoda: Cyclopoida;

and

N 67%: Chthalamus + Semibalanus (both Thecostraca: Sessilia).

Testing the informativeness of indels
An inspection was undertaken of a slightly realigned arthropod

data matrix (see Dataset S1 in SUPPORTING INFORMA-

TION] for introns whose evolutionary history appeared to be

highly constrained. The results are summarized in Table 5 (see

Discussion).

Discussion

The challenges of higher-level arthropod systematics
Morphology and gene-based studies of higher-level arthropod

phylogeny have been ongoing for more than 75 and 20 years,

respectively [67–69], stimulated by increasing evolutionary and

paleontological knowledge of arthropods and their huge radiation

at the species level, and also by numerous major findings of

developmental biologists (summarized in [70,71]. However,

agreement on many higher-level relationships remains problem-

atic, even with spectacular improvements in methodologies (e.g.,

polymerase chain reaction and pyrosequencing) and phylogenetic

theory (e.g., better likelihood models and faster algorithms).

Recently, however, Regier et al., 2010 [11] provided strong

evidence for many higher-level arthropod relationships outside

Chelicerata, based on analysis of 62 protein-coding nuclear genes

(shown in modified form in Figure 1). The current report is a

further analysis of their data matrix and results in order to probe

whether or not that report represents a major advance in our

knowledge of arthropod phylogeny, an overinterpreted and failed

report, or something in-between.

An intriguing aspect of Figure 1 is that almost all nodes,

excepting a few within Chelicerata, receive strong bootstrap

support. Such strong support is oftentimes interpreted as providing

a good indication that there is a strong signal supporting those

relationships [72], and larger data sets should on average have

stronger signal. Of course, decisiveness does not necessarily

translate to accuracy [18], but then what might be the source of

such strong signal other than phylogeny? First however, we

emphasize that the bootstrap percentage is a conservative metric

relative to the posterior probability metric generated in Bayesian

analyses [73,74]. This is often obvious in studies that show support

values from maximum likelihood and Bayesian analyses for a

common topology, e.g., the analytical results for the data set in

Regier et al., 2010 [11]. Given the still unresolved controversy

over potentially inflated posterior probabilities [75], we feel that

support for phylogenies based on Bayesian posterior probabilities

alone warrants substantial skepticism and, therefore, was not used

in this report. However, we note that a Bayesian analysis of the

nt123_degen1 data set yielded posterior probabilities of 1.0 for all

nodes within Mandibulata except one (see Supplementary Figure 3

in [11]).

Compositional heterogeneity is a possible explanation for high

support values and is known to be a widespread cause of

phylogenetic inaccuracy (e.g., [36–51, but see 52]. In the present

study, however, this is highly unlikely to be the explanation for the

very widespread strong support because three of the four favored

analytical approaches eliminate the largest source of the problem,

namely, synonymous change, and the fourth, namely, implemen-

tation of the codon model, functionally "downweights" synony-

mous change due to its relatively rapid evolution [11].

Another potential non-phylogenetic source could be problem-

atic modeling of evolutionary change. However, model testing was

Table 4. Comparison of synonymous and nonsynonymous change in terms of node recovery and node support.

character set characters (kbp)a conflicting nodesb
strongly conflicting
nodesc strongly supporting nodesd

nt123_degen1e 39.3 N.A. N.A. (63)

noLRall1nt2 21.8 0 0 59

LRall1nt3 17.5 18 7 31

LRall1nt3_degen1e 17.5 6 1 47

nt3 13.1 15 6 19

nt3_degen1e 13.1 3 1 31

nt3_4foldsynone 13.1 5 1 10

aThe total number of characters in each data set in kilobase pairs (kpb).
bThe number of dichotomous nodes with bootstrap values $50% in the likelihood analysis of the designated character set that fails to match any of the 63 nodes with

bootstrap values $80% in the analysis of the nt123_degen character set (see Figure 1).
cThe number of nodes with bootstrap value $80% in the likelihood analysis of the designated character set that fails to match any of the 63 nodes with bootstrap
values $80% in the analysis of the nt123_degen character set (see Figure 1).

dThe number of nodes with bootstrap values $80% in the analysis of the designated character set that matches one of the 63 nodes with a bootstrap value $80% in
the analysis of the nt123_degen character set (see Figure 1).

eThese four character sets contain numerous polymorphic character states.
doi:10.1371/journal.pone.0023408.t004
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performed [76], and the four favored analytical approaches use

three different types / classes of models (nucleotide, codon, amino

acid models), yet still recover nearly identical topologies [11].

Furthermore, partitioning the nonsynonymous data, which are all

of the same sort, namely, rather conservative, protein-coding

nuclear gene sequences, yielded no major improvement (Table

S4).

