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Abstract: This paper introduces a technique using a k-nearest neighbor (k-NN) classifier and hybrid
features extracted from acoustic emission (AE) signals for detecting leakages in a gas pipeline. The
whole algorithm is embedded in a microcontroller unit (MCU) to detect leaks in real-time. The
embedded system receives signals continuously from a sensor mounted on the surface of a gas
pipeline to diagnose any leak. To construct the system, AE signals are first recorded from a gas
pipeline testbed under various conditions and used to synthesize the leak detection algorithm via
offline signal analysis. The current work explores different features of normal/leaking states from cor-
responding datasets and eliminates redundant and outlier features to improve the performance and
guarantee the real-time characteristic of the leak detection program. To obtain the robustness of leak
detection, the paper normalizes features and adapts the trained k-NN classifier to the specific envi-
ronment where the system is installed. Aside from using a classifier for categorizing normal/leaking
states of a pipeline, the system monitors accumulative leaking event occurrence rate (ALEOR) in
conjunction with a defined threshold to conclude the state of the pipeline. The entire proposed
system is implemented on the 32F746G-DISCOVERY board, and to verify this system, numerous real
AE signals stored in a hard drive are transferred to the board. The experimental results show that
the proposed system executes the leak detection algorithm in a period shorter than the total input
data time, thus guaranteeing the real-time characteristic. Furthermore, the system always yields high
average classification accuracy (ACA) despite adding a white noise to input signal, and false alarms
do not occur with a reasonable ALEOR threshold.

Keywords: pipeline leak detection; acoustic emission analysis; signal classification; k-NN algorithm;
hybrid AE features

1. Introduction

Gas pipelines play a vital role in the fuel transportation field. Even though they are
designed and assembled according to strict technical principles [1,2], a gas leak could
still occur due to material aging and corrosion [3,4], leading to violent explosions causing
injuries, human deaths, and pollution of the environment. Hence, a real-time gas pipeline
leak detection system is extremely important to reduce catastrophic consequences.

In early times, acoustic emission (AE) was mainly used for detecting growing cracks
and discontinuities in materials because it was defined as releasing elastic energies in
a deformed material [5]. However, AE is currently referred to as a phenomenon where
transient elastic waves are generated by the rapid release of energy from localized sources
within a material, or the transient elastic waves so generated [5]. As a result, a leak is also
the source of AEs and is detectable with AE equipment. This type of AE source is sometimes
called a secondary source to distinguish it from the classic AEs which are caused by material
deformation [5]. The AE-based leak detection is therefore feasible. Consequently, many
researchers have applied this mechanism to detect a leak in a gas pipeline [6–13]. The leak
detection using AE signals is extremely beneficial because it is a non-destructive technique,
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thus it does not affect the working system [5,14–16]. Additionally, the symptom of small
leakage is often extraordinarily subtle; for example, a small leak can be caused by an initial
crack that does not create an obvious rupture. Hence, AE sensors can be applicable in this
case because they offer high sensitivity regarding any early abnormality [17].

Researchers tend to adopt a data-driven approach that trains a classifier using AE
features extracted from AE signals to separate pipeline health states to normal or leak-
ing. This approach is appropriate because an AE signal acquired from a gas pipeline
is non-stationary [18,19]. Moreover, AE waves attenuate along the pipeline from their
emission source to AE sensors [20]; they vary with the environmental conditions of pres-
sure, flow rate, and temperature [21]. Thus, it is challenging to draw an explicit model to
identify a leak relying on AE signals exclusively. A classification model learns the leakage
manifestation from the supplied training data; hence, it can identify the leak detection
problem effectively. However, the computational complexity of existing leak detection
methodologies restricts their exploitation in real-time applications, despite the fact that
they show high classification accuracy. For example, the Wavelet transform and the signal
decomposition algorithms are used to analyze AE signals, and machine learning-based
models are used for state classification [10–12,22], which can improve accuracy, but their
computation is highly complex.

A long gas transportation system usually comprises numerous pipeline segments
with diversity in size, shape, and material. Many sensors are spread over that system to
monitor the health of different pipeline segments. A wireless-based leak detection system
with a server receiving and exploring signals dispatched from remote sensor nodes, as
proposed by [23], would not be suitable for AE signal application due to the overload of
communication and computation. Therefore, a sensor node should be a smart integrated
system that can itself inspect a pipeline segment and report only the health state of pipeline
to its server instead of sending a massive amount of AE signals to the server. The advantage
of the integration is that it does not require a complex communication network topology
between the sensor nodes and the server. Nonetheless, the integrated system must be
low-power and compact, because if many devices are installed, they will result in high
energy consumption and a bulky system. This is similar to the design presented in [24],
which integrated a propane sensor with a low-power system-on-chip device. However, a
propane sensor could only detect an obvious gas leak nearby, thus challenging the early
gas leakage detection in a large pipeline network, where a tiny leak would occur at any
place and any time.

