
Spatial Decomposition of Translational Water−Water Correlation
Entropy in Binding Pockets
Crystal N. Nguyen,† Tom Kurtzman,‡,§ and Michael K. Gilson*,†

†Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California
92093-0736, United States
‡Department of Chemistry, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York,
New York 10468, United States
§Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, New York 10016, United States

ABSTRACT: A number of computational tools available
today compute the thermodynamic properties of water at
surfaces and in binding pockets by using inhomogeneous
solvation theory (IST) to analyze explicit-solvent simulations.
Such methods enable qualitative spatial mappings of both
energy and entropy around a solute of interest and can also
be applied quantitatively. However, the entropy estimates of
existing methods have, to date, been almost entirely limited to
the first-order terms in the IST’s entropy expansion. These
first-order terms account for localization and orientation of
water molecules in the field of the solute but not for the
modification of water−water correlations by the solute. Here,
we present an extension of the Grid Inhomogeneous Solvation
Theory (GIST) approach which accounts for water−water translational correlations. The method involves rewriting the two-
point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach.
Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of
the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water−water correlations relative to bulk
water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters
with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the
methodology are examined.

1. INTRODUCTION

Molecular recognition in water cannot be understood purely
in terms of the direct interactions of the two molecules that
bind each other. Water itself plays an intimate role, such as by
effectively weakening charge−charge interactions, by competing
with the solutes for hydrogen-bonding opportunities, and by
providing hydrophobic interactions that drive the association
of nonpolar parts of the solutes. Much is known about the
physical principles by which water influences binding,1−12 and
the effects of water can, to a large extent, be captured in both
implicit13−21 and explicit22−29 representations of water. How-
ever, there are also still puzzles and gaps in our understanding of
water’s role in molecular recognition. For example, although the
hydrophobic effect may be reasonably well understood for simple
nonpolar surfaces, many solutes, particularly biomolecules like
proteins and DNA, present surfaces with complicated shapes and
complex patterns of polarity, where water might have properties
quite different from water at simpler, better understood surfaces.
Thus, small surface clefts can lead to the formation of water
clusters with a reduced set of hydrogen-bond arrangements,
making such waters particularly easy to displace into bulk, where
they regain many more hydrogen bonding opportunities.30−34

Classical notions of the hydrophobic effect35−37 do not
necessarily envision such distinctive cases.
In recent years, new computational tools have come online to

compute and visualize the structure and thermodynamics of
water at complex surfaces, by applying inhomogeneous solvation
theory (IST)38−44 to simulations of solutes immersed in explicit
water. Some of these tools, such asWaterMap,30,45 STOW,46 and
others47−49 gain simplicity by modeling the density distribution
of water in terms of discrete hydration sites. Alternatively, Grid
Inhomogeneous Solvation Theory (GIST)34,50−52 discretizes
water density and thermodynamic contributions onto a three-
dimensional grid, in order to gain a more comprehensive and
quantitative description of solute hydration. Such tools offer
insights into the properties and role of surface water and can also
be useful in computer-aided drug design, by pointing out regions
in a protein binding pocket where a ligand may gain affinity by
displacing thermodynamically unfavorable water.30,34,45,53

Implementations of IST have so far concentrated almost entirely
on calculating first-order contributions to the entropy of water.
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The first-order translational entropy reflects, in effect, the
bumpiness of the density distribution of water induced by the
solute, while the first-order orientational entropy reflects the
degree to which the solute reduces the orientational freedom of
nearby water. However, it is likely that higher-order terms also
contribute significantly to the hydration entropy. Higher-order
terms relate to water−water correlations, which certainly exist in
bulk water54,55 and are expected to bemodified by the presence of
a solute. Note that greater correlation implies lower entropy and
that the higher-order entropy terms in the IST series expansion
are akin to the mutual information terms in the mutual informa-
tion expansion56,57 which has been used to estimate changes in
the configurational entropy of small molecules and proteins,58−61

and have been tied to the multibody expansion of IST.62 Indeed,
Velez-Vega et al. have recently obtained encouraging results
for pure water with a novel method that treats water on an
atomistic, rather than molecular, basis and is based on the mutual
information expansion.63

Several prior studies have addressed the contributions of
water−water correlations to hydration entropy. An early work
used IST to study the contributions of water−water correlations
to the hydration entropy of methane, modeled as a single
Lennard-Jones atom, for which numerical convergence is
facilitated by exploitation of spherical symmetry.64 Interestingly,
the signs of the water−water translational and orientational
terms were found to be negative (increased correlation relative
to bulk water) at room temperature but found to become positive
at high temperature, whereas the first order terms remained
negative at all temperatures considered. This study also tested
an approximation in which the water−water correlation function
near the solute was approximated by the bulk water−water
correlation function; however, the resulting entropies were
found to deviate substantially from those computed without
the approximation. Nonetheless, small molecule hydration
free energies computed with this approximation were shown
to agree reasonably well with corresponding values obtained
by a reference free energy perturbation method,65 and the same
approximation was used to estimate water−water correlations
within clusters of water molecules buried at a protein−ligand
binding interface.66 Two other studies have taken an alternative
approach to obtaining these numerically challenging terms for
water near small molecules67 and protein binding sites:52 instead
of computing the water−water terms from actual correlation
data, they were instead heuristically set as proportional to the first
order entropy, where the constant of proportionality is on the
order of −0.3 to −0.5. Finally, a recent study used the water−
water correlations obtained from simulations of the system of
interest, rather than of bulk water, to compute the contributions
of these correlations to the hydration entropy contributions of
pairs of waters buried in protein cavities.62 The water−water
correlation contribution was found to be negligible, however,
apparently because the waters were tightly bound to the protein
and hence had minimal fluctuations available to correlate with
each other. Thus, considerable work has already been done to
study or estimate the contributions of water−water correlations
to the entropy of hydration. However, correlations computed
from simulations have not yet been used to quantify or visualize
second order terms for water at well-hydrated, complex surfaces,
such as the binding sites of host−guest systems and proteins.
The present paper addresses this challenge with a three-

dimensional grid formulation of the second-order translational
entropy of water, which is related to the two-point spatial
correlation function of water density. Rewriting the second order

translational entropy in terms of a conditional density, instead of
a two-point density, leads to an intuitively interpretable form of
this term and also facilitates spatial mapping and visualization.
The present method also makes use of the efficient nearest-
neighbor entropy-estimation approach.50,67,68 We present an
evaluation of the numerical properties of the method and
analyses of the second-order translational entropy of water in and
around the synthetic host molecule cucurbit[7]uril and the blood
clotting cascade enzyme Factor Xa (FXa). These second order
results are placed in the context of the first-order translational
and orientational entropy around these solutes, and visualization
is used to understand the spatial distribution of the second order
term, including molecular features that generate particularly high
water−water correlations and hence particularly low second-
order translational entropies.