While other artifacts remain possible, e.g., [77,78], if the

relationships shown in Figure 1 are generally accurate, then why

have many of the higher-level relationships not previously been

strongly supported? The current study demonstrates that insuffi-

cient quantity of data is likely to be one of the main factors. Of the

68 gene segments tested, none individually support with bootstrap

values $75% deep nodes like Mandibulata, Oligostraca, Hexap-

oda, Symphyla + Pauropoda, or five of the six newly named

pancrustacean groups, even though all are supported in the

combined-gene analysis with bootstrap values .80%. A reason-

able interpretation is that their strong support in the combined-

gene analyses results from the cumulative effect of small amounts

of phylogenetic signal from multiple genes. Earlier studies were

restricted to fewer genes and taxa than in Regier et al., 2010 [11],

so it may not be surprising that these groups were not strongly

supported. Hexapoda deserves special comment, since there has

been controversy as to its monophyly (e.g., see [79]). Our results

are quite definitive on this matter. Hexapoda is strongly supported

as monophyletic, although it is a "difficult" node because no single

gene yields a bootstrap value $75%. Clear support for hexapod

monophyly is similarly difficult to find in morphological analyses,

despite its widespread acceptance. We also note that hexapod

monophyly can be strongly supported based on analysis of nt123,

but, at least for the current gene set, this high level of support is

largely the result of the unusually biased nucleotide composition at

nt3 and LRall1 that positively reinforces phylogenetic signal [5).

An alternative interpretation for the paucity of strong support at

the single-gene level is that some or all of the genes contribute

substantial conflicting signal that cancels the phylogenetic signal,

keeping individual node support low and raising doubts about the

ultimate source of the combined-gene support. But this seems

unlikely to be a predominant explanation because individually the

gene segments mostly strongly support groups present in Figure 1

(Table S1). And, for the few cases in which conflicting groups are

supported, this support typically stems from only a single gene

fragment (Table S2). Further, little conflict is apparent when

randomly subsampled matrices that are 15% – 85% of the full

data set in size are analyzed. The most significant one is

Arthropoda minus Pycnogonida (77% bootstrap) that conflicts

with Chelicerata (74% bootstrap).

Submatrices corresponding to different rate categories of genes

similarly do not provide striking evidence for major internal

conflict. Only four groups conflict with ones in the complete

matrix (Pycnogonida: Nymphonidae + Endeididae versus Pycno-

gonida: Ammotheidae + Endeididae; Arthropoda minus Pycno-

gonida versus Chelicerata; Diplopoda: Spirobolida + Polyzoniida

versus Diplopoda: Callipodida + Polyzoniida; and Chilopoda +
Diplopoda versus Progoneata). And only the first one yields strong

support for both (conflicting) alternatives. More importantly for

this report, none of these groups conflict with any of the six newly

named groups, Symphyla + Pauropoda, Mandibulata, Oligos-

traca, or Hexapoda.

Although not a formal optimality criterion, consistency of results

across different analytical approaches is also quite striking in

Regier et al., 2010 [11]. Two approaches, called degen1 and

noLRall1nt2, analyze in a likelihood framework those nucleotides

that undergo mostly nonsynonymous change. A related approach

-- likelihood analysis of amino acid change -- is conceptually

similar, but of course the underlying model is very different. The

fourth approach -- likelihood analysis of codon change -- is

different in that codons, not single nucleotides, are analyzed and

no data, including those that undergo synonymous change, are

excluded from the analysis. Importantly, all four methods largely

recover the same groups, including Symphyla + Pauropoda,

Mandibulata, Oligostraca, Hexapoda, and the six newly named

pancrustacean groups.

So, is the vast majority of conclusions in Regier et al., 2010 [11]

credible? Beyond the philosophical point that all scientific

conclusions are defeasible, it is clear that nodes recovered with

the complete data matrix with ,100% bootstrap support are more

sensitive to data subsampling than those with 100% support.

Furthermore, the definition of 80% bootstrap support as "strong"

is a heuristic device only; it does not refer to some innate or even

broadly accepted category. Therefore, it seems likely that strongly

supported nodes in the range of 80 - 99% bootstrap can still be

sensitive to changes in the amount of data. Had the amount of

data been less, the probability of recovering that group with strong

support would have been reduced (Tables 2, S3). By contrast,

many fewer of the nodes with 100% bootstrap are sensitive to data

subsampling at the levels tested in this report. Even when the data

set is reduced to 15% of the complete matrix, there are still 23 of

32 nodes that receive 100% bootstrap support, although none

correspond to the deep nodes Symphyla + Pauropoda, Mandibu-

lata, Oligostraca, Hexapoda, and the six newly named pancrus-

tacean groups. What this suggests is that, had fewer data been

generated and analyzed in Regier et al, 2010 [11], it is likely that

at least some of these high-interest groups would not have been

strongly supported. Therefore, given that their strong recovery is

near the limit of an admittedly arbitrary designation of "strong", it

would still be valuable to generate even more data as confirmation.

This is despite the lack of even modest support for alternatives to

these high-interest groups, unlike the more problematic situation

with Chelicerata and the placement of Pycnogonida [80,81].