Working from the demand for gas pipeline leak detection and the achievements and
limitations of current studies, this work presents a microcontroller unit (MCU)-based
system designed to diagnose leakage for a gas pipeline in real-time. The system analyzes
AE signals locally to identify a leak and just issues a warning of state changing. Because an
MCU-based system only supports a restricted resource in memory and execution speed for
computing implementation, the paper exploits a k-nearest neighbor (k-NN) classifier trained
by using hybrid AE features directly extracted from raw AE signals. The k-NN algorithm
can execute on a limited-resource platform in real-time because it is made up of simple
computations and neighbor-searching loops. To optimize the algorithm further, a filtering
technique is exploited to remove the least useful elements from the feature pool relying on
the three-sigma rule [25] and the Kullback–Leibler (KL) distance [26], which reduces the
number of computation cycles and loops in the correspondingly implemented program,
thus accelerating the proposed detection system. The selected features are normalized as
well; hence, a trained k-NN model can be applied to various sensor nodes along a pipeline
network. Moreover, the trained model can be updated in run-time to adapt to a sensor
installation location or any change in the working conditions.

Prior to implementing the leak detection program on an MCU-based hardware plat-
form, the proposed methodology is offline synthesized using the Matlab 2019a software
and AE signal datasets recorded at a gas pipeline testbed under diverse experimental
scenarios. Thus, the essential parameters of the k-NN classifier (training features and
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number of nearest neighbors) are chosen to ensure not only the real-time characteristic, but
also high accuracy of the leak detection program. Aside from ambient noise, any external
factor that can cause the vibrations in the pipeline can trip AE signals. For instance, a
random pipe collision triggers a mechanical vibration that generates plentiful elastic waves
propagating through the pipeline. AE sensors with enough sensitivity can capture signals
resulting from those elastic waves, thus interfering with measured target signals. Hence, a
k-NN classifier based on AE signals is subjected to discrete events near the testing pipeline,
generating false alarms. To address this problem, the current work proposes monitoring the
accumulative leaking event occurrence rate (ALEOR) from the output of the state classifier.
A final decision of pipeline health state is based on the comparison between the instant
ALEOR and a defined threshold, hence avoiding a false alarm.

Finally, the work evaluates the gas pipeline leak detection system constructed from
the proposed methodology on the 32F746G-DISCOVERY board (STMicroelectronics, Quak-
ertown, PA, USA) using recorded AE signal datasets. Experimental results demonstrate
that the system can identify a leak in real-time with high average classification accuracy
under various pressure conditions, and its robustness is satisfactory, even with adding
white noise to the input AE signal. Hence, the proposed MCU-based system is applicable
for gas leak detection in real applications.

2. AE Signal Data Acquisition

A pipeline testbed is established to simulate the gas leakage as shown in Figure 1.
The testbed is a part of a real gas pipeline system (see Figure 1c) made from stainless steel
304 pipelines with sizes of 114.3 millimeters (mm) and 6.02 mm in outer diameter and wall
thickness, respectively. To create various leaks, we designed a leak tool as shown in Figure 1a,
which is assembled to the testing pipeline. This tool is composed of a valve and an orifice
of diameter 0.3 mm, 0.5 mm, or 1 mm (see Figure 1b). Hence, the normal/leaking states of
the pipeline are connected to closed/open valve positions.
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Figure 1. Pipeline testbed: (a) leak tool, (b) orifices, (c) test section.

The experimental configuration is shown in Figure 2. To capture AE signals, two R15i-
AST sensors (AE channels), which were manufactured by MITRAS Group, Inc (Princeton
Junction, NJ, USA), are mounted at downstream and upstream locations on the surface
of the testing pipeline. These sensors can detect any elastic wave in a range of operating
frequencies, which are 50 kilohertz (kHz) to 400 kHz [27]. Those elastic waves can be
caused by diverse sources such as leak noise [10], negative pressure wave [4], ambient
noise, and other vibrations of the pipe wall. Such R15i-AST sensors are selected because
their operating frequency range covers the frequency ranges of AE waves propagating in
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metal objects, which are from 100 kHz to 300 kHz, as stated in the BSI standard BS EN
15,856 [15]. AE signals are sampled at 1 megahertz (MHz) by the NI-9223 module. The
sampling frequency of 1 MHz is more than double the maximum operating frequency of
sensors, thus satisfying the Nyquist–Shannon sampling theorem [28] about converting
analog signals into digital signals.
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Figure 2. Experimental setup: (a) test section, (b) data acquisition system. (R15i Ch1 and R15i Ch2
are acoustic emission (AE) channels, P is a pressure meter).