2. METHODS
2.1. Theory.Here, we express the second order (or pairwise)

translational entropy, Sww, in terms of conditional distribution
functions, then show how the resulting integrals can be estimated
from simulation data by using a three-dimensional grid to discretize
space and then estimating water densities with either a histogram
or a nearest neighbor method. We also review how the first order
(or single-body) translational entropy, Ssw, can be estimated with
the nearest neighbor method,67 as this offers numerical advantages
over the histogram approach used previously.50

2.1.1. Pairwise Translational Entropy in the Inhomoge-
neous Solvation Theory: Background. The solvation entropy of
a flexible solute may be written as

∫
∫

∫

ρ

ρ ρ

ρ ρ

Δ = Δ

−

−

S q S q q

k q q q

q q q

( ) ( ) d
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where ρsol(q) is the equilibrium probability distribution function
of the solute over its internal coordinates q when it is in solution
and ρvac(q) is the corresponding function for the solute in vacuo,
ΔSsol(q) is the solvation entropy the solute would have if it were
constrained in conformation q,69 and kB is Boltzmann’s constant.
The first term in eq 1 is the solvation entropy averaged over the
Boltzmann ensemble of solute configurations, and the second
term is the change in solute configurational entropy on being
transferred from a vacuum to solvent. Here, as in prior applica-
tions of IST, we consider the solvation of a solute in a given
conformation, q, or in a narrow range of conformations, although
one could, at some computational cost, explore solvation over
a range of conformations by applying IST to each one separately
and appropriately weighting each conformation. For simplicity,
we will refer to ΔSsol(q) as the solvation entropy and write ΔSsol
instead of ΔSsol(q).
For solvation in water, inhomogeneous solvation theory (IST)

provides an expansion of ΔSsol in terms of one-water, two-water,
and higher order terms.38,39,41−43 The one-water term, Ssw,
accounts for the patterning of water density around the solute,
while the two-water term, ΔSww, accounts for the difference
between the two-point, water−water correlations around the
solute and those in bulk; subsequent terms capture still higher-
order correlations. Thus, neglecting terms above pairwise leads
to the following approximation:

Δ ≈ + ΔS S Ssol sw ww (2)
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The one-water term has been considered in some detail in prior
studies (see Introduction) and is considered here only in rela-
tion to its calculation via a nearest-neighbor (NN) method
(section 2.5). The pairwise term, which is of primary interest
here, may be broken down further into orientational and
translational parts:46,66

Δ = Δ + ΔS S Sww ww
trans

ww
orient

(3)

The present study focuses exclusively on the translational part,
ΔSwwtrans, which accounts for the solute-induced change in the
two-point correlation of water density, without reference to the
spatial orientation of the waters. Using a form provided byMorita
and Hiroike42 and clearly rendered in eq 12 of a subsequent
paper by Lazaridis,43 one may write this quantity as
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The first equation of eq 4 writesΔSwwtrans as the difference between
the pairwise translational entropy of the solute-perturbed water
from the pairwise translational entropy of unperturbed (bulk)
water. The second and third equations provide expressions
for the solute-perturbed system and bulk water. Here, ρ is the
number density of bulk water, g(r) is the unitless ratio of the
number density of water at r in the presence of the solute to the

bulk density, ≡ ρ
ρ

g r( ) r( ) , and g(r,r′) is the two-point correlation

function in the presence of the solute, ′ ≡ ρ
ρ ρ

′
′g r r( , ) r r

r r
( , )

( ) ( )
, where

ρ(r,r′) is the two-point number density of water at locations
r and r′. The solute is considered to be immobilized in the
lab frame of reference, so that coordinates r and r′ represent
both lab-frame coordinates and solute-frame coordinates. The
integrals range over the whole system or, at any rate, to points
r and r′ far enough from the solute to effectively capture the
entire effect of the solute on the solvent distribution.
The expression in line three for the pairwise translational

entropy of pure water uses the corresponding distribution
functions, go(r), go(r′), and go(r,r′) for unperturbed bulk water.
Note, however, that in the absence of the perturbing solute (or,
in the terms of Morita and Hiroike, in the absence of an external
field), go(r) = go(r′) = 1. We include these terms here to make
clear that derivations and algorithms which apply in the presence
of a solute fixed in the lab frame are equally applicable to pure
water, where no solute is present.
2.1.2. Conditional Formulation of the Pairwise Transla-

tional Entropy.We now develop an expression for Sww
trans in terms

of conditional densities. As noted in the prior subsection, the
same derivation carries through in the case of pure water, so the
pure water case is not included explicitly. The resulting formula-
tion enables an informative spatial decomposition and provides a
convenient basis for evaluating this correlation termwith nearest-
neighbor51,68 or histogram methods. We first use the definitions
in the prior paragraph to write the starting expression in terms of
number densities:
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Because, in the canonical ensemble, ∫ ρ(r) dr =N and ∫ ∫ ρ(r,r′)
dr dr′ = N(N − 1), where N is the number of water molecules,
the second line in eq 5, which we call the nonlogarithmic term,

reduces to− Nk
2

B . For the sake of brevity, this simple term will be

omitted from subsequent expressions, except as otherwise noted.
We now use the fact that the two-point density may be written in
terms of either of the conditional two-point densities, ρ(r,r′) =
ρ(r|r′) ρ(r′) = ρ(r′|r) ρ(r), to rewrite Sww

trans, without the
nonlogarithmic term, as
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Intuitively, the first term in the last line of eq 6 reports how the
presence of a water at r′ influences the entropy of the water in the
system as a whole, while the second term essentially subtracts out
the entropy of the water for the distribution not conditioned on
the presence of water at r′. In the absence of any correlation
between the density of water at r and at r′, then ρ(r|r′) = ρ(r) and
ρ(r′|r) = ρ(r′), so the integrands of both terms in the last line of
eq 6 become equal, and the volume elements at these locations
will make zero contribution to the pairwise entropy.
The nearest neighbor entropy estimation method provides

averages of the form ⟨ln ρ⟩,68 so it is of interest to express eq 6 in a
form which uses such averages. We use the facts that ∫ ρ(r) dr =
N and ∫ ρ(r|r′) dr = N − 1, to recognize that ∫ ρ r r( ) d

N
1 and

∫ ρ | ′− r r r( ) d
N

1
1

are normalized probability density functions

and hence can be cast as probability weighting factors of the
corresponding logarithm terms in eq 6. Multiplying and dividing
the first and second terms in the last two lines of eq 6 by the
respective normalization constants (N− 1) andN and integrating
the second term over r′ to obtain a factor of N − 1 yields
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where angle brackets indicate averages over the Boltzmann
distribution.
2.1.3. Localized Perturbation Approximation. The integrals

in the equations above range over the entire system, but in
practice we will often be most interested in the region of solvent
near the solute. For one thing, such a region may have particular
functional importance, such as binding of a ligand by the solute,
if it is a receptor. Furthermore, the influence of the solute on
the solvent distribution functions dies off with distance from
the solute,41,43 so distant regions contribute little, and ignoring
distant regions can make calculations more tractable without
introducing much error. Accordingly, it is useful to restrict the
integrals over r′ to a local region of interest, K, such as a receptor
binding site. Furthermore, the contribution of the water at r′ to
Sww
trans is directly connected with the conditional density function
ρ(r|r′), which reports on the perturbation of water density at r by
the presence of a water at r′, and this perturbation also dies
off with the distance of r from r′. As a consequence, it is often
reasonable to restrict the integrals over r to finite regions
centered on r′, which will be termed Lr′. With these localizing
approximations, eq 6 may be written in either of the following
equivalent forms:
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In physical terms, eq 8 provides the contribution to the total
pairwise entropy from the degree to which the water density in
regions Lr′ is modified by conditioning on the presence of a water
at each location r′ in K. Note that eq 6 is recovered when the
K and L regions span the entire system.
2.2. Using a 3DGrid to Estimate Distribution Functions

from Simulationswith ExplicitWater. Following the existing
first-order GIST approach,51 we use a three-dimensional grid to
compute the spatial distribution of the second-order translational
entropy from explicit-water simulations for a region of interest,
such as a protein binding site. Thus, we discretize eq 8 by
breaking space into cubic voxels of side-length Rvox and volume
Vvox = Rvox

3 , which are assumed to be small enough that a voxel
can contain at most one water molecule. (Here, the transla-
tional coordinates of a water molecule are identified with those
of its oxygen atom.) As a matter of notation, location r′ maps to
voxel index k, and the regionK corresponds to a grid in the region
of interest, such as a binding site (Figure 1), while rmaps to voxel
index l and the regions Lr′, which are centered around r′, map to
regions Lk, which are centered around voxels k∈ K; see Figure 1.
The following subsections describe a histogram method and
a nearest-neighbor method of using this discretization to
estimate Sww,KL

trans through analysis of nf frames, or snapshots,
from a molecular dynamics (MD) simulation of explicit water
molecules around the solute; an additional subsection explains
how the nonlogarithmic term in eq 5 is computed.

