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In recent studies, primary aldosteronism (PA) has been reported as the most

common etiology for secondary hypertension of endocrine origin, accounting

for approximately 10% of cases. In PA, excess aldosterone production can lead

to deleterious effects at the cardiovascular (CV) and renal levels by activating

mineralocorticoid receptors, which involves an increase in pro-inflammatory

and pro-fibrotic mediators. Among these mediators, neutrophil gelatinase–

associated lipocalin (NGAL), a secretion glycoprotein belonging to the lipocalin

superfamily, has been closely linked to CV and renal damage in several

pathological conditions. Because NGAL can be detected in biofluids such as

plasma and urine, it has been proposed as a damage biomarker for target

tissues and has also been studied for its role in hypertension and associated

with PA. NGAL is produced by many different cell types, can be carried on

extracellular vesicles, and is modulated by microRNAs, which would support its

use as a biomarker for endocrine hypertension due to PA. Over the last decade,

studies have shown that NGAL is necessary for the development of

aldosterone-induced hypertension and that is associated with end-organ

damage. In addition, it has been proposed that some mechanisms are

dependent on the activation of immune cells, such as dendritic cells and

macrophages, where the release of specific cytokines (i.e., interleukin [IL]-23)

or chemokines (i.e., CCL-5) induced by aldosterone would depend on NGAL.

Subsequently, this activates the T helper (Th) lymphocytes, such as Th17 and

Th2, resulting in CV and renal fibrosis due to the high aldosterone levels.

Although the immune system has been closely associated with essential

hypertension, its participation in endocrine hypertension has not been fully

elucidated. This review discusses the link between NGAL and endocrine

hypertension, particularly in the context of PA, and their possible regulators

and mechanisms, with a focus on its role as an immunomodulator.
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Introduction

Arterial hypertension (AH) affects 31.1% of the global

population (1). Its etiology is multifactorial, and many cases

are classified as essential AH because their precise origin is

unknown. Approximately 10%–15% of hypertensive patients

have secondary AH, with renal arterial disease and endocrine

AH as the most common etiologies. Primary aldosteronism (PA)

is the most common etiology for endocrine AH (2).

Neutrophil gelatinase–associated lipocalin (NGAL), also

known as lipocalin-2 (Lcn2) or 24p3, is a 25-kDa secretion

protein belonging to the lipocalin superfamily, which can bind

siderophores for iron import to different cell types (3). Although

its expression may vary in some physiological conditions (4, 5), a

significant increase in NGAL levels has been closely related to

several renal and cardiovascular (CV) disorders, involving the

activation of the mineralocorticoid receptors (MR). Thus, NGAL

has emerged as a possible biomarker for acute and chronic sub-

inflammatory conditions, including PA.

Here, we present several conditions that can modify NGAL

abundance depending on aldosterone (Aldo) levels. Our

discussion will mainly focus on the mechanisms where NGAL

may function as a modulator of the immune response driving

tissue fibrosis, in hopes of providing new insight into its role as a

biomarker for PA.
Endocrine arterial hypertension and
primary aldosteronism

PA is clinically defined as inappropriate synthesis and

secretion of Aldo, independent of the renin–angiotensin

system, that cannot be suppressed by sodium loading (6). The

prevalence of PA varies depending on the diagnostic criteria, but

approximately 10% of patients with AH present PA (7), and its

prevalence may be increased in patients with resistant AH (8).

Patients with PA have a higher risk of CV and renal

complications, as well as a higher risk mortality as compared

to those with essential AH (9–11). Excess Aldo production

favors MR activation in different cell types, which can increase

the risk of morbidity and mortality (9, 12) even in normotensive

patients (13). Thus, increased MR activity due to PA is seen in

AH and in target organ damage.

Current guidelines recommend using the Aldo to renin ratio

for PA analysis (14). However, sensitive technology (e.g., liquid

chromatography–mass spectrometry) is required for

quantification because of the low plasma concentrations of

these components. This relationship may also be modified by

different factors (15). Therefore, early identification of PA, with

emphasis on Aldo target tissues and cells, both represents a

challenge related to its diagnosis (16) and is also relevant for the

stratification of risk related to the pro-inflammatory and pro-
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fibrotic that can be caused by Aldo–MR interaction in different

cell types (17).

NGAL is a sensitive target gene to the complex Aldo–MR,

which has allowed to consider it as a biomarker for CV and renal

disease associated with PA (18, 19). Moreover, recent findings

suggest that extracellular vesicles (EVs) isolated from liquid

biopsies may carry NGAL, representing a new diagnostic tool

for PA (20).
NGAL as a biomarker of renal
damage and arterial hypertension

Kjeldsen et al. initially described NGAL in human

neutrophils (21, 22), where it is expressed in forms of mRNA

and protein change based on the granulopoiesis stage (23).