After finishing the hardware setup, data recording software is installed on the com-
puter to control the whole data acquisition. Additionally, we exploit the pencil lead break
technique [29] to examine both sensitivity of sensors and the whole AE equipment. This
ensures the reliability of AE signal datasets prior to storing them in the hard drive.

In the experiment, the three orifices are alternated to simulate different leakages at
three inner relative pressures of 700 kPa, 1300 kPa, and 1800 kPa, resulting in three normal
states of the testing pipeline (closed valve) and nine diverse leaking states (open valve).
Specifically, data acquisition has been performed as follows. First, an orifice was installed,
and the pipeline system was configured at a pressure level of 700 kPa, 1300 kPa, or 1800 kPa,
and this condition was kept relatively stable before acquiring AE signals. At this time,
the valve of the leak tool was closed to simulate the normal state of the pipeline. For
this state, the signals were recorded for 2 min. Next, the valve was opened to simulate
a leakage. Here, the data corresponding to a leaking state were collected after pressure
stabilization. Figure 3 presents gas flow rates measured in front of the testing pipeline
during the experimental stages.
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3. Leak Detection Methodology

The overall gas pipeline leak detection diagram is shown in Figure 4. It is composed
of two processes: one is offline, and the other is online. The offline analysis synthesizes and
optimizes the leak detection algorithm, while the online process experiments and verifies
the detection. We will describe the analysis blocks of the algorithm below.
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3.1. Hybrid Feature Pool and Feature Selection

To detect the leaking state of a gas pipeline, time and frequency domain statistical
features are extracted, as shown in Table 1, from raw AE signals utilized as diagnosis
leakage signatures. We therefore obtain a hybrid feature pool of size R ×M, where R is the
number of feature types (R = 12, as shown in Table 1), and M is the number of analyzed
signal frames. The value M should be large enough to reflect the statistical discrimination
of the normal/leaking states precisely.

Table 1. Typical features for leak detection.

Features Equations Features Equations Features Equations
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∑
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Where x is an input signal, N is the total number of samples, X is the short-time spectral amplitude, f is the frequency, M is the total number

of discrete frequencies, and qn = x2
n/

N−1
∑

n=0
x2

n.

Next, the feature pool should be refined to enhance the pipeline health classification
quality. Outliers, data points that differ significantly from the other aggregated data points
in the same class can cause serious problems in statistical analyses. The existence of
outliers in a feature extracted from an AE signal measured at a gas pipeline is inevitable,
resulting from both exterior and interior factors. The exterior factor could be variability in
the measurement. For example, power spikes can interfere with sensed signals, causing
outliers in AE features. This problem can be fixed by perfect experimental configuration
and the exploitation of high-quality equipment. Outliers may be created by interior factors
of the pipeline system, such as burst emissions appearing in high amplitude and energy in
AE signals. A gas pipeline itself generates such a signal due to the disturbance between
inner gas flow and the gas flow–pipe wall interaction. Nevertheless, outliers should be
eliminated from features used for training a classifier because they do not statistically
characterize the normal/leaking state discrimination, thus leading to the deterioration
of the classification performance. This paper assumes a normal distribution for the AE
features; outliers can therefore be detected by the three-sigma rule [25]. This rule is
expressed as follows:

Pr
(∣∣Yi − µyi

∣∣ ≤ 3σyi

)
≈ 0.99. (1)
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where Yi is an observation from a normally distributed feature yi; µyi and σyi are the mean
and standard deviation of the distribution, respectively; i = 1, 2, . . . , R. According to (1), if
|Yi − µyi| > 3σyi, the value Yi is considered an outlier and it is removed from the set of
yi-feature observations. After unwanted observations are eliminated from the yi-vector,
the length of yi-vector is shrunk as Mi* (Mi* ≤ M). Because the feature types distribute
dissimilarly, the outlier elimination might return different lengths Mi* of the yi-vectors
(i = 1, 2, . . . , R). As a result, we compensate new satisfactory observations for the feature
pool to gain Mi* = M. The feature pool size is therefore intact (R×M); however, its elements
are refined, which satisfies (1).

Furthermore, all the extracted features may not be equally effective in highly accurate
leak detection. Inferior signatures not only impair the classification accuracy but also
increase the computational complexity. Thus, we need to filter out redundant features
from the pool to enhance the detection performance while reducing the computational
load. This paper scores features using the Kullback–Leibler distance [26] and eradicates
low-ranked elements in the feature pool. The KL distance is calculated as follows:

dKL = D12 + D21;
D12 = ∑ p(yi|w1 ) ln p(yi |w1 )

p(yi |w2 )
; D21 = ∑ p(yi|w2 ) ln p(yi |w2 )

p(yi |w1 )
.