Nonsynonymous rates and information content
While analyses of individual gene segments fail to recover most

deep-level nodes with bootstrap values $75%, including five of the

six newly named groups [11] plus Symphyla + Pauropoda,

Mandibulata, Oligostraca, and Hexapoda, nevertheless, many other

nodes are supported at this level (Figure 1). The total number of

individual gene segments that recover particular nodes varies

dramatically (from 0 to 43, see Table S1). In an effort to capture

an assessment of individual gene utility, a statistic was devised that

expresses the total number of nodes supported by a single gene

segment after adjusting for differing sequence lengths and amount of

missing data, and this was expressed relative to the gene segments’

average rates of nonsynonymous change (Figure 2; other metrics are

Figure 4. Phylogram derived from likelihood analysis of the LRall1nt3 character coding of the 68 gene segments. Bootstrap values
$50% are displayed above internal branches. All and only those bootstrap percentages that correspond to nodes not present in the nt123_degen1
topology (Figure 1) are in italics, boldface, and brown in color. Notice that the branch lengths for the degenerated data matrix LRall1nt3_degen1
(Figure 5) are much shorter than in this figure. Units are substitutions / character.
doi:10.1371/journal.pone.0023408.g004
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possible, e.g., [82,83]). While a weak trend is apparent for faster genes

to have higher utility (ca. 40% increase in utility with a fourfold

increase in rate), it is obvious that variability in the results is much

greater and likely reflects intrinsic differences not captured by their

average nonsynonymous rate. This line of inquiry was not pursued

further largely because the taxonomic groups of most interest were

not sufficiently strongly supported in these individual gene studies.

To improve the statistical properties of the analyses, subsets of gene

segments with similar rate properties were analyzed and compared

(Figure 3; Tables 3, S4; see also [5]). In the analysis of the faster and

slower gene subsets, 17 taxonomic groups show large ($30%)

differences in their relative bootstrap support values of total data

(nt123) analyses. Interestingly, 9 of these groups are more strongly

supported by the slower genes, and all 9 have longer node-to-terminal

branch lengths than the other eight, supporting the idea that more

slowly evolving genes are better for recovering deeper nodes [19–24].

However, some clearly ancient nodes, e.g., Pancrustacea and

Arthropoda, are strongly supported by both subsets, demonstrating

that faster genes can remain informative at deeper levels.

When gene segments are partitioned into three subsets (fastest,

medium, slowest), additional resolution becomes apparent in that three

nodes (Chelicerata, Diplopoda: Callipodida + Polyzoniida, Neoptera)

receive strong support from the medium subset of genes, but

mystifyingly four nodes (Diplopoda, Branchiopoda: Phyllopoda,

Thecostraca: Sessilia, Insecta: Blattodea + Orthoptera) receive strong

support from the fastest + slowest genes, excluding the medium genes.

What is perhaps more noteworthy is that the 3-subset studies

reveal underlying conflict in the signal that supports four

taxonomic groups.

1. Ammotheidae + Endeidae is strongly supported by the fastest +
medium genes, while Nymphonidae + Endeididae is strongly

supported by the slowest genes.

2. Chelicerata is strongly supported by the medium genes, while

Arthropoda minus Pycnogonida is strongly supported by the

slowest genes.

3. Progoneata is supported (74% bootstrap) by the fastest genes,

while Chilopoda + Diplopoda is supported (79% bootstrap) by

the slowest genes.

4. Callipodida + Polyzoniida is strongly supported by the medium

genes, while Spirobolida + Polyzoniida is strongly supported by

the slowest genes.

Based on these observations, it would seem prudent to abstain

from any strong conclusion about these conflicting groups,

although only one of these four (Ammotheidae + Endeidae) is

strongly supported in the complete-gene analysis (Figure 1). No

other nodes reveal such strong conflicts.

The utility of data degeneration, data exclusion, and
partitioning by rate on phylogenetic accuracy

Elsewhere, we have justified the utility of excluding synonymous

change in our degen1 and noLRall1nt2 analyses when analyzing

deep-level arthropod relationships [61,62] (Zwick, Regier &

Zwickl, in preparation). A comparison of results from the analysis

of nt123 and nt123_degen1 in this report reinforces this point (Table

S4). Bootstrap support for 31 nodes (out of 71 analyzed) is lower by

.10% points with nt123 than with nt123_degen1. By contrast, only

three nodes are .10% higher with nt123. One (Chilopoda +
Diplopoda) is likely to be incorrect, based on consistent, but

modestly supported, recovery of Progoneata (Figure 1; Figure 1 in

[11]). Another (Arthropoda minus Pycnogonida) is questionable

but possible [80], given the striking instance of its receiving strong

degen1 support (bootstrap 91% for the slowest genes, Table S4), plus

the generally modest degen1 support for Chelicerata, although the

medium genes recover Chelicerata with bootstrap 96% (Table S4).

And the third (Pulmonata) is possibly correct based on its

consistent and modest-to-strong degen1 support (Tables 3, S4;

Figure 1; Figure 1 in [11]), but remains in conflict with the current

hypotheses based on morphology [84].

