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Abstract

Background: Assays of multiple tumor samples frequently reveal recurrent genomic aberrations, including point
mutations and copy-number alterations, that affect individual genes. Analyses that extend beyond single genes are
often restricted to examining pathways, interactions and functional modules that are already known.

Methods: We present a method that identifies functional modules without any information other than patterns of
recurrent and mutually exclusive aberrations (RME patterns) that arise due to positive selection for key cancer
phenotypes. Our algorithm efficiently constructs and searches networks of potential interactions and identifies
significant modules (RME modules) by using the algorithmic significance test.

Results: We apply the method to the TCGA collection of 145 glioblastoma samples, resulting in extension of
known pathways and discovery of new functional modules. The method predicts a role for EP300 that was
previously unknown in glioblastoma. We demonstrate the clinical relevance of these results by validating that
expression of EP300 is prognostic, predicting survival independent of age at diagnosis and tumor grade.

Conclusions: We have developed a sensitive, simple, and fast method for automatically detecting functional
modules in tumors based solely on patterns of recurrent genomic aberration. Due to its ability to analyze very
large amounts of diverse data, we expect it to be increasingly useful when applied to the many tumor panels
scheduled to be assayed in the near future.

Background
Tumor characterization projects are beginning to produce
a large volume of data about genomic, epigenomic, and
gene expression aberrations in tumor samples. This unpre-
cedented volume of information has the potential to trans-
form our understanding of cancer biology, reveal new
biomarkers and drug targets, and accelerate the develop-
ment of new cancer therapies. One recent genome-wide
tumor characterization effort revealed recurrent somatic
aberrations in 91 glioblastoma (GBM) tumors [1]. In that
study, mapping of recurrent aberrations in individual
genes to known pathways was used to link three core
pathways to cancer progression.

A key question is how to extend integrative analysis of
somatic genomic aberration data to expand known can-
cer pathways and interactions, or discover completely
new modules (sets of related genes). Such inference has
been done extensively using gene expression arrays, both
in yeast and humans [2-4], but due to the dynamic nature
of the transcriptome it is often difficult to separate causa-
tive events from their effects [5,6]. Instead, we develop an
algorithm that infers functional modules directly from
mutational patterns. This approach resembles, in some
aspects, the mapping of epistatic or synthetic lethal
genetic interactions in yeast [7].
Specifically, we focus on patterns of recurrent and

mutually exclusive aberrations (RME patterns). Previous
analyses of large tumor panels have discovered that
alteration of genes comprising a specific functional mod-
ule are often observed across a sample collection, but are
almost never concurrently found in the same tumor.
Examples of these modules include EGFR and KRAS in
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lung adenocarcinomas [8], the recurrent fusion of
TMPRSS2 and various ETS oncogenes in prostate cancer
[9], and TP53 and MDM2 in many different types of
malignancies [10]. One explanation for these patterns is
that there are functional relationships between the genes.
Specifically, an aberration in one of the genes may result
in the development of a key tumorigenic phenotype,
removing the selective pressure for mutation of the
others.
The key insight is that these RME patterns may be used

to identify groups of genes that are functionally related.
This concept was explored in 2008 in the context of can-
cer by Yeang et al., who utilized data from the Catalogue
of Somatic Mutations in Cancer (COSMIC) to identify
functional relations among mutated genes [11]. Their
attempt was hampered by the extremely small number of
genes assayed and restriction to only examining point
mutations. Their method of establishing the significance
of a detected pattern was also limited by the need for
computationally expensive permutation testing that does
not scale to the large networks that are being produced
from next-generation assays.
To address these issues, we developed a new method for

detecting RME patterns, which we formalized by using
structural reliability models [12]. Specifically, as illustrated
in Figure 1a/b, the RME patterns correspond to modules
of the “OR” type in these models, where abrogating the
function of one member in each module is sufficient for
failure. In our case, “failure” refers to the development of a
tumor phenotype. We hypothesized that these RME pat-
terns are sufficiently informative to enable the discovery of
cancer-related functional modules without using any prior
information. We then tested this hypothesis by designing
an algorithm for accurate and computationally efficient
detection of these modules. Our tool uses the Winnow
algorithm for network construction and establishes signifi-
cance via the algorithmic significance method, eliminating
the need for costly permutation testing. Through simula-
tion experiments, we show that this algorithm scales to
very large data sets and evaluate the types of modules that
are discoverable using data that will be generated by large
tumor characterization projects. We validate our method
by applying it to a data set currently available though the
TCGA data portal, which consists of mutation and copy
number data collected from a cohort of 145 primary GBM
tumors. The algorithm identifies known modules from
core GBM pathways, extends these modules with new
members, and discovers new modules that may inform
future studies.