However, NGAL can originate from many sites: the

hematopoietic organs (24); adipocytes; hepatocytes (25);

neoplastic cells; lungs (26); mammary glands and uterus (4);

neurons; and endothelial, cardiac, and smooth muscle cells (27).

Recently, we characterized the relative abundance of NGAL

in different mouse immune cells. We observed that its expression

in CD11chigh antigen-presenting cells (APCs) is higher than that

in B and T lymphocytes (28). This observation is relevant

considering that these immune cells can potentially promote

AH (18) and end-organ damage associated with AH (29).

In the kidney, NGAL expression has been described in

spec ific nephron reg ions augmented in d i ff e r en t

experimental and clinical settings of renal dysfunction,

suggesting that NGAL is a specific biomarker for kidney

injury (30–33). In particular, NGAL increases considerably

in response to ischemic or obstructive renal disease in mice

(31, 34, 35), suggesting a direct correlation between

inflammatory processes and oxidative stress in the

development of kidney disease. Furthermore, Viau et al.

showed the prevention of tubular dilation and glomerular

and tubular fibrosis in an experimental model of chronic

kidney disease (CKD) in NGAL knock-out (KO) mice (36),

indicating its critical role.

In terms of NGAL’s potential as a biomarker, studies have

shown that high urinary NGAL urinary levels of NGAL

(uNGAL) levels are directly associated with tubulointerstitial

fibrosis and tubular atrophy in patients and experimental

animals. In contrast, it is inversely correlated with the

glomerular filtration rate in kidney disease (36, 37). Over the

last few years, studies have proposed that early identification of

uNGAL or serum NGAL (sNGAL) would be helpful not only in

the early diagnosis of kidney disease (37–39) but also in tracking

the progression of acute kidney injury (31) and its transition to

CKD in real time (40). Thus, using NGAL as a biomarker in the

early stages of renal damage could be crucial for the prognosis of

patients progressing to CKD (41).
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Because CKD and AH are closely linked, several studies

published during the last decade have considered using sNGAL

and/or uNGAL as biomarkers to determine the CV and renal risk

in patients with AH. For instance, uNGAL levels (normalized to

urine creatinine) were found to correlate with systolic blood

pressure (SBP) and diastolic blood pressure (DBP) in a study of

100 healthy volunteers fromHong Kong (42). Similarly, Wu et al.

demonstrated that sNGAL was significantly associated with SBP

and DBP in a cohort of 707 patients, comprising those with CV

disease and those who were CV disease–free (43). Malyszko et al.

showed that uNGAL and sNGAL levels in hypertensive patients

were higher than in normotensive and healthy volunteers (44).

Because the NGAL levels in serum and urine may be modified by

a patient's renal function, the increase in sNGAL and uNGAL

levels may also be affected, considering the differences in renal

function among the study participants. Finally, Lindberg et al.

revealed that plasma NGAL levels were positively correlated with

SBP and neutrophil count and inversely correlated with renal

function (45). All of these studies defined AH as SBP > 140

mmHg without specifying its etiology. The origin of the increase

in uNGAL and sNGAL levels observed in endocrine AH

therefore remains to be clarified. However, the origin of these

increased levels in the context of PA is well understood, and the

mechanisms underlying this phenomenon will be discussed in

the following sections.

Recently, the use of NGAL carried on EVs as a biomarker in

hypertensive patients has also been considered. Several studies in

renal transplantation have demonstrated that exosome cargo

obtained from urine involves NGAL in the forms of mRNA (46)

and protein (47). Other studies in central and peripheral

inflammatory conditions have shown NGAL expression in

EVs isolated from biofluids such as plasma (48) and saliva

(49). In the case of AH, Barros et al. showed that alpha-1-

acid-glycoprotein (AGP1, also known as orosomucoid-1) is

upregulated in urinary EVs from hypertensive patients

compared with those of normotensive patients (50). AGP1 is

an inflammation-sensitive plasma protein that is increased in

patients with higher CV risk (51) and is related to lipocalins,

including NGAL. However, NGAL upregulation in the EVs of

hypertensive patients remains to be explored.
NGAL and endocrine arterial
hypertension

To date, the hormonal regulation of NGAL expression

associated with AH has been poorly investigated. In this

context, excess glucocorticoid production due to an

endogenous or exogenous origin induces AH (52) by

activating the glucocorticoid receptors (GR) in peripheral

tissues (53). In particular, the GR in vascular smooth muscle

cells has been considered crucial for increasing blood pressure
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during glucocorticoid excess (54). This evidence is relevant,

considering that the GR at the CV level modulate NGAL

abundance during dexamethasone treatment (55). In addition,

an experimental study in rats showed that 2-week oral

administration of corticosterone increased NGAL protein

expression in the glomeruli and renal tubule by 75% and 30%,

respectively (56).