As an alternative to data degeneration (e.g., nt123_degen1) and

exclusion (e.g., noLRall1nt2), we have tried partitioning nt123 into

mostly nonsynonymous and most synonymous change (noLRall1nt2

+ LRall1nt3), and this results in a modest improvement relative to

nt123, unpartitioned (Table 4). Now, only 27 nodes show .10%

lower bootstrap support relative to nt123_degen1. However, the

take-home message even with this further analysis remains

unchanged: synonymous change hinders deep-level phylogenetic

analysis (see also discussion below).

Restricting the analysis largely to nonsynonymous change

through degeneration, we have asked whether partitioning the

entire data set by the average rates of evolution for the different

gene fragments, followed by their separate modeling, could

provide a benefit. The answer is that, whether split into two or

three rate categories, there are no nodes whose bootstrap values

differ by .10% from nt123_degen1, unpartitioned. Even so, it is

also clear that the separate rate categories of genes, as well as

individual gene segments, do have distinct signals and can provide

dramatically differing levels of support for distinct nodes.

Together, these two observations suggest that, in the current case

with the complete nt123_degen1 data set, applying a single model to

the entire data set is about as good as using multiple, independent

models.

As just mentioned, an important finding of the current study is

that individual gene segments and separate rate categories of genes

are informative at different phylogenetic levels. In particular, more

slowly evolving genes (only nonsynonymous changes considered)

tend to support nodes that are closer to the backbone on the

phylogram shown in Figure 3, matching the conventional wisdom

that slow genes are better for supporting deeper nodes

[19,20,5,21–24]. Conversely, faster genes provide more support

for nodes that are more recently derived.

The (non)utility of synonymous change for inferring
deep-level arthropod phylogeny

As we have documented in this report, synonymous change,

much more so than nonsynonymous change, can be misinforma-

tive of the correct phylogeny (Table 4). While this is oftentimes

attributed to its more rapid evolution, that in itself is unlikely to be

an adequate explanation, since, for example, likelihood methods

do not require equal rates of change across the character matrix in

order to make accurate inferences. Rather, there must be a bias

introduced by synonymous change that might then be compound-

ed by faster evolution. Nucleotide compositional heterogeneity is

one such bias, and it has been well documented that this is a more

Figure 5. Phylogram derived from likelihood analysis of the LRall1nt3_degen1 character coding of the 68 gene segments. Bootstrap
values $50% are displayed above internal branches. All and only those bootstrap percentages that correspond to nodes not present in the
nt123_degen1 topology (Figure 1) are in italics, boldface, and brown in color. Notice that the branch lengths for the non-degenerated data matrix
LRall1nt3 (Figure 4) are much longer than in this figure. Units are substitutions / character.
doi:10.1371/journal.pone.0023408.g005
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dominant feature of characters undergoing synonymous than

nonsynonymous change [25–28,5]. The likelihood models that we

have used assume a single nucleotide composition, biased or not,

across the entire data set. While there is increasing interest in

modeling compositional heterogeneity, it is still a work in progress

[53–56]. The current methodological inadequacy can be seen as

Figure 6. Phylogram derived from likelihood analysis of the nt3 character coding of the 68 gene segments. Bootstrap values $50% are
displayed above internal branches. All and only those bootstrap percentages that correspond to nodes not present in the nt123_degen1 topology
(Figure 1) are in italics, boldface, and brown in color. Notice that the branch lengths for the degenerated data matrix nt3_degen1 (Figure 6) are much
shorter than in this figure. Units are substitutions / character.
doi:10.1371/journal.pone.0023408.g006
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one justification for our alternative approach of using nucleotide

degeneration or exclusion. However, there is still an outstanding

question, which is, how informative of deep-level arthropod

phylogeny is synonymous change?

To test the informativeness of synonymous change, we have

generated data sets that are progressively more enriched in their

potential for synonymous change (Table 4; Figures 4–8; cf.

Figure 1). What we observe is that the number of nodes which are

strongly supported decreases as the fraction of synonymous change

increases, and that strongly supported incorrect nodes are almost

entirely due to synonymous change. For example, while it has

been stated that nt3 characters should not be removed because

Figure 7. Phylogram derived from likelihood analysis of the nt3_degen1 character coding of the 68 gene segments. Bootstrap values
$50% are displayed above internal branches. All and only those bootstrap percentages that correspond to nodes not present in the nt123_degen1
topology (Figure 1) are in italics, boldface, and brown in color. Notice that the branch lengths for the non-degenerated data matrix nt3 (Figure 6) are
much longer than in this figure. Units are substitutions / character.
doi:10.1371/journal.pone.0023408.g007
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they contribute useful phylogenetic information [29–33], in the

current case nt3 strongly supports only 19 of 63 nodes strongly

supported by nt123_degen1, plus 15 conflicting nodes (6 strongly

conflicting), while nt3_degen1, which is almost entirely nonsynon-

ymous and polymorphic, still strongly supports 31 of 63 nodes with

only 3 conflicting nodes (1 strongly conflicting). When only nt3

characters of fourfold synonymous codons (nt3_4foldsynon) are

analyzed, thereby largely eliminating the potential for nonsynon-

ymous change, the number of strongly supported nodes drops to

10 out of 63 plus five conflicting nodes (1 strongly conflicting).