(2)

where dKL is the KL distance, w1, w2 are two classes indicating the normal and leaking
states, respectively; yi = [yi1, yi2, . . . , yiM]T is a sort of yi-feature in the refined feature pool,
p is a conditional probability density function. Based on (2), we retain features with the
dominant KL distance and remove the others in the feature pool, because the greater the
KL distance is, the more discriminative the feature. Finally, we retrieve a purified feature
pool with size r ×M, where r is the number of high-scored features (r ≤ R).

3.2. Leak Detection Using a k-NN Classifier and Accumulative Leaking Event Occurrence Rate

With the purified feature pool, we utilize a k-NN classifier to distinguish the two
normal/leaking states, in which an obscure new class is assigned to the most common
class among its k nearest neighbors using the Manhattan distance given by:

δj =
r

∑
n=1

∣∣zn − yn,j
∣∣. (3)

where δj is the Manhattan distance between the input feature vector z = {z1, z2, . . . , zr} and
the jth training feature vector y*j = {y1j, y2j, . . . , yrj}, and j = 1, 2, . . . , M. The k-NN classifier
categorizes the input z into the major class in its k nearest neighbors corresponding to k
minimum distances δj (k < M).

The detection approach aims at the extremely noisy industrial environment. A k-NN
classifier is sensitive to noise involving ambient noise and discrete events and may subse-
quently yield a false alarm (the classified state is “leaking” but the true state is “normal”)
or miss a true leaking event (the leakage is actually happening); thus, a normal/leaking
state decision should depend on monitoring the ALEOR. The leak detection criterion is
given by:

ALEOR =
∆B
∆t
≥ γ, ∆t = t2 − t1. (4)

where ∆B is the number of leaking events in a time period ∆t = t2 − t1, which is from the
moment t1 to the moment t2, and γ is a threshold to issue a warning of pipeline health state.
This threshold is flexibly adjusted by pipeline operators in their specific real environment.

4. Implementation of Proposed Gas Pipeline Leak Detection on an MCU-Based
Architecture
4.1. Offline Analysis of AE Signal Datasets

Prior to developing the real-time gas leak detection program with the proposed
methodology on an MCU-based architecture, we analyzed offline AE signal datasets to
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search for a set of optimal parameters, thus enhancing the performance of the real-time
leak detection program. The optimized parameters are the feature pool for training the
k-NN classification model and the number k (the number of nearest neighbors used for the
k-NN classifier). We perform the offline analysis process using a number of AE datasets, as
shown in Table 2.

Table 2. Number of datasets used for the offline analysis and evaluation.

P0 P1 P2

NFA NFE NFA NFE NFA NFE

L0 600 30,000 600 30,000 600 30,000
L1 200 10,000 200 10,000 200 10,000
L2 200 10,000 200 10,000 200 10,000
L3 200 10,000 200 10,000 200 10,000

For feature selection, we should first normalize extracted features to place them on
the same unit basis. The feature normalization is expressed by the following equation:

ynew =
yold − µyn

σyn
. (5)

where yold, ynew are original and rescaled features, respectively, and µyn, σyn are successively
mean and standard deviation of the feature estimated from samples belonging to the normal
pipeline state.

Table 3 exhibits feature scores using the KL distance method. The most highly ranked
features are STE, RMS, AVA, and STD, and these are returned in every pressure condition.
Hence, we only consider these kinds of features to build the real-time gas leak detection
program. Figure 5 illustrates the 3-D visualization of three features with the highest
scores under diverse pressure conditions, in which the normal/leaking states are obviously
separated for all the cases. Moreover, we know that a large k may improve performance;
however, too large a k destroys the locality. Therefore, to choose k appropriately, we employ
the available k-NN fitting function “fitcknn” supported by Matlab 2019a to trial different
values of k using the analysis datasets and we obtain k = 25.

Table 3. Feature score based on KL distance.

STE RMS AVA MEA STD ZCR ETY KUS SKE SPP SPC SPS

P0 57.7 36.5 37.3 −30.2 36.2 10.8 4.0 6.9 −18.0 1.8 7.0 8.9
P1 71.9 44.2 44.4 −0.2 44.0 10.2 −1.7 3.3 −9.1 2.0 7.8 7.6
P2 77.7 47.2 47.4 5.1 47.1 13.3 −5.6 1.1 −6.5 3.3 11.1 9.0
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The datasets belong to a signal channel (R15i Ch1 or R15i Ch2), corresponding to
three pressure conditions: 700 kPa (P0), 1300 kPa (P1), and 1800 kPa (P2), and pipeline
health states: normal (L0), leaking (0.3 mm (L1), 0.5 mm (L2), and 1 mm (L3)), which were
recorded in Section 2; NFA and NFE are the numbers of frames for the offline analysis and
experiment respectively, and a frame consists of 8192 samples stored in the hard drive.