In terms of other “non-classic” tissues (or cells) in AH,

Vizzardelli et al. reported that glucocorticoids have a synergic

effect on lipopolysaccharides involved in NGAL production in

dendritic cells (DCs) (57), which are the principal APCs

involved in AH. Because high glucocorticoid levels can also

activate the MR, it is worth mentioning that some of the effects

described could occur through this receptor (58). This

hypothesis is supported by a recent study that reported that

hypertensive patients diagnosed with non-classic apparent

mineralocorticoid excess plus PA presented higher NGAL

plasma levels than those with PA only (59). The regulation of

NGAL by the glucocorticoid–MR complex in other immune cell

types in endocrine AH remains to be explored further.

NGAL modulation due to MR activation by Aldo during AH

has been better described, particularly at the experimental level.

In clinical settings, patients with PA presented high sNGAL

levels associated with metalloproteinase (MMP)-9 (60).

However, potential modulation of sNGAL levels by MR

antagonism or adrenalectomy has not been reported. Kozlowki

et al. reported that uNGAL levels are increased in patients

undergoing elective posterior retroperitoneal adrenalectomy;

however, uNGAL was used in this case as a biomarker for

kidney injury associated with the procedure and not for PA

(61). This study did not report levels of sNGAL or adrenal

hormones before the intervention. Therefore, new studies are

needed to clarify this relationship and to support the role of

sNGAL as a biomarker of PA.

At the experimental level, Latouche et al. initially

demonstrated that mRNA NGAL is strongly induced in

ca rd i a c and va s cu l a r smoo th musc l e c e l l s a f t e r

mineralocorticoid infusion in rodents (27). However,

spironolactone, an MR antagonist, prevented these effects,

suggesting that the MR directly controls the NGAL expression

in CV cells. Subsequently, Tarjus et al. demonstrated that high

blood pressure and CV fibrosis, also characterized by galectin-3

(Gal3) and collagen (Col)-1 upregulation, induced by the

“nephrectomy Aldo–salt (NAS) model,” are prevented in

NGAL–KO mice, suggesting a direct link between NGAL and

endocrine AH due to excess Aldo production (60). Another

study showed that AH, CV fibrosis, and the pro-inflammatory

phenotype in NAS mice are attenuated not only by the complete

genetic deficiency of NGAL but also by depletion confined to the

myeloid compartment (62). This study attained new insights

regarding the effect of NGAL on APCs, considering their

myeloid origin.
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Recently, a study showed that Aldo induces mRNA NGAL

expression in DCs by MR activation (18). In addition, CD11chigh

APCs are necessary for developing cardiac hypertrophy and CV

fibrosis in NAS mice. Buonafine et al. showed that NGAL levels

were increased in macrophages (Mf), DCs, and peripheral blood
mononuclear cells in NAS mice compared with control mice. By

contrast, NGAL levels in B lymphocytes and CD4+ and CD8+ T

lymphocytes of NAS-treated mice did not differ from those of

control mice, even when NAS increased the recruitment of these

cells in the lymph nodes (62). These findings suggest that NGAL

from Mf and DCs is secreted during mineralocorticoid excess,

which may contribute to the CV remodeling that has previously

been reported. Additionally, a positive correlation was found

between NGAL mRNA levels and MR in all the immune cells

studied at the basal state (62), indicating a strong association

between MR and NGAL in the immune cells. Notably, NGAL

modulation seems specific to MR activation. Preliminary studies

from our group have revealed that NGAL is not significantly

modified in target CV tissues and other immune cells after

stimulation of angiotensin II (AngII), another critical hormone

in AH (data not published).
The role of NGAL in the immune
system during aldosterone-
dependent hypertension

The link between the immune system and AH was first

suggested in the 1960s, when autoantibodies were identified in

the arteries of hypertensive cadavers (63). Since then, this

finding has been supported by additional experimental studies

(64, 65). The causal role of the immune system in secondary AH

was supported by a study by Grollman and White that

demonstrated that immunosuppressants could control blood

pressure in rats with partial renal infarction (66). Later,

additional evidence implicated the immune system in the

development of AH and its association with end-organ

damage (29).