Even this relatively small level of support is suspect, however,

when coupled with information about nucleotide heterogeneity

(Figure 8). In particular, the large majority of groups for which

there is bootstrap support $50% have shared, strongly biased

compositions, whether those taxonomic groups are conflicting or

not. While this doesn’t prove that there isn’t a sequence-based

signal derived from synonymous change, it demonstrates that

compositional heterogeneity is likely to factor into the combined

result. Furthermore, all groups supported by synonymous change

are restricted to just a few taxa. Clearly, synonymous change is not

informative of deeper-level relationships in this study. In this case,

a premise that synonymous change ought to be informative and

should be retained would be based on the mistaken impression

that change at nt3 is entirely synonymous, when in fact, the change

at nt3 that is informative of deep-level arthropod phylogeny is

largely or entirely nonsynonymous. In contrast, the often-

implemented nt12 analyses retain synonymous change at nt1 and

discard useful nonsynonymous information at nt3, both of which

presumably can result in lowered node support relative to

nt123_degen1 (e.g., see Supp. Figure 2 in [11]; Figure 1 in [5]).

Analysis of indels
In this study "high-quality" (defined in Materials & Methods)

indels that grouped two or more taxa were investigated as a source

of phylogenetic information, and 19 were identified (Table 5).

Eleven indels support eight groups that are already well supported

in sequence-based analyses, e.g., all receive $75% bootstrap

support from 3 – 42 individual genes. Seven additional indels

support seven additional groups that are clearly incorrect. Thus,

indels analysis did not prove useful (e.g., see also [85]), although

more complex modeling of indel evolution would likely prove

useful, as it has for nucleotide and amino acid evolution.

Conclusion
The current results, plus another to appear shortly (Zwick,

Regier, and Zwickl, in preparation), provide additional support

and explication of the phylogenetic results presented in Regier

et al. (2010) [11]. In particular, there is additional justification for

the major emphasis on four analytical approaches, three of which

emphasize nonsynonymous change under differing assumptions

and a fourth which directly models codon change. This is because

synonymous change provides little, if any, useful phylogenetic

signal for the deeper nodes, while contributing substantial

misinformative signal, perhaps mostly attributable to composition-

Figure 8. Phylogram and Euclidean distances derived from analysis of the nt3_4foldsynon character coding. In the main figure,
bootstrap values $50% are displayed above internal branches of the phylogram based on likelihood analysis of the 68 gene segments. All and only
those bootstrap percentages that correspond to nodes not present in the nt123_degen1 topology (Figure 1) are in italics, boldface, and brown in
color. Units for the phylogram are substitutions / character. In the smaller, inserted figure are shown Euclidean distances based solely on nucleotide
composition. Symbols (+, =, O, D) identify the same clusters of taxa in both the ML topology and the Euclidean distance diagram for convenient
cross-reference. Units for the Euclidean distance diagram are per cent.
doi:10.1371/journal.pone.0023408.g008

Table 5. Occurrence of "high quality" indels in the arthropod data set.a

Taxonomic groups recovered Number of indels

Hexapoda: Collembolab 2

Hexapoda: Odonatab 2

Hexapoda: Lepidopterab 1

Pancrustacea: Copepodab 1

Pancrustacea: Branchiopoda: Diplostracab 2

Pancrustacea: Copepoda: Cyclopoidab 1

Pancrustacea: Malacostracab 1

Arthropoda / Onychophora + Tardigradab 1

Onychophorab 1

Pycnogonida: Nymphonidae + Arachnida: Pseudoscorpionesc 1

Hexapoda: Collembola: Tomoceridae + Hexapoda: Collembola: Poduridaec 1

Pancrustacea: Ostracoda: Podocopa + Tardigrada: Parachelac 1

Hexapoda: Ephemeroptera + Hexapoda: Diplurac 1

Pancrustacea: Oligostraca + Arachnida: Opilionesc 1

Pancrustacea: Copepoda + Ostracoda: Myodocopac 1

Arachnida: Tetrapulmonata + Arachnida: Pseudoscorpionesc 1

a"High quality" indels are those that have relatively unambiguous alignments -- no staggered ends and identical lengths but not necessarily identical sequences (see
Materials & Methods).

bPresent in Figure 1 and considered a valid taxonomic group.
cNot present in Figure 1 and unlikely to be a valid taxonomic group.
doi:10.1371/journal.pone.0023408.t005
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al heterogeneity. The current report clarifies why strong node

support for higher-level relationships has been so challenging,

namely, that single genes contribute insufficient signal for robust

support, necessitating the combined analysis of multiple genes. In

fact, the current report suggests that the up-to-approximately 40

kilobase pairs / taxon in the data matrix of Regier et al. (2010)

[11], while providing "strong" support for 10 "high-interest" nodes

that previously had not been strongly and consistently supported

(i.e., Altocrustacea, Communostraca, Hexapoda, Mandibulata,

Miracrustacea, Multicrustacea, Oligostraca, Vericrustacea, Xeno-

carida, Symphyla + Pauropoda), nevertheless proved sensitive to

modest reductions in the amount of data. Thus, a reasonable

question would be to inquire into the consequence of modest-to-

large increases in the amount of data. While we detected not even

modest support for alternative resolutions of the "high interest"

nodes under various data set manipulations, the outcome of

increasing the total amount data remains an important experiment

to do. Thus, it will be necessary to reinvestigate these relationships

with even more data, as will inevitably occur in this new age of

relatively cost-efficient phylogenomics.