Histogram Method. The histogram method uses MD data to
estimate the various densities in the first line of eq 8 by counting
the instances of water molecules in voxels:

ρ ρ

ρ ρ

= ′ =

′| = | ′ =| |

n
n V

n
n V

n
n V

n
n V

r r

r r r r

( ) ( )

( ) ( )

l

f

k

f

k l

l

l k

k

vox vox

vox vox (9)

Here, nl and nk are the numbers ofMD frames for which a water is
found in voxels l and k, respectively, and nk|l = nl|k are the numbers
of MD frames for which a water is found in both voxels k and l.
Note that this approximation treats the water densities as
constant over the volume of each voxel, and, as noted above,
we have assumed that the voxels are small enough that at most
one water molecule can occupy a voxel. In going from a double
integral to a double sum over voxels, two factors of the volume
element Vvox appear. Thus, the histogram method estimates
Sww,KL
trans as
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Here, the contribution of regions K and L to the pairwise
translational part of the solvation entropy is estimated in terms
of the quantities summed over voxels k ∈ K. The contribution of
voxel k, Vvox(sk

cond,hist − sk
hist), which is the product of the voxel

volume, Vvox, and the difference between the conditional and
unconditional entropy densities, is computed as the probability
of finding a water in voxel k, n

n
k

f
, multiplied by the per water

normalized quantity sk
cond,norm,hist − sk

norm,hist. Writing the pairwise
translational entropy in terms of a sum over voxels, in this
manner, allows a spatial decomposition of this term which is
useful for generating graphical representations. In practice, the

Figure 1. Diagram of a receptor (green) in a water-filled simulation box
(blue), with grid corresponding to region K in pale pink and two
examples of regions Lk in yellow (orange where overlapping with K).
In each case, the Lk grid is centered in one K-grid voxel, k, which is
highlighted in pink.
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expressions in eq 10 are evaluated by analyzing the nf available
MD frames to determine nk, the number of frames with a water in
voxel k; nl, the number of frames with a water in voxel l; and nl|k,
the number of frames with a water in both voxels l and k, where
voxels k and l are required to reside in regions K and L,
respectively.
Nearest-Neighbor Method. Starting with the final expres-

sion in eq 8, we multiply and divide the first term by

∫ ρ | ′ ≈ ∑ ≡∈ |
′ ′

|
′

Nr r r( ) d
L l L

n
n L k
l k

kr r r
, which is the mean number

of waters on the Lr′ grid given a water in the k voxel, and we
multiply and divide the second term byNLr′ = ∫ Lr′ ρ(r) dr, which is
themean number of waters on theLr′ gridwithout any condition, in
order to convert the corresponding number density functions into
probability density functions, much as previously done in deriving
eq 7. The present expression for NLr′|k is an approximation, due to
the discretization of r′ into voxels, so the following expressions are,
accordingly, also written as approximations. We obtain
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Here, ⟨⟩Lr′ indicates an average over the volume of the Lr′ grid.
These integrals are now discretized via the approximations in eq 9:
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Here, ρ(r|k) represents the number density of water at r
conditioned on the presence of a water in voxel k, and Lk is the
L region associated with, and typically centered on, voxel k. This
may be put into a form analogous to the histogram formulation in
eq 10, as follows:
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Both average log terms inside eq 13 can be found using the NN
method, with the gamma correction for the bias, as follows:
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Here, the index i runs over water instances and ri
NN is the distance

between water instance i and its nearest-neighbor water instance.
Thewater instances are defined as follows. For the second expres-

sion in eq 14, the water coordinates found in all nf MD frames are
merged into one “superframe,” containing Nnf sets of water co-
ordinates, so that each of the N water molecules in the system
appears nf times, each time with a different set of coordinates; each
resulting set of water coordinates in the superframe is considered
one instance of a water. The symbol∑i∈Lk indicates a sum over the

NLknf water instances falling within the Lk grid, but the nearest
neighbors of these water instances may be water instances which fall
just outside the Lk grid. For the conditional term in the first line of
eq 14, the water coordinates in all nk frames for which a water
molecule is found in k aremerged into one superframe, which is now
conditioned on the presence of a water at k, and each set of water
coordinates in this conditional superframe is considered one
instance of a water. The symbol ∑(i|k)∈Lk indicates a sum over the
water instances in this superframe which fall within the Lk grid;
again, the nearest neighbors of these conditional water instances
may be conditional water instanceswhich fall just outside theLk grid.

Nonlogarithmic Term. The nonlogarithmic term in eq 5
may readily be computed for regions K and L, within the grid
approach. Thus,
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This term reflects the difference between the two-point density
of water around the solute and the product of the corresponding
one-point densities. As detailed in the Results section, once
referenced to bulk, its contribution becomes negligible, at least
for the cases analyzed here.

2.3. Referencing the Results to Bulk Water. As explained
in section 2.1.1, the derivation and algorithms described above
for water in the presence of a solute fixed in the lab frame are
equally applicable to pure water. In order to reference the
entropy of water in the presence of solute to pure water values
matched numerically to those computed in the presence of the
solute, we analyze a simulation of neat water with a small K grid
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near the center of the simulation box and use the same grid
spacing and L-grid parameters as used to analyze water in the
presence of the solute to compute the value of TSww,bulk

trans for the
water on theK grid. This quantity is then normalized by themean
number of water molecules on the K grid, for the pure-water
calculation, to obtain Sww,bulk

trans,norm, the mean pairwise translational
entropy per water in bulk. Note that the dimensions of the pure
waterK grid need not bematched to the one used in the presence
of solute: every voxel k is equivalent to every other, for the pure
water case, so there is no need to cover any particular region.
Now, if theK region in the presence of solute contains an average
ofNKwaters, again in the presence of solute, then one obtains the
net pairwise entropy difference of the waters in the presence of
solute versus in bulk from the following expression:

Δ = −T S NTS TSKL Kww
trans

ww,
trans

ww,bulk
trans,norm

(16)

In the formulations detailed above, each voxel k on the
K grid is associated with an entropy density. For example,
for the nearest neighbor approach, this quantity is obtained
from eq 13 as sk

cond,NN − sk
NN. This density may be referenced

to bulk by subtracting the corresponding entropy density
for bulk water; when the nonlogarithmic term is also
included, the resulting entropy difference density is

ρΔ ≡ − + −s s s s Sk k k k
NN cond,NN NN nonlog

ww,bulk
trans,norm. The corre-

sponding per-water normalized entropy difference is

Δ ≡ Δs sk
V n

n k
norm,NN NNf

k

vox . These voxel quantities may be

visualized in terms of three-dimensional contours, as illustrated
in the Results section.
2.4. Validation of Grid Methods by Comparison with

the Radial Distribution Method for Pure Water. The
applicability of the present methods to pure water provides
an opportunity to validate them by comparing their results
with those obtained by an independent computational approach.
We use the fact that the second order translational entropy of a
homogeneous liquid may be obtained from the one-dimensional
radial distribution function (RDF) centered on a given water in
the pure liquid:

∫πρ= −S R k g r g r r r( ) 2 ( ) ln ( ) d
R

ww
trans,RDF

B
0

2
(17)