Methods
Creating a mutation matrix
We designed our algorithm to be capable of utilizing
many disparate sources of mutational data, including

single-nucleotide polymorphisms, copy-number altera-
tions, and epigenomic modifications. In a pre-processing
step, these diverse data types were converted into a sin-
gle two-dimensional binary “mutation” matrix (Figure 2).
Data was obtained from the The Cancer Genome Atlas

Data Portal (http://tcga-data.nci.nih.gov/). A complete list-
ing of samples used can be found in Table 1 in Additional
file 1. Point mutations identified by resequencing were fil-
tered such that only non-synonymous, validated mutations
remained. Genes driving copy number alterations were
detected using normalized probe-level data from Agilent
244A copy number arrays. These were processed to infer
regions of amplification and deletion using circular binary
segmentation as implemented in the R package DNAcopy
[13]. Log-ratio thresholds for amplification and deletion
were set at 1.5 standard deviations from the mean probe
intensity. These were intersected with peaks of recurrent
copy-number change identified by the RAE algorithm
[14], then copy number variants were removed and driver
genes were selected as described in Additional file 1.
These two forms of data were then merged into a two-

dimensional mutation matrix. Each gene in each sample
was checked against these single nucleotide and copy
number mutations and a matrix was created such that if
sample i contained an alteration in gene j, the position xi,
j in the matrix was equal to 1, otherwise it was set to 0.
This matrix is available at http://brl.bcm.tmc.edu/rme/
gbm.dat

Constructing a gene network with Winnow
The first step in our module detection pipeline was to
filter the mutation matrix and retain only genes that
meet a set frequency of recurrence, as genes altered in
only one or a few samples do not contain enough infor-
mation to calculate meaningful exclusivity scores.
A possible next step would be to calculate the exclusiv-

ity score between each pair of genes, defined as the num-
ber of samples where exactly one of the pair is mutated
divided by the number of samples where at least one of
the pair is mutated. (Figure 1b). These data could be
used to create a network where each node is a gene and
each edge weight is the exclusivity between the genes.
The highly connected sub-networks would then be used
as a starting point for a focused combinatorial search for
modules. The disadvantage of this approach is that the
networks quickly becomes much too large and densely
connected to effectively identify sub-networks.
Thus, we used an online-learning linear threshold algo-

rithm called Winnow to detect signals of exclusivity
against the noisy background of passenger mutations in
many irrelevant genes [15]. Its speed and insensitivity to
irrelevant attributes allowed us to aggressively filter the
output scores before generating a network, resulting in
smaller, higher quality networks than pairwise exclusivity.
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The Winnow algorithm was run in an online setting,
using one gene as a classifier and the rest of the muta-
tion array as training data. In the first winnow run, all
the bits in the array were flipped, such that we calcu-
lated how well each aberration in the classifier is pre-
dictive of non-aberration in each gene of the matrix.

Then, we flipped the bits of the classifier, such that we
calculated how well each non-aberration in the classi-
fier was predictive of aberration in each gene of the
matrix. The resulting weights were used to score the
edges of the graph, then low-scoring edges were
removed.