Materials and Methods

Taxon and gene sampling
Taxon and gene sampling are identical to that reported in

Regier et al., 2010 [11]. That report includes a complete listing of

taxa (75 species Arthropoda, 3 species Onychophora, 2 species

Tardigrada) and their higher classification (Supplementary Table 1

in [11]), as well as GenBank numbers for sequences of the 68 gene

fragments (Supplementary Table 4 in [11, Table S5 in this

report]). In that earlier report [11], as well as [5], one taxon within

Pycnogonida (Colossendeis sp., lab code name "Col") has now been

shown to have been misidentified (see Acknowledgments). It has

been reidentified as Nymphon sp. (Pycnogonida: Nymphonidae).

The lab code name remains "Col". The original misidentification

changes nothing as regards conclusions in those earlier publica-

tions about the position of Pycnogonida within Arthropoda. In the

current report, we use "Nymphon sp." and "Nymphonidae"

throughout.

Data sets
All data submatrices were derived from one of two master

matrices that include all taxa and all gene fragments, either as is

(nt123) or after fully degenerating nucleotides (nt123_degen1) using

IUPAC ambiguity codes at those sites that can potentially undergo

synonymous change, thereby making synonymous change largely

invisible and reducing the effect of compositional heterogeneity

but leaving the inference of nonsynonymous change largely intact

(summarized in Table 1). For example, in nt123_degen1 CAC and

CAT (His) are both coded CAY, while TTA, TTG, CTT, CTC,

CTA, and CTG (Leu) are all coded YTN. The nt123_degen1 data

matrix and the nt123 data matrix can both be downloaded as

Supplementary Data of Regier et al., 2010 [11]. Software to

degenerate sequences is available at http://www.phylotools.com.

A character-exclusion mask (2313 characters out of 41,574 total

characters) of ambiguously aligned nucleotide characters was also

invoked, and is identical to that in Regier et al., 2010 [11]. Using

the degen1 approach, one set of submatrices, called single-gene

matrices, was derived from each of the 68 gene fragments. Another

set consisted of gene fragments grouped by their average rate of

nonsynonymous change (according to Table 2 in [5]), such that

there were two approximately equal-sized nt123_degen1 subma-

trices (faster and slower; 19842 and 19419 characters, respectively,

and corresponding to gene fragment numbers 1–37 and 38–68 in

Table 2 of [11]), and another such that there were three

approximately equal-sized nt123_degen1 submatrices (fastest, medium,

slowest; 13173, 12834, and 13254 characters, respectively, and

corresponding to gene fragment numbers 1–24, 25–43, and 44–68

in Table 2 of [11]).

These same collections of gene fragments, namely, 1–37 / 38–

68 and 1–24 / 25–43 / 44–68, as well as all genes combined (1–68)

were also analyzed in a distinct manner from degen1 coding but still

with the aim of restricting the analysis to nonsynonymous change.

Previously, we have called this alternative the noLRall1nt2

approach, and it is based on character exclusion for nt123 (non-

degenerate) rather than nucleotide degeneration [5] (http://www.

phylotools.com). With this approach, two complementary subsets,

called noLRall1nt2 and LRall1nt3, are defined as follows: The

noLRall1nt2 character subset consists of all characters at the second

codon position (nt2) plus only those nt1 characters that encode no

leucine or arginine codons (noLRall1). The LRall1nt3 character

subset consists of all characters at the third codon position (nt3)

plus any and all nt1 characters not present in noLRall1. Since

leucine and arginine codons are the only ones that undergo

synonymous change at nt1, their absence from noLRall1nt2 leads to

a dramatic reduction in the amount of synonymous change

inferred over a tree. Software to create noLRall1 and LRall1

character set definitions is available at http://www.phylotools.

com. In this set of analyses, the noLR analysis of gene fragments

1–68 and of the five subsets with differing rates occurred with

noLRall1nt2 only, after excluding LRall1nt3.

To explore the informativeness of synonymous change,

progressively more restrictive data submatrices were constructed

and analyzed with and without degeneration. LRall1nt3 has

already been described, and it was compared with LRall1nt3_de-

gen1. Analysis of the latter captures all of the nonsynonymous

change in LRall1nt3 with very little or no synonymous change.

Another pair of submatrices was nt3 and nt3_degen1. The final

submatrix, called nt3_4foldsynon, included only those sites at nt3

that encode fourfold-degenerate codons, e.g., alanine and glycine;

all other sites were converted to N. Analysis of the nt3_4foldsynon

submatrix should capture entirely synonymous change. Degener-

ation of nt3_4foldsynon would yield all N’s and hence was not

performed.