4.2. Gas Pipeline Leak Detection Implementation on an MCU-Based Hardware Architecture
4.2.1. Overview of the Experimental Hardware Design with an MCU Used for Real-Time
Gas Pipeline Leak Detection

Figure 6 illustrates an MCU-based hardware architecture to implement the proposed
method for real-time gas pipeline leak detection. A sensor channel is connected to a
data acquisition (DAQ) module which converts analog AE signals to digital AE signals
and directly writes them to a synchronous random-access memory (SRAM) through a
communication module, along with a direct memory access (DMA) channel available in
the MCU; hence, the leak detection program can investigate AE signals in real-time. We
also design a portable memory (SDcard) to store some pre-defined parameters of the leak
detection program and its runtime log files used for later analyses. Hence, the program can
be adjusted and updated quickly. Additionally, a liquid crystal display (LCD) is installed to
indicate the output of the diagnostic program. This entire experimental design is embedded
in the 32F746G-DISCOVERY board, as shown in Figure 7.
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4.2.2. Real-Time Gas Leak Detection Implementation on the 32F746G-DISCOVERY Board

Due to the limitation of the MCU in internal memory and operating speed, we use
integer instead of floating-point format for the feature calculation and the k-NN classifi-
cation, thus utilizing the memory economically and lightening the computation load. In
other words, a real feature value is multiplied by 10 before rounding it, which sustains a
one-decimal point precision for the vectors of rounded features, while avoiding reduction
in the classification quality.

A trained classifier leans heavily on its training datasets, while AE signals acquired
from a pipeline are prone to variation because the inner flow rate and pressure change
constantly. The signals also fluctuate according to the sensor installation location and the
operating moment. To reconcile these differing environments, we must adjust the trained
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leak detection model to its real and specific operational conditions. Therefore, the paper
proposes updating the classifier by modifying the two parameters µyn and σyn related to
the normal pipeline state in run-time, and which are employed in (5). Figure 8 shows the
feature calculation and k-NN classification module of a real-time gas pipeline leak detection
program implemented on the 32F746G-DISCOVERY board.
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5. Experimental Results

To evaluate the gas pipeline leak detection system quickly, we emulate a real data
acquisition device (DAQ) using a computer program which dispatches recorded AE signal
datasets, whose description is shown in Table 2, through an available communication
channel to the 32F746G-DISCOVERY board. This does not affect the objective assessment
because the datasets have been acquired from a practical pipeline testbed under various
operating conditions. We here figure out three aspects: detection accuracy, real-time
characteristic, and detection robustness, because those are key factors to apply a leak
detection system for the real environment.

5.1. Detection Accuracy and Real-Time Characteristic

Figure 9 shows confusion matrices of experimental results returned by the leak detec-
tion program running on the 32F746G-DISCOVERY board, and Table 4 illustrates classifi-
cation accuracy and execution time for evaluation scenarios. The accuracy, as averaged
over the two sensor channels (R15i Ch1 and Ch2), and that of various pipeline states (L0,
L1, L2, and L3), is relatively high at better than 98% for every pressure condition (P0, P1,
and P2). Besides, the mean execution time (tE = 109 s) is less than the total experimental
dataset duration (tD = 123 s). This demonstrates the real-time characteristic of the imple-
mented detection system that does not miss any data and returns a timely result during the
analysis operation. Furthermore, the ALEOR is monitored while examining dataset pairs
(L0, L1), (L0, L2), and (L0, L3) subsequently (see Figure 10). This plot reveals the correct
identification of pipeline states: normal (L0), leaking (L1, L2, and L3), exploiting a threshold
γ = 10 (see red dash line in Figure 10). The leaking state is decided only if ALEOR exceeds
the threshold, despite the fluctuation below it. Therefore, no false alarm is reported in the
experiment and the leaking state is also indicated punctually.
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Table 4. Classification accuracy and execution time.

P0 P1 P2

A tD tE A tD tE A tD tE

R15i
Ch1

L0 97.2 246 214 99.7 246 214 99.8 246 214
L1 92.8 82 74 99.0 82 74 99.3 82 74
L2 100 82 74 100 82 74 100 82 74
L3 100 82 74 100 82 74 100 82 74

R15i
Ch2

L0 99.9 246 214 100 246 214 100 246 214
L1 99.7 82 74 100 82 74 100 82 74
L2 100 82 74 100 82 74 100 82 74
L3 100 82 74 100 82 74 100 82 74

Average 98.7 123 109 99.8 123 109 99.9 123 109
Where tD and tE are the total time of datasets and execution time, respectively, measured in seconds. A is
classification accuracy given by: A = 100 × NC/NFE [%], NC is the number of correctly classified frames.
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5.2. Detection Robustness