Figure 1 Overview of RME Module Detection. a) An example of a structural reliability model of progression of a particular tumor type. Cancer
progression in this example requires aberrations in each of the three distinct functional modules (three horizontal lines). If mutated genes
(crossed out in red) occur in all three modules, the connection between the left and right part of the structural model will be lost, indicating
failure (cancer). b) A module may be disrupted by different aberrations in distinct tumor samples. One measure of an RME pattern is coverage,
defined as the percentage of samples that contain at least one aberration within the module. Another measure of the pattern is exclusivity,
defined as the percentage of covered samples that contain exactly one aberration within the module. An aberration in one of the genes within
a specific RME module removes selective pressure of aberrations in other genes within the same module, giving rise to the exclusivity. c)
Example network where nodes represent genes and edge thickness represents the level of exclusivity. The search for RME patterns starts by
constructing such a graph using the Winnow algorithm. This graph indicates three potential RME modules. The node colors and numbers
correspond to those in panel a. d) The significance score for RME patterns is dependent on both exclusivity (y-axis) and coverage (x-axis). Shown
is the RME algorithmic compression score, d, for a three-gene RME module across 100 samples with aberrations equally distributed, assuming
background frequency of 13.38 aberrant genes per sample (see section 2.3 andAdditional file 1). According to the algorithmic significance test,
the significance of an RME pattern is 2-d.
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Since the range of weights for each run was deter-
mined by how quickly Winnow finds an optimal classi-
fier, we did not use an absolute threshold value when
removing edges. Instead, for each classifier gene, we
took the second highest weight and retained all edges
with a score greater than or equal to that value.

Identifying candidate modules
We then used each gene in the network as a starting
point in a greedy local combinatorial search for RME
modules, such that we evaluated all possible connected
modules with size below the specified limit. We report
those that have algorithmic significance above a prede-
termined threshold, based on the size of the input data
(Figure 1C). These potential RME modules are binned
by number of genes and sorted by significance value.
The module with the largest size and highest

significance (as described in the next section) is kept,
and all other modules containing any of the same genes
are discarded. This process is repeated until all bins are
empty.

Evaluating modules by performing an algorithmic
significance test
The problem of determining whether a module (subset
of genes) contains a significant RME pattern of aberra-
tions can be addressed using probabilistic models or
heuristic scores. Both approaches would generally
require establishment of extremely low significance
values (pre-Bonferroni correction), which would in turn
require many cycles of computationally demanding per-
mutation testing. To eliminate this bottleneck, we
employ a new implementation of the computationally
much less demanding algorithmic significance test [16],
which has recently been applied in the context of Hid-
den Markov Models [17-19], but is also applicable as a
general method for pattern discovery [20,21]. As illu-
strated in Figure 1d, the algorithm determines signifi-
cance values directly.
Let k be the number of samples, m be the number of

genes in a module, and let X be a k times m matrix of bin-
ary values, with each value indicating presence (xi,j = 1) or
absence (xi,j = 0) of an aberration of the j-th gene in the i-
th sample. The algorithmic significance test compares the
number of bits required to encode the binary matrix X by
the RME Algorithm to the number of bits required to
encode the matrix under the null hypothesis. The RME
algorithm attempts to encode the data in fewer bits by
using the assumption that mutations occur at an unusually
high frequency in a mutually exclusive fashion, vs. the Null
Algorithm (corresponding to the null hypothesis) which
assumes that aberrations occur independently at their
background frequencies.
The presence of an RME pattern (Figure 1b) will allow

the RME algorithm to encode the matrix X significantly
more concisely. To minimize overall encoding length, the
RME Algorithm is provided the identity of the m genes
out of the total of n genes assayed (encoded in m log(n)
bits, an implicit penalty that corrects for multiple test-
ing), and the counts of aberrations for each sample, ai,0, i
= 1,...,k and counts of aberrations for each gene, b 0,j,j =
1,...,m (encoded in k log*(m) and m log*(k) bits respec-
tively, where log* denotes iterated logarithm). Using this
information, the RME Algorithm first sorts the samples,
then the genes by their counts of aberrations, placing the
most frequently altered samples at the top of the matrix,
and the genes with most aberrations at the beginning of
each row. As a penalty for this sorting, we reduce the
score by the number of bits necessary to represent the
new sorted order.