For another set of degen1 submatrices, character order for the

entire nt123_degen1 data matrix was first randomized using a Perl

script (available at http://www.phylotools.com), which randomly

resampled all the characters in the matrix without replacement.

This reordering (or shuffling) was repeated in series 10,000 times

to ensure randomness. Submatrices of differing sizes were

constructed (100% as a control, 85%, 50%, 33%, 15%). Only

one submatrix each of 100%, 85%, and 15% of the complete size

was constructed. For the 50% matrices, five independently

randomized 100% matrices were split into five pairs of

complementary matrices (ten 50% matrices total). Likewise, two

independently randomized 100% matrices were each split into

three complementary 33% matrices (six 33% matrices total).

Further, two types of character partitioning were undertaken for

total data (nt123). In one, the complete data matrix (nt123, non-

degenerate) was split into two complementary subsets, namely,

noLRall1nt2 and LRall1nt3, in order to separate a major source of

character variation, namely, nonsynonymous and synonymous

change. In the phylogenetic analysis, GTR + G + I models were

applied to each subset with unlinked parameters. In another

partitioning scheme, the nt123_degen1 matrix was analyzed by

applying GTR + G + I models with unlinked parameters to three

subsets described above, namely, fastest, medium, slowest.
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Insertion / deletion (indel) events were analyzed for phyloge-

netic informativeness, but only "high-quality" indels, which

consisted of those that have relatively unambiguous alignments,

defined as those with no staggered ends and identical lengths but

not necessarily identical sequences. Before doing this, however, a

slightly improved manual alignment relative to that in Regier et al.

(2010) [11] was undertaken, this time using a MAFFT alignment

([86]; default values with the BLOSUM62 scoring matrix) of

amino acids to guide our decision-making about realignments

within the nucleotide data set. Relative to the original alignment

[11], there were adjustments in the positioning of sequences for 12

species, 9 of which resulted in realignments of ,10 characters, one

of 22 characters, one of 63 characters, and one of 93 characters. In

addition, we have discovered 592 base pairs of incorrect sequence

in the mayfly Hexagenia limbata (codename: May) that was

duplicated in silico from another species’ RNA polmerase II

(largest subunit) sequence, and this has now been replaced with

Ns. The realigned, non-degenerate data matrix used for indel

analysis (nt123) is included in Supporting Information as Dataset S1.

Separately, the degenerate, realigned data matrix (nt123_degen1;

the degen1 script is available at http://www.phylotools.com) was

reanalyzed under likelihood using GARLI 1.0. There were no

changes in the maximum likelihood topology relative to Regier et

al., 2010 [11], and bootstrap support for all nodes changed by

#4%.

Phylogenetic analysis
All phylogenetic analyses are based on the maximum likelihood

criterion applied to nucleotides, as implemented in GARLI (v.

0.961, v. 1.0 with and without a character-partitioning feature

added; [87]), using the GTR + G + I model. All other parameters

are default values. We used the program default settings, including

random stepwise addition starting trees, except that we halved the

number of successive generation passes yielding no improvement

in likelihood score that prompts termination (genthreshfortopo-

term = 10000), as suggested in the GARLI manual. The number

of replicate searches used to obtain a maximum likelihood tree

estimate for each data set ranged from 550 – 674, following Regier

et al. (2009) [66]. The number of pseudo-replicates of the non-

parametric bootstrap analyses varied, depending on results being

compared and the computational requirements but always

matched or exceeded the targeted number of pseudo-replicates.

For the data partitioning results, the number of bootstrap

replicates is 520–599. For the randomized-sequence comparisons,

the number of bootstrap replicates is 470–668. However, in some

cases, the computational time was simply too long to perform as

large a large number of replicates as for the aforementioned

analyses. Thus, rather than keep all analyses at an identical low

minimum, we chose instead to accept larger differences between

separate analyses for the benefit of additional accuracy for the

majority of them. Hence, for the single-gene analyses, the number

of bootstrap replicates ranges from 209 to 666. For testing the

informativeness of synonymous signal, the number of bootstrap

replicates is 651–673, except for the computationally intensive

nt3_4foldsynon analysis, which was 236. The tree shown in Figure 1

is taken directly from Regier et al. [11], and it is based on 1065

bootstrap replicates. All of these numbers are such that the

statistical variation around the mean is still only a few percentage

points. Other than the single-gene bootstrap analyses, the number

of heuristic search replicates per bootstrap replicate varied from 1–

5. For the single-gene bootstrap analyses only, we increased the

number of search replicates / bootstrap replicate to 50, except for

the longest genes, ef2 (40 search reps) and polii (30 search reps),

from 1 previously presented in Supplementary Table 3 of Regier

et al. (2010) [11], in order to provide a more accurate estimate for

each bootstrap pseudoreplicate. However, the resulting changes in

bootstrap percentages were relatively minor (Table S1,S2).