The result as exhibited in Table 4 and Figures 9 and 10 is obtained by using the test
datasets under the same recording condition as the training datasets. As a result, the
effectiveness of the proposed leak detection system may not be adequately demonstrated,
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because in a real gas pipeline network, there are always irregular disturbances leading to
AE signal modifications, such as operating mode variation (inner pressure or flow rate),
noise interference, etc. Measurement of an AE sensor can be modelled as follows:

z = x + η (6)

where z and x are measured and original signals, respectively, and η represents any signal
modification including ambient noise and discrete events. We assume the normal distri-
bution function for both x and η. According to the probability rule specified by [30], z
distributes normally also, and its mean and standard deviation are sequentially:

µz = µx + µη ; σz =
√

σ2
x + σ2

η (7)

where µz, σz, µx, σx, µη , ση are means and standard deviations of z, x, and η, respec-
tively. Equation (7) shows that the abnormal disturbance distorts original signals, thus
deteriorating the signal-based leak detection model.

To verify the robustness of the proposed leak detection method, we add white noise to
the experimental datasets prior to conducting the real-time leak detection on the 32F746G-
DISCOVERY board. This noise is referred to as the signal disturbance η, simulated by an
available function in the Matlab software with a rule below:

µη = 0; ση = ρ× σxn (8)

where σxn is the standard deviation of normal state signal (acquired when the pipeline is
healthy), and ρ is a proportion ratio. We set µη = 0 in (8) because the mean parameter of a
signal is mainly related to low frequency components of that signal, while the operating
frequency range of R15i sensors is from 50 kHz to 400 kHz. The low frequency band (below
50 kHz) is not examined and the influence of µη is therefore relatively minor or µη ≈ 0.
Figure 11 illustrates the signal distortion if adding a white noise η according to (6) and
(8) where ρ = 2. We can easily realize that the distorted signal energy is greater than the
original because of the added noise in Figure 11.
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Figure 11. A signal after adding a white noise with ρ = 2.

We alter ρ and observe the performance deterioration of the trained classifier. Figure 12
shows the dependence of receiver operating characteristic (ROC) and average classification
accuracy (ACA) on ρ. The computation is calculated on all the datasets of the two sensor
channels in two cases: with updating µyn and σyn (see Section 4.2.2) and without updating.
The classification performance substantially declines at slight values of ρ if we do not
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adapt the model to the increasing added white noise (see Figure 12a and the blue dash dot
line in Figure 12c). In contrast, the classifier can still work acceptably until ρ = 70 if we
adjust µyn and σyn (see Figure 12b and the red solid line in Figure 12c). With ρ = 10, the
resulting classification accuracy is above 90% (see Figure 12c) and the pipeline state can be
exactly identified by the ALEOR with a threshold γ = 10, as shown in Figure 13 for every
experimental condition. In short, the proposed methodology can ensure the robustness of
the leak detection system.
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Figure 13. ALEOR under different pressure conditions: (a) P0, (b) P1, (c) P2 (After adding a white
noise with ρ = 10).

Although the proposed method can sustain a high classification performance with
small values of ρ, the classification performance still deteriorates gradually according to
the increase in ρ and the classifier cannot precisely operate with ρ > 70 which causes severe
distortion of the acquired signals. Therefore, we should configure the testbed to resemble
an applied real pipeline before gathering datasets for training the classifier, thus obtaining
an adequate leakage detector. The greater the similarity between the testbed and the real
pipeline, the more accurate the detection is.

6. Conclusions

A complete system is offered for real-time gas pipeline leak detection in the paper.
First, the system offline analyzed recorded AE signals sampled at 1 MHz. The process
configured a hybrid feature pool and normalized its elements using the mean and standard
deviation of the set of feature observations related to normal pipeline health. Then, the
pool was purified using the three-sigma rule and the Kullback–Leibler distance to obtain
the most discriminative signatures. Next, the system identified the pipeline health states
(normal/leaking) with an input vector of features, by exploiting a k-nearest neighbor
classifier that seeks the purified feature pool for the signatures closest to the input vector,
based on the Manhattan distance. To avoid issuing a false alarm, the system decided
a pipeline state via monitoring the accumulative leaking event occurrence rate and a
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predefined threshold. Finally, the total proposed leak detection method was embedded
in a compact MCU-based hardware platform for real-time leak detection. The detection
accuracy, the real-time characteristic, and the robustness of the introduced gas pipeline
leak detection system have been evaluated. The experimental results showed that the
system indicated pipeline health states robustly in a quick enough timeframe for real-time
application. Thus, this system can be applied for inspecting pipeline health in a real gas
pipeline network.