Figure 2 Analysis Pipeline. In a preprocessing step, validated SNPs
and focal CNAs are combined into a mutation matrix. This matrix is
fed into the winnow algorithm, which scores each gene pair by
exclusivity, indicated by edge scores in a graph. This graph is then
searched for modules up to a specified size and the algorithmic
significance is calculated for each potential module. Finally, the
most significant modules are reported.
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The algorithm then examines the sorted matrix row
by row in a left to right order, keeping track of how
many aberrations have been observed, and calculates a
probability of observing an aberration in the next cell of
the matrix and encoding the bit optimally according to
the calculated probability. To describe how the probabil-
ity is calculated, we first introduce additional notation.
Let p(xi,j = 1) denote the number of unobserved muta-
tions divided by the number of unobserved positions
remaining in the matrix. Let ai,j and bi,j denote the
number of unobserved aberrations in the current gene
and sample respectively.
Then, we can encode elements of X according to the

following probability distribution: If ai,j and bi,j are both
larger than 0, and a one has not been observed in this
row yet, we use the following formula (derived by apply-
ing Bayes’ rule):

pRME(xi,j = 1) ≈ p(xi,j = 1|ai,j, bi,j) =
p(xi,j = 1|ai,j) · p(xi,j = 1|bi,j)

p(xi,j = 1) ·
(

p(xi,j = 0|ai,j) · p(xi,j = 0|bi,j)

p(xi,j = 0)
+

p(xi,j = 1|ai,j) · p(xi,j = 1|bi,j)

p(xi,j = 1)

)

else we estimate that the probability is very low (but not
equal to zero in order to avoid infinitely large penalties):

pRME(xi,j = 1) ≈ 0

In contrast, the Null algorithm encodes optimally
assuming that the k genes contain aberrations at back-
ground frequency (no enrichment), denoted pNULL (1),
and that mutations occur independently in each of the k
genes.
The encoding length difference between the null and

RME algorithms and the algorithmic significance are
calculated in the following two steps:
Step 1. Encode the binary aberration matrix.
Set d’ to 0. Examine the aberration matrix row by row,

in left to right order incrementing d’ as follows in each
cell (i,j):then
If xi,j = 1 then:

d′ ← d′ + (− log(pNULL(1)) + log(pRME(1))

Else,

d′ ← d′ + (− log(pNULL(0)) + log(1 − pRME(1))

where log denotes binary logarithm.
Step 2. Account for additional information (including

implicit correction for multiple testing) and calculate
significance.

d = d′ − m log(n) − k log∗(m) − m log∗(k)

Calculate significance value 2-d.

Whole-genome simulations
In order to benchmark the performance of this algo-
rithm, we ran simulations on synthetic data sets. When

generating sets with the same size as the current glio-
blastoma data (145 samples, 1290 genes), the actual dis-
tribution of mutations from the TCGA data was used to
create random matrices. We simulated larger data sets
using the knowledge that the current gene list is heavily
biased towards known and frequently-altered oncogenes,
so we compensated by assuming that 0.1% of newly con-
sidered genes will have a mutation frequency greater
than 0.2, 0.9% will have frequency between 0.2 and 0.1,
and 99% will have frequency less than 0.1.
We then used a binning procedure, where we started

with the empirical GBM distribution, and calculated the
proportion of mutations in each bin. To compensate for
the fact that the distribution is heavily biased towards
low-frequency mutations, we used bins of size 1% until
we reached the tenth percentile, then used bins of size
5% to allow for some variability. We then distributed
the specified proportion of aberrations randomly within
each bin. We tested coverage levels between 50 and
100%, and generated RME Modules such that the num-
ber of alterations matched the given coverage level,
exclusivity was 100%, and each gene was altered in a
random number of samples that exceeded the minimum
threshold.

Determination of prognostic significance
Affymetrix HG133-based GeneChip mRNA expression
profiling data from two published datasets, the TCGA
("TCGA”, n = 260) and the Erasmus Medical Center,
Netherlands ("Erasmus”, n = 153) were obtained as raw
intensity files (.CEL files) and normalized [1,22]. Sam-
ples were included for all cases in which clinical data
were available (patient age at diagnosis, tumor grade,
survival time, and vital status) and for which the diagno-
sis was primary glioblastoma. Mapping of Affymetrix
GeneChip probes was performed using custom chip
definition files (CDF) based on the NCBI Entrez Gene
v.11 (http://brainarray.mbni.med.umich.edu/Brainarray/.
Database/CustomCDF/genomic_curated_CDF.asp) and
probesets were summarized by median intensity [23].
Recursive partitioning analysis was performed to sepa-
rate samples as either high or low expression. Univariate
comparison of survival by EP300 expression was per-
formed by the Kaplan-Meier method [24] with signifi-
cance determined using the log-rank test. Multivariate
analysis was performed using the Cox proportional
hazards model [25]. All analyses were conducted using
JMP Genomics 4.0.