Formally, the upper limit of the integral, R, corresponds to the
size of the entire system, but far smaller values of R yield good
approximations, because water−water correlations decay quickly
with values of r on the scale of the mean water−water distances,
as detailed in the Results. Here, g(r), the radial correlation
function between water molecules, is estimated from nf MD
frames as
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where n is the number of water instances in the spherical shell
of thickness Δr between r − Δr/2 and r + Δr/2. In practice, we
maximize statistical convergence by averaging the values of g(r)
over all N waters in a simulation of pure water. The result from
eq 17 was compared with that obtained by the grid methods as
described in the prior subsection.
2.5. NN Estimation of the First Order Translational

Entropy. The first order translational entropy of the water
around a solute is given by
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The contribution of region K to Ssw
trans may, for the sake of

visualization and analysis, be decomposed into contributions
from voxels k ∈ K, as follows:
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where =Nk
n
n

k

f
is the mean number of waters in voxel k, so that

= ∑N NK k k, and ⟨ln ρ(r)⟩k, the mean log density of water in
voxel k, may be computed by the nearest neighbor method as
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2.6. Implementation of Entropy Calculations.TheK and
L regions used for both the histogram and NN entropy
calculations were sized to fit within the simulation boxes (see
details below), and the grid spacings were 0.5 Å, except as
otherwise noted. The efficient ANN algorithm70 was used to find
nearest neighbors of water instances. Because the difference
between the unconditional density and the density conditioned
on a water in voxel k diminishes rapidly with distance from k,
each voxel kwas assigned its own cubic L grid, centered around k,
in order to efficiently capture the local contributions of these
differences to the overall second-order entropy. The side-length
of the L grid was set to twice the desired cutoff distance within
which correlations would be captured. For example, a cutoff
distance of 5 Å leads to a 10 Å L grid. The first-order orientational
entropy was computed with the previously described GIST NN
method,51 and the first order translational entropy was computed
by the NN method described in the subsection above.

2.7. Simulation Details. The pure water calculations used
in section 3.1 were carried out in cubic simulation boxes with
side lengths of about 32 Å and periodic boundary conditions.
The temperature was maintained at 300 K with the Langevin
thermostat and a collision frequency of 2.0 ps−1; pressure was
maintained at 1 atm by isotropic position scaling with a pressure
relaxation time of 0.5 ps. A 9 Å cutoff distance was employed for
all nonbonded interactions in the pairlist, and the particle-mesh
Ewald method was used to account for long ranged electrostatic
interactions. The simulations were run for 1.5 μs on a single
GPU, with the pmemd.cuda component of AMBER 1271 or
AMBER 14, with a 2 fs time step. The SHAKE algorithm72 was
used to constrain the lengths of all bonds involving hydrogen
atoms. Frames were saved for analysis every 0.5 ps.
Parameters were assigned to cucurbit[7]uril (CB7) with the

GAFF73 force field and RESP74 with the HF 6-31G* basis set.
The starting structure was solvated with 1096 water molecules,
resulting in a 10 Å buffer of water surrounding the solute, using
the program Tleap in AmberTools.75 The system was then
briefly energy-minimized with Cartesian positional restraints on
CB7, with force constants of 10 kcal/mol/ Å2. The minimization
comprised 1500 steps of the steepest descents algorithm,
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followed by a maximum of 2000 steps of the conjugate gradient
method. The crystal structure of FXa complexed with the
inhibitor ZK-807834 (alternatively called CI-1031), from
Protein Data Bank entry 1FJS,76 was prepared and simulated
as described previously;34 the ligand was deleted to leave an
empty binding site, and two ions observed in the crystal structure
(Ca2+ and Cl−) were included as part of the solute and hence
were restrained along with the protein atoms, as detailed below.
TIP3P23 water molecules were added to solvate the protein using
the program Tleap,77 and the AMBER99sb force field78 was used
to assign the atomic parameters. The final system comprised
29 338 atoms, including the 8557 water molecules. The MD
simulation startedwith an energyminimization of 1500 steps by the
steepest descents algorithm, followed by conjugate gradient energy
minimization for a maximum of 2000 steps. During the initial
minimization, all protein atoms were harmonically restrained
to their initial positions with a force constant of 100 kcal/mol/Å2.
The second minimization further relaxed the system by keeping
only non-hydrogen protein atoms restrained with the same force
constant. The energy-minimized systems were heated in incre-
ments of 50 K lasting 20 ps each, at constant volume and
temperature. After the system reached 300 K, it was then
equilibrated for 10 ns at a constant temperature and constant
pressure of 1 atm. The equilibrated system was further run for an
additional 5 ns at constant volume, and data were then collected
at NVT. During the heating process and thereafter, all solute
atoms were harmonically restrained to their energy-minimized
positions with a force constant of 100 kcal/mol/Å2 for FXa and
10 kcal/mol/Å2 for CB7. Other simulation parameters were the
same as for the pure water simulations described above. A 400 ns
production simulation was run for FXa, with coordinates saved
every 1 ps, for a total of 400 000 snapshots. For CB7, the pro-
duction run was 600-ns-long, with coordinates saved every 0.5 ps,
for a total of 1 200 000 snapshots.

3. RESULTS
3.1. SecondOrder Translational Entropy of PureWater.

3.1.1. Radial Distribution Function Method.Here, we study the
second order translational entropy of pure water, for which the
RDF method is available for reference. (It is worth noting that
the RDFmethod is not applicable to the solute-water systems, for
which the grid methods were developed.) First, as a verifica-
tion of the present methodology, we used the RDF method,
with spherical shells of thickness Δr = 0.01 Å, and 200 000 MD
frames, to estimate Sww

trans,RDF for the TIP3P, TIP4P,23

TIP4PEW,27and SPC/E25 water models; the results all agree
with prior calculations79 to within 0.5%, with the exception
of TIP3P, for which the difference was 1.9%. (A replicate TIP3P

simulation yielded the same result.) No significant changes were
observed on extending any of the simulations to 400 000 frames.
We then examined the RDF results as a function of the two
numerical parameters R, the upper limit of the integral in eq 17,
and Δr, the width of the spherical shells in eq 16. As detailed in
Figure 2 (left panel), for the TIP3P water model, the entropy
from the RDFmethod converges quickly as the upper limit of the
integral increases, changing by less than 0.3% when R increases
from 4 to 10 Å. This observation supports the use of local L(k)
grids (section 2.2) of modest size. The RDF result also depends
on the width of the spherical shell, closely approaching its
presumed asymptote for values less than or equal to 0.1 Å
(Figure 2, right panel). Intuitively, the entropy falls as the shells
become thinner and thereby reveal finer structure in the water
distribution. This result suggests that voxels larger than about
0.1 Å in linear dimension are likely to overestimate the entropy
somewhat, due to smoothing of the density distributions.

3.1.2. Grid Methods. The grid methods, both histogram and
NN, were used to compute the same quantity, by defining region
K as a cube of side length 1.5 Å, centered in a pure water
simulation box and divided into cubic voxels k, each of side length
Rvox. Each voxel kwas associated with its own cubic region Lk (see
Figure 1) centered on k and extending a fixed distance RL from
k along each grid axis, so that the side of each region Lk was of
length 2RL. For the histogram method, the cubic L regions were
divided into voxels l of side-length Rvox, and the K and L grids
were registered so that each k voxel was also an l voxel. However,
not every l voxel was a k voxel, because L extended outside K.
The agreement of the grid method with the RDF method is
examined below, as a function of the voxel size, Rvox, and the size
of the L grids, RL.
The NN method provides reasonably well-converged results

within 1−2 million MD frames, for voxel sizes, Rvox, of 0.75 and
0.5 Å. Thus, as shown in Figure 3 (left), the mean of TSww across
all 27 k voxels (solid lines) changes little with increasing
simulation time for both of these grid spacings. In addition, for
0.5 Å voxels (red), the standard deviation of TSww across the
27 k voxels falls to 0.066 kcal/mol at 1 million frames and
0.05 kcal/mol at 2.3 million frames (red error bars). For 0.75 Å
voxels (blue), the standard deviation is 0.042 kcal/mol at
1 million frames (data not shown). However, calculations with
these grid spacings converge to values that overestimate the
reference RDF result somewhat, particularly for a grid spacing
of 0.75 Å (Figure 3, blue). Because the NN method does not
make use of the discretization of the L grid into voxels l, these
systematic errors are attributed to the fact that larger k voxels lead
to greater smoothing of the conditional probability density func-
tions over the corresponding regions Lk. Going to a finer grid