The testbed used in this paper for collecting AE signals is a part of a real gas pipeline
network. Hence, the resulting AE signals are not simple signals generated by the pipeline
leakage simulation in a laboratory. They do not only contain information about pipeline
states (normal or leaking), but also depend on practical gas transportation and systematic
behavior. Additionally, a noisy measurement location and wave attenuation could conceal
symptoms of leakage in recorded signals. This challenges the signal investigation because
the relation between the leakage phenomenon and AE signals is unclear in the initial
analysis stages. Therefore, a short pipeline was chosen in the paper to easily separate signal
classes related to pipeline states corresponding to different experimental scenarios, hence
conveniently proposing a leak detection method as well as evaluating experimental results.
However, it is believed that the proposed technique can effectively monitor a long pipeline
in a real application. The pipeline length depends on the signal detection ability of the AE
sensor—their sensitivity and a specific working environment. These parameters can be
estimated by using pencil lead breaking tests.

Author Contributions: Conceptualization, T.B.Q. and J.-M.K.; data curation, T.B.Q.; formal analysis,
T.B.Q.; funding acquisition, J.-M.K.; methodology, T.B.Q. and J.-M.K.; software, T.B.Q.; supervision,
J.-M.K.; validation J.-M.K.; visualization, T.B.Q.; writing—original draft, T.B.Q.; and writing—review
and editing, J.-M.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Institute of Energy Technology Evaluation and
Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea
(No. 20192510102510).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McAllister, E.W. (Ed.) Pipeline Rules of Thumb Handbook: Quick and Accurate Solutions to Your Everyday Pipeline Problems, 7th ed.;

Elsevier: Amsterdam, The Netherlands; Gulf Professional: Boston, MA, USA, 2009; ISBN 978-1-85617-500-5.
2. Antaki, G.A. Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair; CRC Press: Boca Raton, FL,

USA, 2003; ISBN 978-0-203-91115-0.
3. EGIG. Gas Pipeline Incidents; European Gas Pipeline Incident Data Group: Groningen, The Netherlands, 2018.
4. Murvay, P.-S.; Silea, I. A survey on gas leak detection and localization techniques. J. Loss Prev. Process Ind. 2012, 25, 966–973.

[CrossRef]
5. Miller, R.K.; Hill, E.K.; Moore, P.O.; American Society for Nondestructive Testing (Eds.) Acoustic Emission Testing, 3rd ed.;

Nondestructive Testing Handbook; American Society for Nondestructive Testing: Columbus, OH, USA, 2005; ISBN 978-1-57117-
106-1.

6. Li, Z.; Zhang, H.; Tan, D.; Chen, X.; Lei, H. A novel acoustic emission detection module for leakage recognition in a gas pipeline
valve. Process Saf. Environ. Prot. 2017, 105, 32–40. [CrossRef]

7. Xu, Q.; Zhang, L.; Liang, W. Acoustic detection technology for gas pipeline leakage. Process Saf. Environ. Prot. 2013, 91, 253–261.
[CrossRef]

8. Jin, H.; Zhang, L.; Liang, W.; Ding, Q. Integrated leakage detection and localization model for gas pipelines based on the acoustic
wave method. J. Loss Prev. Process Ind. 2014, 27, 74–88. [CrossRef]

9. Song, Y.; Li, S. Leak detection for galvanized steel pipes due to loosening of screw thread connections based on acoustic emission
and neural networks. J. Vib. Control 2018, 24, 4122–4129. [CrossRef]

http://doi.org/10.1016/j.jlp.2012.05.010
http://doi.org/10.1016/j.psep.2016.10.005
http://doi.org/10.1016/j.psep.2012.05.012
http://doi.org/10.1016/j.jlp.2013.11.006
http://doi.org/10.1177/1077546317720319


Sensors 2021, 21, 367 14 of 14

10. Xiao, R.; Hu, Q.; Li, J. Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector
machine. Measurement 2019, 146, 479–489. [CrossRef]

11. Sun, J.; Xiao, Q.; Wen, J.; Zhang, Y. Natural gas pipeline leak aperture identification and location based on local mean decomposi-
tion analysis. Measurement 2016, 79, 147–157. [CrossRef]

12. Sun, J.; Xiao, Q.; Wen, J.; Wang, F. Natural gas pipeline small leakage feature extraction and recognition based on LMD envelope
spectrum entropy and SVM. Measurement 2014, 55, 434–443. [CrossRef]

13. Zhu, S.-B.; Li, Z.-L.; Zhang, S.-M.; Liang, L.-L.; Zhang, H.-F. Natural gas pipeline valve leakage rate estimation via factor and
cluster analysis of acoustic emissions. Measurement 2018, 125, 48–55. [CrossRef]

14. Datta, S.; Sarkar, S. A review on different pipeline fault detection methods. J. Loss Prev. Process Ind. 2016, 41, 97–106. [CrossRef]
15. BS EN 15856. Non-Destructive Testing—Acoustic Emission—General Principles of AE Testing for the 416 Detection of Corrosion with

Metallic Surrounding Filled with Fluid; European Standard: Brussels, Belgium, 2010.
16. Baroudi, U.; Al-Roubaiey, A.A.; Devendiran, A. Pipeline leak detection systems and data fusion: A survey. IEEE Access 2019, 7,

97426–97439. [CrossRef]
17. Gholizadeh, S.; Leman, Z.; Baharudin, B.T.H.T. A review of the application of acoustic emission technique in engineering. Struct.