Implementation and availability
Implementation of the algorithm was done using Ruby
and Bash. The core algorithm is available for download
at http://brl.bcm.tmc.edu/rme/ or for use through the
Genboree/Galaxy portal at http://www.genboree.org/
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galaxy, under Tools > Pattern Discovery. Documentation
and example files are included at each location.

Results
Discoverability of RME modules using current and
anticipated TCGA project data
To determine how well our method detects RME mod-
ules over the background noise of passenger mutations,
we ran experiments on synthetic data using several dif-
ferent parameter sets. As described in the methods, we
created a randomized mutation matrix then added an
RME module consisting of two to five genes. One thou-
sand simulations were run for each parameter set to
determine whether the seeded RME module could be
detected. We measured sensitivity by the fraction of
simulations where the seeded module was detected
above the significance threshold. We measured precision
by the fraction of simulations where the algorithm
detected the seeded genes as more significant than any
other module.
Genes altered in only a few samples did not contain

enough information to calculate meaningful exclusivity
scores, so we tested two different recurrence thresholds.
When considering only genes that are altered in at least
10% of the samples, the algorithm had high sensitivity

and precision, with smaller modules being more suscep-
tible to false positives that arise by chance (Figure 3, left
column)
We then evaluated the characteristics of pathways that

are discoverable using the data that is to be generated
by future stages of the TCGA project. We increased the
number of samples to 500 and increased the number of
resequenced genes to either the 6000 currently being
evaluated in TCGA Phase 2, or the ~18000 that may be
examined with whole-exome coverage (Figure 3, center
and right panels). The 6000-gene tests showed that both
metrics increase, allowing us to accurately detect mod-
ules even at lower recurrence rates. When testing 18000
gene assays, we randomly generated more gene pairs
with good exclusivity, which had a slight negative
impact on sensitivity at lower recurrence levels, but
overall, the method continued to perform well.

Comparison to other methods
We also compared the performance of our algorithm to
previously published methods based on calculating p-
values for exclusivity from a hypergeometric test or
from a log-likelihood ratio [11]. We benchmarked the
performance of all three methods on a synthetic data set
of 145 samples and 1290 genes, with two-gene modules

Figure 3 Simulation Results. One thousand simulations were run using varied numbers of genes and samples, for 5% and 10% recurrence
thresholds. As sample size and the number of genes assayed increase, our algorithm retains the ability to detect RME modules with high
sensitivity and precision.
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seeded in. These were created as described in the Meth-
ods section. We find that all three methods have high
sensitivity, but the two comparison methods have very
low precision, and are prone to reporting false positives
(Figure 2 in Additional file 1).
This can be explained as follows: The formula for cal-

culating the likelihood ratio between the frequency of
joint mutations relative to the best simpler model, as
given in Yeang, is:

χ(x1, x2) =
P(x1 = 1, x2 = 1)

P(x1 = 1)P(x2 = 1)

where the denominator is the empirical frequency of
mutations in the first and second genes respectively, and
the numerator is the empirical frequency of co-muta-
tion. Thus, for two genes that are not mutated in the
same samples, the likelihood ratio is 0 whether they
each have one mutation, or they both have many muta-
tions. Because of this characteristic, the likelihood
method almost always reports false positive modules of
genes that are exclusive by chance. Such modules
usually have much lower coverage than the true seeded
module. Since our algorithmic significance test considers
recurrence as well as mutual exclusivity, it much more
reliably excludes these false positives. The hyper-geo-
metric p-value calculations described in Yeang suffer
from a similar problem.
These other methods are also orders of magnitude

slower than algorithmic significance, since they require
many rounds of permutation testing to do multiple test-
ing correction. Averaged across ten trials, the likelihood-
based method had an average runtime of 899.377s, the
hypergeometric method had an average runtime of
409.543s, and the algorithmic significance method had
an average runtime of 0.779s. As described in the Meth-
ods section, algorithmic significance handles the pro-
blem of multiple testing using a penalty that takes very
little time to compute. In contrast, both of the other
methods require a step where the input data is per-
muted 1000 times and the number of combinatorial pat-
terns is assessed. Unsurprisingly, this step makes these
methods much slower.