Figure 2. Second-order water−water entropy, provided as a free energy contribution TS (kcal/mol), computed for pure TIP3P water with the RDF
method. Left: entropy as a function of the distance cutoff, R in eq 17, for a spherical shell thickness,Δr in eq 16, of 0.001 Å. Right: entropy as a function of
spherical shell thickness, for a distance cutoff of 10 Å; the two right-most points are for shell thicknesses of 0.25 and 0.5 Å. These calculations used
50 000 MD frames; extending to 200 000 frames changes the results by only a few thousandths of a percent.
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spacing, Rvox, of 0.25 Å yields ultimately a closer approach to
the reference RDF result (Figure 3, green), but convergence is
notably slower. The histogrammethod converges slowly with the
number of MD frames (Figure 3, right). This is evident even for
the relatively coarse 0.75 Å grid spacing, and our 0.25 Å results
are below the scale of the graph. In addition, it is evident that the
0.75 Å result is converging to a result that is further from the
reference RDF result than the NN 0.75 Å result. This difference
presumably results from further smearing of the conditional
density functions, due to the added discretization of the Lk
regions, which is not required for the NN method.
As detailed in the Appendix, further comparison of theNN and

histogrammethods, with grid spacings down to 0.15 Å, highlights
the advantage of NN over the histogram method, in terms of the
rate of convergence and the amount of sampling required to reach
the reference RDF result. The graphs in the Appendix suggest that
the RDF result would be closely approximated by theNNmethod
at a grid spacing of 0.15 Å, given about 4× 106 snapshots, whereas
the histogram method would require far more sampling.
The present calculations depend not only on the grid spacing,

but also on the size of the Lk region, in which the perturbation of
water density by a water in each voxel k is evaluated. It is thus

appropriate to evaluate the sensitivity of the second order entropy
calculations to the size of the Lk regions. Based on the RDF study
(Figure 2, left), one may anticipate that RL ≥ 4 Å should suffice to
capture most of the second-order entropy for the TIP3P water
model examined here. This expectation is borne out by the in-
sensitivity of theNN results toRL, over a range of 4−10 Å (Figure 4,
left); in addition, good numerical convergence is observed over this
range. It is worth noting that, because the L regions are cubic,
a value of RL equal to 5 Å, for example, includes locations as far as

=R3 8.9L Å from the center of voxel k. On the other hand, the
poor convergence of the histogrammethod (Figure 4, right) makes
it difficult to assess the sensitivity of its results to the value of RL.
On the basis of this analysis of calculations for pure water, we

selected a grid spacing of 0.5 Å as a good working compromise
between speed and accuracy for the cucurbituril and protein
calculations described below, and we set RL, the size of the Lk
regions, to 5 Å. The bulk value used to compute the change in
the second order entropy is taken from a pure water calculation
under the same conditions and with 2 000 000 MD frames. In
addition, given the poor convergence of the histogram method,
the following calculations use only the NN method for the
second order calculations.

Figure 3.Dependence of second order pure water entropy on grid spacing. Left: NN results for grid spacings (Rvox) of 0.25 (green), 0.5 (red), and 0.75 Å
(blue), with the reference RDF result (dashed line; computed with R = 15 Å, Δr = 0.01 Å, and 200 000 MD frames). Error bars for the 0.5 Å results
indicate the standard deviations across all 27 k voxels in this K region. Right: Analogous results from the histogram method; results for a grid spacing of
0.25 Å were computed but are below the scale of the graph. All calculations used L regions with RL = 8 Å, and all entropies are reported as free energy
contributions, TS, in kcal/mol.

Figure 4. Dependence of second order pure water entropy on size of L regions. Left: Comparison of NN results, for L regions with RL of 4−10 Å, with
the reference RDF result (dashed line; R = 15 Å,Δr = 0.01 Å, and 200 000MD frames). Right: Analogous results from the histogrammethod. All results
are for a grid spacing of 0.5 Å, and all entropies are reported as free energy contributions, TS, in kcal/mol.
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3.2. Cucurbit[7]uril (CB7). 3.2.1. Visual Mapping of
Second-Order Translational Entropy. Figure 5 visualizes the
spatial distribution of the second-order translation entropy,
relative to bulk, in and around the synthetic host molecule CB7,
which we previously studied to first order in entropy.51 As shown
in the left panel, there is a large region of water with reduced
second order entropy density, relative to bulk, centered around
the symmetry axis of CB7 (yellow), with particular enhancement
in two toroids (pink) roughly level with the upper and lower
nitrogen−carbon rings of the host. These are regions wheremore
highly correlated water (hence reduced second-order entropy
relative to bulk) is present at relatively high number density,
leading to notably negative pairwise entropy density relative to
bulk. On the other hand, small loci of water with positive pairwise
entropy density relative to bulk (i.e., less correlated than bulk)
are present at seven symmetry-related sites around the relatively
apolar exterior of the host (green), and also at symmetry-related
sites between the carbonyl oxygens at the upper and lower
portals of the host (green).
It is of interest to compare this distribution of pairwise entropy

density with the simple number density of water, which is
contoured in gray and magenta in the middle and right-hand
panels of Figure 5. Whereas the number density is highest in the
central torus (magenta, middle panel), the absence of a central
torus in the entropy contours of the left-hand panel indicates that
the water molecules in the central torus are not especially cor-
related with other water molecules. In contrast, water molecules
present at intermediate density in the upper and lower tori
(middle panel) are highly correlated and therefore appear
prominently in the entropy map (pink in the left-hand panel).
Similarly, the regions of elevated pairwise entropy (green) appear
as a subset of the high number-density regions contoured in gray
(middle and right-hand panels).
Further insight may be obtained by examining the pairwise

entropy on a per-water-molecule basis, rather than on the basis of
entropy density, as shown in Figure 6. The contours are more
irregular than those in Figure 5, because, unlike the density-
weighted entropies there, here the contours involve voxels
where the number density is low, so the numerical convergence is
worse. Nonetheless, it is interesting to observe that the most
correlated water molecules are those at the centers of the two
portals, as highlighted in the pink and clear orange contours.
In contrast, the water in the center of the host is not especially
correlated, as indicated by the lack of contouring there. This
result is consistent with the absence of a torus of entropy density
in the left-hand panel of Figure 5.