Eng. Mech. 2015, 54, 1075–1095. [CrossRef]
18. Wang, L.; Gao, X.; Liu, T. Gas pipeline small leakage feature extraction based on LMD envelope spectrum entropy and PCA–

RWSVM. Trans. Inst. Meas. Control 2016, 38, 1460–1470. [CrossRef]
19. Xiao, Q.; Li, J.; Sun, J.; Feng, H.; Jin, S. Natural-gas pipeline leak location using variational mode decomposition analysis and

cross-time–Frequency spectrum. Measurement 2018, 124, 163–172. [CrossRef]
20. He, P. Simulation of ultrasound pulse propagation in lossy media obeying a frequency power law. IEEE Trans. Ultrason. Ferroelect.

Freq. Contr. 1998, 45, 114–125. [CrossRef]
21. Rienstra, S.W.; Hirschberg, A. An Introduction to Acoustics. Eindh. Univ. Technol. 2004, 18, 19.
22. Yan, Y.; Shen, Y.; Cui, X.; Hu, Y. Localization of multiple leak sources using acoustic emission sensors based on MUSIC algorithm

and wavelet packet analysis. IEEE Sens. J. 2018, 18, 9812–9820. [CrossRef]
23. Dong, L.; Qiao, Z.; Wang, H.; Yang, W.; Zhao, W.; Xu, K.; Wang, G.; Zhao, L.; Yan, H. The gas leak detection based on a wireless

monitoring system. IEEE Trans. Ind. Inf. 2019, 15, 6240–6251. [CrossRef]
24. Chraim, F.; Bugra Erol, Y.; Pister, K. Wireless gas leak detection and localization. IEEE Trans. Ind. Inf. 2016, 12, 768–779. [CrossRef]
25. Pukelsheim, F. The Three Sigma Rule. Am. Stat. 1994, 48, 88–91. [CrossRef]
26. Koutroumbas, S.T.K. Pattern Recognition, 4th ed.; Academic Press: Cambridge, MA, USA, 2008.
27. Mistras Group. R15I-AST Sensor; Mistras Group, Inc.: Princeton Junction, NJ, USA, 2015.
28. Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2010; ISBN

978-0-13-198842-2.
29. Ranganayakulu, S.V.; Goud, B.S.; Sastry, P.V.; Kumar, B.R. Calibration of acoustic emission system for materials characterization.

Univers. J. Mater. Sci. 2015, 3, 62–69. [CrossRef]
30. Lemons, D.S.; Langevin, P. An Introduction to Stochastic Processes in Physics: Containing “On the Theory of Brownian Motion” by Paul

Langevin, Translated by Anthony Gythiel; Johns Hopkins University Press: Baltimore, MD, USA, 2002; ISBN 978-0-8018-6866-5.

http://doi.org/10.1016/j.measurement.2019.06.050
http://doi.org/10.1016/j.measurement.2015.10.015
http://doi.org/10.1016/j.measurement.2014.05.012
http://doi.org/10.1016/j.measurement.2018.04.076
http://doi.org/10.1016/j.jlp.2016.03.010
http://doi.org/10.1109/ACCESS.2019.2928487
http://doi.org/10.12989/sem.2015.54.6.1075
http://doi.org/10.1177/0142331215599248
http://doi.org/10.1016/j.measurement.2018.04.030
http://doi.org/10.1109/58.646916
http://doi.org/10.1109/JSEN.2018.2871720
http://doi.org/10.1109/TII.2019.2891521
http://doi.org/10.1109/TII.2015.2397879
http://doi.org/10.2307/2684253
http://doi.org/10.13189/ujms.2015.030402

	Introduction 
	AE Signal Data Acquisition 
	Leak Detection Methodology 
	Hybrid Feature Pool and Feature Selection 
	Leak Detection Using a k-NN Classifier and Accumulative Leaking Event Occurrence Rate 

	Implementation of Proposed Gas Pipeline Leak Detection on an MCU-Based Architecture 
	Offline Analysis of AE Signal Datasets 
	Gas Pipeline Leak Detection Implementation on an MCU-Based Hardware Architecture 
	Overview of the Experimental Hardware Design with an MCU Used for Real-Time Gas Pipeline Leak Detection 
	Real-Time Gas Leak Detection Implementation on the 32F746G-DISCOVERY Board 


	Experimental Results 
	Detection Accuracy and Real-Time Characteristic 
	Detection Robustness 

	Conclusions 
	References