Application to glioblastoma tumors
We next applied this method to data from genomic
assays run on 145 primary GBM tumor samples, using a
conservative recurrence threshold of 10%. The modules
were ranked by their algorithmic significance scores.
The top six modules listed in Figure 4 exceeded a signif-
icance cutoff of 2-50 (~= 8.88 × 10-16). Three of the six
modules contain components of core GBM pathways
reported by the TCGA consortium [1], which examined
a subset of the 145 tumors we analyzed. After identifica-
tion of modules was complete, we used a combination

of automated annotation and manual examination to
identify the common functional roles that module mem-
bers may play.

Rediscovery and expansion of known modules
The highest-scoring rediscovered module consisted of
alterations to the genes TP53 and MDM2 along with a
~5 Mb recurrently deleted region on chromosome 22
(Figure 4). TP53 regulates a variety of oncogenic pro-
cesses and mutations of TP53 have been reported in
most tumor types [26]. MDM2 inhibits TP53-mediated
transcription, and aberrations in the pair have often
been reported as mutually exclusive [10]. The associated
region on chr22 contains three potential driver genes.
Of the three, EP300 seems to be the most likely driver,
as its product is known to complex with and acetylate
the product of TP53, and its disruption leads to
decreased function of the TP53 product [27]. The other
two genes are not known to interact with the TP53
pathway.
We expect that alterations in any of these three mod-

ule components would disrupt the tumor-suppressive
activity of TP53. Though the relationship of MDM2 and
TP53 was central to one of the GBM pathways reported
by the TCGA Consortium, the link between EP300 dys-
regulation and the TP53 pathway has not been pre-
viously reported in glioblastoma.
We also observed that the pattern of regulation in this

module is concordant with our knowledge about the
tumor-suppressive activity of the TP53 pathway. Because
the information about the nature (up or down) of the
aberrations was not encoded into our matrix, this agree-
ment with prior knowledge serves as an additional vali-
dation of our results (Figure 4). We observe similar
concordance in other known pathways.
The second rediscovered module consists of the genes

ERBB2, EGFR, and C9orf66. Both ERBB2 and EGFR are
signal transduction proteins that induce the RTK/RAS
signaling pathway, causing unconstrained proliferation,
and they can interact directly to form a heterodimer
[28]. Our algorithm extended this pathway by adding
the largely unstudied C9orf66 which contains non-
synonymous point mutations in 15 tumors. This sug-
gests that the product of C9orf66 may play a tumor sup-
pressive role in the context of the RAS pathway.
The first module that does not directly map to a

known pathway consists of the genes CDKN2A and
CYP21B1. Deletions and mutations of CDKN2A, like
those observed in this cohort, are common in cancer.
The other gene, CYP21B1, was called as the representa-
tive for a small region of recurrent amplification on
chromosome 12. This region has previously been identi-
fied as a coordinately-regulated oncogenic cluster, both
in glioblastoma and other tumor types [29]. Among this
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Figure 4 Pathway context for RME modules found in glioblastoma. Genes colored red are recurrently mutated in such a way that we
expect loss of function, and those colored green are amplified or contain putatively activating mutations. The d-score is the algorithmic
significance value, with significance being equal to 2-d. 1st row: Alterations in MDM2, TP53, and EP300 each result in less tumor suppression from
TP53. EGFR and ERBB2 are both activators of the RTK/RAS/PI3K oncogenic signaling pathways. 2nd row: four new modules of size two that do not
directly correspond to a known pathway.
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cluster of adjacent genes is CDK4, a cyclin-dependent
kinase that is an inhibitor of the RB1 tumor suppressor
and known target of CDKN2A’s p16 product. The inter-
action between CDK4 and CDKN2A is part of the third
and final core pathway of GBM, as defined by the
TCGA consortium. We suggest that this interaction
may be responsible for the mutational pattern we
observe.

Newly Discovered Modules
In addition to finding RME modules that are compo-
nents of known pathways, we discovered modules that
are previously unreported. Several have intriguing func-
tional similarities, such as the pro-apoptotic roles of
both SHB, which may be driving the deletion of a small
region on chromosome 9, and PTEN. The discovery of
these modules provides intriguing hypotheses about the
related roles of these genes in tumorigenesis. Compre-
hensive descriptions and annotation of each module can
be found in Additional file 1.