The strongly negative pairwise entropy of water molecules
at the centers of the portals (pink in Figure 6) suggests that the
density distribution of water is strongly influenced by the pre-
sence of a water at these locations, as discussed in section 2.1.2.
Put differently, the density conditioned on the presence of water
in the middle of the portal should be quite different from the
unconditioned density. This is indeed the case, as shown in
Figure 7. Here, the left-hand panel shows the baseline density

distribution of water, with a strong central torus and a few other
small loci of high density, while the right-hand panel shows water
density conditioned on the presence of a water at the center of
the portal (star in figure), contoured at the same level as in the
left-hand panel. Despite some noise in the conditional contours,
which results from a reduction in the number of MD frames
available for averaging, due to the condition, one can clearly see a
dramatic increase in water structure, with the appearance of an
additional torus below the star and a more jagged ring of density

Figure 5. Spatial maps of second order translational entropy density of water, relative to bulk, in and around host CB7, based on 1 200 000 MD frames.
Left: Entropy contoured at −0.02 kcal/mol/Å3 (pink), −0.01 kcal/mol/Å3(transparent orange), and +0.005 kcal/mol/Å3 (green). Middle: same, but
omitting the contour at −0.01 kcal/mol/Å3 and additionally showing water number density contoured at 0.1 waters/Å3 (gray) and 0.175 waters/Å3

(magenta). Right: rotated view, showing only entropy density contours at−0.02 and 0.005 kcal/mol/Å3 and number density contour at 0.01 waters/Å3,
with the same colors. Entropies are multiplied by temperature to convert to kcal/mol. These and all other molecular graphics in this paper were
generated with the program VMD.80

Figure 6. Spatial map of second order translational water entropy per
water molecule, relative to bulk, in and around host CB7. Pink: contour
at −0.5 kcal/mol/water. Transparent orange: −0.3 kcal/mol/water.
No significant positive regions were observed after setting aside voxels
with inadequate sampling, e.g., those with number densities less than
0.001 water molecules/Å3.

Figure 7.Number density of water, contoured at 0.15 water molecules/
Å3, in and around CB7. Left: standard number density derived directly
from simulation. Right: number density conditioned on the presence of
a water molecule at the location marked by a star.
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above it. This increase in structure gives a conditional entropy
lower than the baseline unconditional entropy and hence a
negative contribution to the overall pairwise translational entropy
from the voxel corresponding to the star.
3.2.2. Quantifying the Second Order Translational Entropy

of Water in and around CB7. Binding of guest molecules to
the CB7 host leads to displacement of water molecules to the
bulk from regions in and near the binding cavity. The resulting
change in water thermodynamics makes a contribution to the
overall thermodynamics of binding, so it is of interest to examine
the magnitude and sign of these contributions. In a previous
study, we used the histogram method to study the first-order
translational entropy, and the NN method to study the orienta-
tional entropy, of water in the CB7 binding cavity.51 Here, we
report the second-order translational entropy for regions of
interest in and around CB7 and consider it in the context of the
first-order terms. We also compare the present NN implementa-
tion of the first order translational entropy (section 2.5) with the
prior histogram method.
Three regions are considered (Figure 8): the cavity (blue),

which comprises the complete interior of the host (including the

torus, below), with upper and lower cutoffs positioned at a
trough in water density near the level of the host’s carbonyl
oxygens; the torus (red), which is a subset of the cavity region
holding only the central torus of high-density water;51 and the
portals (cyan), which extend 2 Å above and below the upper
and lower borders, respectively, of the cavity region and hold
regions of increased water density above the upper and lower
rings of carbonyl oxygens. It should be noted that the geometric
definitions of the cavity and torus regions used here have been
refined, relative to those used previously,51 so the first-order

thermodynamic results for them differ somewhat. In particular,
the cavity is somewhat taller, to reach the troughs in water density
at the portals, and the torus is slightly shorter, to capture only
its peak density. The results (Table 1) are reported as regional
integrals, as indicated by the superscript “R” in each case, and also
on a per-water-molecule basis, which provides information on
the average properties of water in each region.
For all three regionscavity, torus, and portalthe net

second-order translational entropy has the same sign as the first-
order translational and orientational entropy terms. Thus, the
second-order term always reinforces, rather than partly cancels,
the first order term. This result contrasts with the heuristic
assumption that the second-order term tends to partly cancel
the first-order one.52,67 Although the second-order contribution
is substantially smaller than the first order terms (Table 1), at
5−8% of their sum, it is large enough to substantially influence
the thermodynamics of hydration and of guest-binding to
this synthetic host molecule. It is worth noting that the non-
logarithmic term contributes minimally to these second order
terms, 0.08, 0.04, and −0.12 kcal/mol, for the cavity, torus, and
portal regions, respectively.
It is also of interest that the first-order orientational term is

about equal to the first-order translational term for the cavity
and torus regions, but it is about double the first-order transla-
tional term for the portal. Presumably, waters at the portal are
particularly well-ordered because they form hydrogen bonds
with the carbonyl oxygens of the host.
The entropic properties of water molecules in the three

regions may be characterized by correcting for the mean number
of waters in each region, as done in the last three columns of
Table 1. The most correlated waters, based on the value of the
second-order translational entropy per water, are found in the
cavity region. The degree of correlation within the torus is
smaller, and similar to that in the portal region. Since the torus is
a subset of the cavity, the high second-order entropy of the cavity
water as a whole clearly reflects the particularly high correlation
of water above and below the central torus, which is evident
in the left panel of Figure 5. The fact that the first-order
translational entropy per water of water in the torus is lower
(−0.86 kcal/mol/water) than that for the cavity as a whole is
simply a reflection of the fact that water is present at higher
density in the torus (left panel, Figure 7). The least correlated
waters are in the portal region, although the difference relative to
the torus is small.
The second-order translational entropy is based on a six-

dimensional probability distribution function, the two-point
water density ρ(r,r′), and thus can require long simulations to
achieve acceptable convergence. Reasonably good convergence
is obtained here for the various regions in and around CB7

Figure 8. Regions of interest in and around the CB7 host, shown in side
(left) and top (right) views, with the host (stick diagram, omitting
hydrogen atoms), and water density contoured at 0.10 water molecules/
Å3 (gray). Central blue box: cavity region. Union of upper and lower
cyan boxes: portal region. Red box: torus region.

Table 1.Water Entropy Contributions, As Defined in Text, for Regions in and near the Binding Cavity of the CB7Host, and for the
Region of the FXa Binding Site Occupied by Ligand ZK-807834 (CI-1031)a

NK TΔSwwR,trans,NN TΔSswR,trans,NN TΔSswR,orient,NN
ΔT S

N

R

K

ww
,trans,NN ΔT S

N

R

K

sw
,trans,NN ΔT S

N

R

K

sw
,orient,NN

cavity 7.54 −0.96 −5.17 −6.33 −0.13 −0.69 −0.84
torus 2.82 −0.24 −2.42 −2.41 −0.09 −0.86 −0.85
portal 25.85 −1.95 −9.66 −18.32 −0.08 −0.37 −0.71
FXa 16.34 −4.96 −15.31 −26.43 −0.30 −0.94 −1.62

aThe CB7 regions are defined in the text and in Figure 8. NK: mean number of water molecules in each region. The first three entropy columns
(kcal/mol) are sums over the respective regions; the second three entropy columns (kcal/mol/water molecule) are normalized by the numbers of
waters in the respective regions and thus report on the average property of water in each region. The results are based on K and L grids with a 0.5 Å
spacing and L grids with RL = 5 Å, as noted in the text.
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(Figure 9, left), though the portal graph, in particular, still has a
visible trend after 600 ns of simulation time (1 200 000 frames).
Finally, it is worth commenting here on the NN implementa-

tion of the first order translational entropy (section 2.5), a term
we previously computed with the histogram method. For the
cavity region, both the NN and histogram method with a 0.5 Å
grid spacing converge well (Figure 9, right), but the histogram
result is higher than the NN result. In general, the NN method
yields entropies for the three regions 13−22% lower than
those provided by the histogram method (results not shown).
This is because, unlike the NN method, the histogram method
approximates the water density as uniform within each voxel.
This approximation smooths the water density and thereby leads
to higher entropy estimates.
3.3. Factor Xa. 3.3.1. Visual Mapping of Second-Order

Translational Entropy. Water in and near the active site of the
enzyme FXa adopts a complicated distribution of increased and
decreased translational correlation, as manifest in contours of
the second-order translational entropy density, relative to bulk,
shown in Figure 10 (left panel). (Note that, although the
simulations analyzed here placed the protein in a large box of
explicit solvent with period boundary conditions, the K grid
covered only part of the surface, so the contours are localized.)
Indeed, every hollow in the surface of the enzyme is occupied by
contours of negative (pink) or positive (green) entropy density
(Figure 10, left), relative to bulk, whereas water at more convex
regions of the surface shows fewer entropic features. The
tendency of this entropy term to be perturbed in enclosed regions
of the FXa surface is consistent with the fact that, for CB7, the
greatest perturbations also occurred within the binding cavity.