Optimal-tree searches and bootstrap analyses were parallelized

using Grid computing [88] through The Lattice Project [89]. For

purposes of comparison only, we oftentimes collectively refer to

nodes with bootstrap values $75% in our single-gene studies, and

to bootstrap values $80% in our multigene studies. In the

combined-gene analyses only, we define for heuristic purposes only

bootstrap values $80% as "strong."

Estimating phylogenetic utility of individual gene
segments

To provide a quantitative estimate for how useful a particular

gene segment is for phylogeny reconstruction, an approximate

metric called "phylogenetic utility" was developed. Based on

single-gene likelihood bootstrap analyses, the total number of

taxonomic groups present in Figure 1 that are recovered by the

single gene fragment with bootstrap $75% is divided by the length

(in nt 61023) of the fragment, and then corrected for missing taxa

by multiplying this fraction by (80 taxa / (80 taxa 2 number of

missing taxa)). The calculated value of phylogenetic utility for each

segment was plotted relative to its rate of nonsynonymous change

(see Table 2 in [5]). Linear regression was performed using Linest, a

spreadsheet function available in OpenOffice (http://www.open-

office.org). Two features of this metric are worth pointing out.

First, it estimates the total number of nodes that could be

recovered, but in most systematic studies not all nodes are of equal

interest. Second, this metric estimates utility as information density

(i.e., total information / fragment length), but in most systematic

studies what matters in a practical sense is the total amount of

information in a sequenceable gene fragment.

Compositional heterogeneity and synonymous change
To describe compositional heterogeneity in a data matrix, we

calculated Euclidean distances on the proportions of the four

nucleotide frequencies treated as independent characters using a

Perl script (available at http://www.phylotools.com). A separate

script available from the same web site was used to restrict the total

data matrix to fourfold degenerate codons, which were subse-

quently split by codon position to produce a matrix (called

nt3_4foldsynon) of those nt3 characters that are encoded by fourfold

degenerate codons.

Supporting Information

Table S1 Single-gene bootstrap values ($75% only, nt123_de-

gen1) for taxonomic groups (nodes) present in Figure 1. This table

lists bootstrap values for taxa identified in Figure 1 based on

analysis of single genes.

(XLS)

Table S2 Single-gene bootstrap values ($75% only, nt123_de-

gen1) for taxonomic groups NOT present in Figure 1. This table

lists bootstrap values for taxa not recovered in the analysis shown

in Figure 1 based on analysis of single genes.

(XLS)

Table S3 Bootstrap values based on analysis of shuffled data

matrices of varying sizes (100% to 15% of complete data matrix).

This table lists bootstrap values after randomizing character order

in the 100% data matrix and splitting it into portions of varying

sizes for analysis (100% to 15% of complete data matrix) without

replacement. A subset of the Table-S3 results are also shown in

Table 2. This Table-2 subset includes results only for those

Nuclear Genes for Higher-Level Arthropod Phylogeny

PLoS ONE | www.plosone.org 19 August 2011 | Volume 6 | Issue 8 | e23408



taxonomic groups that show particularly highly variable bootstrap

values between replicates of the 50% matrices.

(DOC)

Table S4 Bootstrap values based on analysis of data sets and

subsets differing in their average rates of nonsynonymous change.

The complete data set is split into two or three subsets based on

average rates of nonsynonymous change of individual genes, and

bootstrap analyses are performed to estimate the informativeness

of the different rate category ranges. A subset of the Table-S4

results is also shown in Table 3. This Table-3 subset includes

results only for those taxonomic groups that show particularly

highly variable bootstrap values from differing rate category

ranges of gene segments.

(DOC)

Table S5 GenBank accession numbers (also cited in [11]).

(DOC)

Dataset S1 A Nexus-formatted data set that includes nucleotide

sequence data (nt123) for 80 taxa and 62 genes, slightly realigned

relative to that in Regier et al., 2010 [11] (see Materials and

Methods, Supplemetary Materials) and used principally for indel

analysis. Sets of characters are defined and listed immediately after

the data matrix, including those needed to create noLRall1 and

LRall1. This data set can be degenerated using the degen1 script

available at http://www.phylotools.com. The species codenames

used in this realigned data set are also identified by their complete

genus-species names in Table SM1 of Regier et al., 2010 [11].

(NEX)
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2. Fanenbruck M, Harzsch S, Wägele JW (2004) The brain of the Remipedia
(Crustacea) and an alternative hypothesis on their phylogenetic relationships.

Proc Natl Acad Sci U S A 101: 3868–3873.

3. Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA

genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Molec

Phylogenet Evol 40: 772–794.

4. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, et al. (2008) Broad

phylogenomic sampling improves resolution of the animal tree of life. Nature
452: 745–750.

5. Regier JC, Shultz JW, Ganley ARD, Hussey A, Shi D, et al. (2008) Resolving
arthropod phylogeny: Exploring phylogenetic signal within 41 kb of protein-

coding nuclear gene sequence. Syst Biol 57: 920–938.

6. Aleshin VV, Mikhailov KV, Konstantinova AV, Nikitin MA, Rusin LY, et al.

(2009) On the phylogenetic position of insects in the Pancrustacea clade.

Molecular Biology 43: 804–818.
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