EP300 predicts survival for patients with glioblastoma
To show how one might leverage our gene module dis-
covery process to produce clinically useful results, we
decided to investigate EP300 further. Our method sug-
gests that EP300 plays a role in the p53 pathway, which is
strengthened by previous studies that show its interaction
with TP53. Furthermore, EP300 aberrations have been
observed in other types of cancer, but it has not been
specifically linked to the progression of glioblastoma.
Thus,we hypothesized that expression of EP300 may

have value as a new prognostic indicator in glioblastoma.
To validate this, we examined the relation between
mRNA expression levels of EP300 and patient survival.
Using two datasets, one from the TCGA and a second
from the Netherlands (Erasmus), we examined the
expression of EP300 in 260 and 153 cases, respectively.
High EP300 expression was associated with improved
survival (Figure 5), with a median survival of 72 weeks in
the high-expressing cases vs. 55 weeks in the low-expres-
sing for the TCGA cohort (p = 0.030, log-rank) and 42
weeks vs. 17 weeks for the Erasmus cohort (p < 0.001,
log-rank). This survival prediction remained significant
when adjusted for patient age, the most significant prog-
nostic factor in glioblastoma [30] [p = 0.0141, HR = 1.81
(95 CI 1.12-3.18), for TCGA; p = 0.0112, HR = 1.55 (95
CI 1.12-2.08) for Erasmus, Cox proportional hazards
model]. Interestingly, expression levels of TP53 and
MDM2 do not have similar predictive value.

Conclusions
We have developed a sensitive, simple, and fast method
for automatically detecting functional modules in
tumors based on patterns of recurrent genomic aberra-
tion alone. The results indicate that integrative analyses
of genome characterization data have the potential to
identify groups of genes that have related roles in pro-
ducing cancer phenotypes. Furthermore, it is possible to
generate hypotheses about pathway membership, or
about the functional relevance of unexpected or unchar-
acterized genes by using co-occurrence in an RME mod-
ule as an indicator of function.

Figure 5 EP300 expression predicts survival for patients with glioblastoma. The role of EP300 in glioblastoma was validated by examining
gene expression profiling data from two independent datasets of glioblastoma, TCGA (A) and Erasmus (B). Kaplan-Meier curves for 260 patients
(A) and 153 patients (B) are shown. Samples were separated into high (green) and low (red) expression groups by recursive partitioning analysis.
Median survival times for each group are shown in parentheses.
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Our experiments do show that RME patterns are not
perfect. The fact that 30-70% of samples are not covered
by individual modules may be explained by several fac-
tors, including low-frequency mutations that fall below
our recurrence thresholds, the small proportion of genes
that were assayed for somatic point mutations, and lack
of comprehensive epigenomic assays, which could give
information on gene silencing. As the costs of massively
parallel sequencing drop, we expect more complete cov-
erage of a larger number of samples, which may resolve
the first two issues. A larger number of genes are also
slated to be assayed for abnormal methylation patterns
soon, and this algorithm can incorporate such data into
future analyses. These comprehensive whole-genome
data will undoubtedly improve our ability to detect
functional modules and eliminate any bias that comes
from operating on a reduced gene set.
We also note that while our method does not use

pathway, interactome, and other network information,
we do not suggest this method as a complete replace-
ment for analyses that do use these data. In fact, we
envision extensions of this method that may use back-
ground knowledge in a controlled and explicit way. At
this point, we also do not make use of aberration co-
occurrence, which may suggest a lack of functional simi-
larity. Such overlapping aberrations do not lend them-
selves to the same kind of clear and compelling
interpretation as RME patterns, but may be nonetheless
useful in future expansions of this method.
As the throughputs of technologies and the capacity

of data producing projects increases, so will the signifi-
cance and abundance of RME patterns. In anticipation
of this trend, this method has been designed at the
outset to accommodate an increasing diversity and
volume of genome characterization information. We
therefore anticipate that the method will be increas-
ingly useful in generating hypotheses that will drive
specific experiments and increase understanding of
cancer progression.

Additional material

Additional file 1: Supplemental Methods and Results.
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