This patterning may be considered in the context of the
polarity of the enzyme’s surface and the number density of
water (Figure 10, middle). For example, a large, nonpolar
pocket without a strong elevation of number density (red arrow,
Figure 10, middle) nonetheless has a substantial increase in
second-order translational entropy density (Figure 10, left),
indicating reduced water−water correlation. Accordingly, the
water molecules in this pocket also have a notable increase in
the corresponding per water entropy (Figure 10, right). Further
examination of the figure may suggest a tendency for elevated
water−water entropy (decreased correlation) at other patches of
hydrophobic surface too, and a tendency for decreased water−
water entropy (increased correlation) in more polar clefts.
On the other hand, water in the relatively hydrophobic interior
of CB7 showed reduced, rather than increased, water−water
translational entropy, so any connection between hydrophobi-
city of the surface and reduced water−water correlation cannot
be viewed as universal.
In the case of CB7, water at the center of the portal to the

binding-site cavity was found to have particularly low second-
order translational entropy per water molecule, implying a high
degree of water−water correlation (section 3.2.1). A similar
phenomenon, though more pronounced, is also observed in the
case of FXa, as the entryway to a deep, water-filled cavity is
occupied by water with even lower values of the second-order
translational entropy than seen in the case of CB7, on a per water
basis (Figure 11, left), and in terms of entropy density (Figure 11,
right). Presumably water at such locations is in a particularly
good position to influence the density distribution within
the nearby cavity or cleft. This was seen previously for CB7

Figure 9. Convergence of second-order translational entropy of water in and around host CB7 as a function of MD frames (left), and of first order
translational entropy for the cavity region, by the NN and histogram methods (right). The regions are defined in the text and Figure 8.

Figure 10.Water properties in the active site of enzyme FXa. Left: Second-order translational entropy density of water, scaled byT to yield kcal/mol/Å3,
contoured at −0.02 (pink) and +0.005 (green) kcal/mol/Å3), with molecular surface uniformly colored. Middle: Water number density contoured at
0.175 waters/Å3, with protein surface colored by element; blue-gray, carbon; blue, nitrogen; red, oxygen; hydrogens not show. Right: Second-order
entropy per water molecule (kcal/mol/water), contoured at −0.5 kcal/mol/water (pink) and +0.16 kcal/mol/water (green). Note that the number
density contours were computed for a somewhat larger region than the entropy density contours, especially toward the bottom and right of the active
site. All simulations represented here are 400 ns long, with frames analyzed every 1 ps.
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(Figure 7) and maybe also be observed in the case of FXa. Thus,
the number density distribution of water in the deep cleft of FXa
is very different when conditioned on the presence of a water
molecule in an entryway site of strongly negative translational
entropy per water (−3.5 kcal/mol/water, red) than when it is
unconditioned (Figure 12, pink conditioned vs blue uncon-

ditioned density contours). The red site here is at the center of
one of the green regions in Figure 11.
3.3.2. Contribution of the Second Order Translational

Entropy to Ligand Binding. Prior studies have considered the
role of the first-order entropy of water in the binding site of
FXa to the binding affinity of drugs and drug-like ligands to this
enzyme.34,45 The present methodology now allows examination
of the second-order translational entropy of water in this region.
We focus on the water displaced by the ligand (PDB HET ID
Z34) present in the binding site of FXa in the PDB entry studied
here, 1JFS. This ligand occupies part of the complicated active site
region (Figure 13, left) and displaces water from the deep cleft
that contains the most correlated water (Figures 11, 12, and 13,
right).
At nearly −5 kcal/mol (Table 1), the integrated water−water

translational entropy in the region occupied by this ligand is large
enough to have a major impact on the ligand affinity. This value is
substantially greater than the corresponding result for the largest
regional integral of the pairwise entropy for CB7, which is about
−2 kcal/mol, for the portal region (Table 1), even though the
number of waters in the portal region is larger. Accordingly, the

second-order entropy per water is about 3-fold larger (more
negative) in the binding site than in or around CB7. The first
order entropy terms are also greater (more negative) for FXa
than for CB7, on both a regional and a per water basis (Table 1),
but not by as large a factor as the second-order term. As observed
in the case of CB7, the nonlogarithmic contribution to the
second-order entropy is minimal, at 0.20 kcal/mol. Also, again as
for CB7, the second-order term contributes with the same,
negative, sign as the first-order term, thus reinforcing it rather
than balancing it.
Two potentially balancing sources of error in the second order

term should be noted. On one hand, this quantity is not fully
converged, as shown in Figure 14, and a longer simulation would

apparently lead to a somewhat less negative value. On the other
hand, as discussed in section 2.3, the use of a 0.5 Å grid leads to
smoothing of the conditional water densities, and the use of a
finer grid, if numerically practical, would lead to a somewhat
more negative value. Thus, the combination of a finer grid and a
much longer simulation might shift the final result either up or
down a bit, and the result in Table 1 is likely a reasonably good
estimate of the desired quantity.

4. DISCUSSION
We have described a grid-based methodology, which uses
inhomogeneous solvation theory to estimate and regionally map
the two-body translational contribution to the hydration entropy
of a solute of interest, using the data from a simulation of
the solute immersed in explicit water molecules. The present
formulation shows that the contribution to this two-body term
associated with location r′ tells the degree to which the first-order

Figure 11.Concentration of negative second-order translational entropy
at the entry of a deep, water-filled pocket in FXa. Left: second order trans-
lational entropy per water molecule contoured at −2 kcal/mol/water.
Right: second order translational entropy density, contoured at
−0.1 kcal/mol/A3.

Figure 12. Comparison of unconditional (blue) number density
distribution of water with number density distribution conditioned on
the presence of a water at the red site (pink), in the active site cleft of
FXa. This is a side view, relative to the other FXa representations; front
and rear clipping and a transparent protein surface allow visualization of
density contours deep in the cleft. The water densities are contoured at
0.1 water molecules/Å3; the red contour of second order translational
entropy is contoured at −3 kcal/mol/water molecule.

Figure 13. FXa with cocrystallized ligand (PDB HET ID Z34, InChI
Key NPNSVNGQJGRSNR-UHFFFAOYSA-N) seen from outside of
active site (left) and in a rotated view with transparent, z-clipped protein
surface to show penetration of the ligand into the deep active site cleft
also shown in Figure 12.

Figure 14. Convergence of translational water−water entropy for
region overlapped by ligand Z34 in the binding site of FXa, reported in
kcal/mol.
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translational entropy of water is changed when it is computed
from a density distribution conditioned on the presence of a water
molecule at r′. This contribution must also be weighted by the
density of water at r′. Integrating over r′ then yields the total
second order translational entropy, which may be referenced to
the corresponding quantity for bulk water. Our implementation
of this idea combines a gridded discretization of r′ with a nearest
neighbor method that efficiently computes the required condi-
tional translational entropies. Evaluating this second order
entropy term is substantially more computationally demanding
than evaluating the first order translational and orientational
terms, but the numerical convergence obtained, both in terms
of grid spacing and simulation length, appears good enough
to provide at least semiquantitative information and intuition
about how water−water correlations contribute to the hydration
entropy of solutes. It is worth emphasizing that the NN method
used here yields efficiency and accuracy far beyond that afforded
by a simple histogram-based method.
The present method has several methodological parameters

that affect the trade-off between accuracy and the amount of data
needed to achieve a given level of numerical convergence. On the
basis of the RDF study, one would ideally use a grid spacing of
about 0.1 Å to achieve highly accurate correlation results. However,
very long simulations would be required to converge these
calculations, so we have used a grid spacing of 0.5 Å, which seems to
afford a reasonable balance between accuracy and convergence,
based on the RDF study. However, it will be of interest to press for
further refinement, via either improved algorithms or brute-force
increases in simulation lengths. Another relevant parameter is the
size of the Lk grid positioned around each k voxel to capture the
effects of a water at k on the local water density distribution. For the
TIP3P water model used here, we obtained reasonable results with
an L grid of about 10 Å side length, which hence extends a
minimum of 5 Å in all directions from voxel k. However, the RDF
of TIP3P water reaches bulk density at a rather short distance, and
other water models, whose RDF deviates from bulk at longer
distances, may require a larger L grid.
We find that this second order term contributes only 5−8% of

the first order terms to the hydration entropy associated with
regions of interest in and around the synthetic host molecule
CB7 and in the active site region of the enzyme FXa.
Interestingly, the second-order term is more significant for
FXa, with its more polar and geometrically complex binding site,
than for CB7. Indeed, for FXa, the integral of the second order
term over the region occupied by a high-affinity, small molecule
inhibitor is about −5 kcal/mol, which is substantial on the
scale of the free energies of ligand-protein binding. Hence, the
second-order translational term probably makes a substantial

contribution to the change in hydration entropy on protein−
ligand binding. It is also worth remarking that the second order
term contributes with the same, negative, sign as the first order
terms, in the cases studied here; intuitively, the presence of the
solute increases water−water correlations and further decreases
the entropy. This result appears to be consistent with the room
temperature results previously obtained in a study of methane
hydration,64 but less so with prior heuristic estimations in which
the water−water term is assumed to increase, rather than
decrease, the hydration entropy.52,67

Three-dimensional mapping of the second order entropy
contribution in and around CB7 and FXa suggests that this local
quantity depends not only on whether the nearby solute surface
is polar or nonpolar, but also on overall shape of the nearby
surface. In particular, the entryways to deep binding cavities have
particularly low values of TΔSww,trans, indicating a high degree of
correlation with other waters. This makes intuitive sense, as these
are locations where the presence or absence of a water can
strongly effect how other waters are able to pack and fill the
nearby cavity, making for a large difference in the baseline and
conditional translational entropy of water. We anticipate that this
“entryway effect” will be important in many other systems as well,
such as at the entryways of nanotubes and of other deep protein
binding sites, like the active site gorge of the enzyme
acetylcholinesterase.81 Displacement of water from such locations,
if the density is significant there, is expected to be thermodynami-
cally favorable. Of course, it will be important to consider such
second-order contributions in the context of other contributions
to the thermodynamics, both entropic and enthalpic.
The present methodology opens new possibilities for

exploring the thermodynamic properties of water at molecular
surfaces and thus has potential to deepen our understanding of
molecular recognition and to find practical application in various
aspects of molecular design, including drug design. There is also
room for methodological improvement. For this translational
term, it will be of interest to seek enhanced convergence with
respect to both grid spacing and simulation duration. In addition,
it will be of interest to extend these studies to the entropic
consequences of water−water orientational correlations, which
may be substantial, due to the cooperative formation of various
different hydrogen-bonded configurations of water molecules.
The use of strong numerical methods, like nearest-neighbor
entropy estimation, combined with growing computer power,
should make for continued progress along these lines.

■ APPENDIX

We examined the normalized second order translational entropy,
TSww, of pure TIP3P water, computed using various grid spacings
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with both the histogram (left) and nearest neighbor (right)
methods. These calculations used a K grid of dimensions 1.5 Å ×
1.5 Å × 1.5 Å and Lk grids of dimensions 16 Å × 16 Å × 16 Å,
which corresponds to a minimum cutoff distance of 8 Å for the
effect of a water in voxel k on the surrounding water density
profile. The graphs show that, for fine grid spacings, such as 0.15
Å, the NN method has a clear advantage over the histogram
method, in terms of the amount of sampling required for a given
degree of convergence. Even at a grid spacing of 0.25 Å, the
histogram result is far from the reference RDF result after
extensive sampling. Note that the apparent agreement of the
histogram results with the reference RDF results for grid spacings
of 0.5 and 0.75 Å are misleading, due to the large range of the y
axis; see Figure 3 in the main text.
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Kolossvaŕy, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wolf, R. M.; Liu, J.;
Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.;
Wang, J.; Hsieh, M.-J.; Cui, G.; Roe, D. R.; Mathews, D. H.; Seetin, M.
G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.;
Kovalenko, A.; Kollman, P. A. AMBER 12; University of California, San
Francisco, 2012.
(72) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical
Integration of the Cartesian Equations of Motion of a System with
Constraints: Molecular Dynamics of N-Alkanes. J. Comput. Phys. 1977,
23 (3), 327−341.
(73) Wang, J.; Wolf, R.; Caldwell, J.; Kollman, P.; Case, D.
Development and Testing of a General Amber Force Field. J. Comput.
Chem. 2004, 25 (9), 1157−1174.
(74) Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A Well-
Behaved Electrostatic Potential Based Method Using Charge-Restraints
for Deriving Charges: The RESP Model. J. Phys. Chem. 1993, 97,
10269−10280.
(75) Case, D. A.; Berryman, J. T.; Betz, R.M.; Cerutti, D. S.; Cheatham,
T. E., III; Darden, T. A.; Duke, R. E.; Giese, T. J.; Goetz, H. G. A. W.;
Homeyer, N.; Izadi, S.; Janowski, P.; Kaus, J.; Kovalenko, A.; Lee, T. S.;
LeGrand, S.; Li, P.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.;

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00939
J. Chem. Theory Comput. 2016, 12, 414−429

428

http://dx.doi.org/10.1021/acs.jctc.5b00939


Monard, G.; Needham, P.; Nguyen, H.; Nguyen, H. T.; Omelyan, I.;
Onufriev, A.; Roe, D. R.; Roitberg, A.; Salomon-Ferrer, R.; Simmerling,
C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.;
York, D. M.; Kollman, P. A. AMBER 2015; University of California: San
Francisco, CA, 2015.
(76) Adler, M.; Davey, D. D.; Phillips, G. B.; Kim, S. H.; Jancarik, J.;
Rumennik, G.; Light, D. R.; Whitlow, M. Preparation, Characterization,
and the Crystal Structure of the Inhibitor ZK-807834 (CI-1031)
Complexed with Factor Xa. Biochemistry 2000, 39 (41), 12534−12542.
(77) AMBER 11; AmberTools 1.5; University of California: San
Francisco, CA, 2010.
(78) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;
Simmerling, C. Comparison of Multiple Amber Force Fields and
Development of Improved Protein Backbone Parameters. Proteins:
Struct., Funct., Genet. 2006, 65 (3), 712−725.
(79) Wang, L.; Abel, R.; Friesner, R. A.; Berne, B. J. Thermodynamic
Properties of Liquid Water: An Application of a Nonparametric
Approach to Computing the Entropy of a Neat Fluid. J. Chem. Theory
Comput. 2009, 5 (6), 1462−1473.
(80) Humphrey, W.; Dalke, A.; Schulten, K. VMD -Visual Molecular
Dynamics. J. Mol. Graphics 1996, 14, 33−38.
(81) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.;
Toker, L.; Silman, I. Atomic Structure of Acetylcholinesterase from
Torpedo Californica: A Prototypic Acetylcholine-Binding Protein.
Science 1991, 253, 872−879.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00939
J. Chem. Theory Comput. 2016, 12, 414−429

429

http://dx.doi.org/10.1021/acs.jctc.5b00939