Many different immune cells have been directly associated

with blood pressure control. The most notable among them are

monocytes/Mf, DCs, and T lymphocytes, which participate in

AngII- or Aldo-dependent AH (18, 67–74) and NaCl-sensitive

AH (75–79). Part of the mechanism proposed for T-cell

activation is the formation of neoantigens from APCs (80–82)

through increased reactive oxygen species formation and

subsequent protein modifications (83, 84). By contrast,

polymorphonuclear leukocytes, such as neutrophils, have also

been considered to be among the immune cells contributing to

AH (85). An increased blood neutrophil-to-lymphocyte ratio

(NLR) has been observed in hypertensive patients. Moreover,

one multicentric study found that NLR was positively correlated
Frontiers in Endocrinology 04
with plasma Aldo concentrations and identified it as a significant

predictor of CKD among patients with PA (86). Although Aldo

may directly activate the p38, ERK1/2, and PI3K pathways in

human neutrophils (87, 88), which favors MMP-9/NGAL

upregulation, its role in Aldo-dependent AH is still

controversial, considering that Aldo inhibits nuclear factor kB
(NF-kB) through MR activation in neutrophils (89). Therefore,

further studies are needed to explore the Aldo–MR–NGAL

relationship in neutrophil-related inflammation.

Aldo can bind to the MR in DCs andMf because it is mainly

present in APCs. Ko et al. demonstrated that blood pressure

e l e v a t i on wa s p r even t ed du r ing t r e a tmen t w i th

mineralocorticoids and salt (the DOCA–salt model) in mice

deficient in Mf colony-stimulating factor (M-CSF), a relevant

protein for Mf differentiation (90). Later, Rickard et al.

demonstrated that myeloid MR deletion prevents AH induced

by DOCA–salt. They used the Cre/LoxP recombination system,

along with a lysozymeM promoter for selective MR depletion on

monocytes/Mf (My–MR–KO), during 8 weeks of DOCA–salt

treatment in mice. Cardiac remodeling associated with

endocrine AH was reduced in the My–MR–KO mice (91).

Subsequently, the same group demonstrated that cardiac Mf
isolated from DOCA–salt mice showed an increment of tumor

necrosis factor (TNF)-a and the chemokine C-X-C motif ligand

(CXCL)-9, which promotes T lymphocyte infiltration and

cardiac fibrosis, while these increases were prevented in My–

MR–KO animals (92).

Based on previous evidence, the effects of the MR on APCs

associated with endocrine AH can be explained by NGAL

induction and its secondary impact as an immunomodulator.

Recently, our group demonstrated that NGAL mediates the

upregulation of IL-23p19 and IL-23p40 subunits in CD11chigh

DCs treated with Aldo in an MR-dependent way (18). Notably,

we observed that NGAL does not affect the in vitro

differentiation of CD11chigh DCs from mouse bone marrow

(18), which was supported by other studies in terms of

maturation (93). Interestingly, IL-23p19 and IL-23p40

subunits have been reported as crucial for Th17 polarization

from naïve T-CD4+ lymphocytes (94), suggesting that IL-17A

secretion from Th17 lymphocytes may be affected by NGAL

levels during hyperaldosteronism (Figure 1). Leopold proposed a

similar mechanism in CV remodeling that considered post-

translational NGAL modifications that may affect the CV

abundance of Gal3 and Col-1 (95).

During kidney injury (96) and AH (97), NGAL is dependent

on the IL-17A axis. Norlander et al. demonstrated that IL-17A

upregulates the abundance of the sodium-hydrogen exchanger 3

(NHE3) protein and promotes the activity of sodium chloride

cotransporter (NCC) in the human proximal tubule and mouse

distal convoluted tubule cells, respectively (98). This suggests

that NGAL may be involved in sodium reabsorption at the

tubular level through IL-17A in PA. However, further studies
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will be needed to determine the IL-17 dependence on NGAL

from APCs during MR activation.

In addition, Bonnard et al. demonstrated that NGAL fromMf
is also necessary for the renal expression of extracellular matrix

proteins, such as Col-1, aSMA, and fibronectin, which are

associated with interstitial fibrosis (99). They demonstrated that

NGAL is required for chemokine ligand (CCL)-5 induction inMf
stimulated with Aldo and salt in vitro, a relevant finding given that

the pharmacological blockade of the CCL5 receptor reduced renal

Th2–CD4
+ lymphocyte infiltration induced by NAS. Finally, they

observed that this blockade and the resulting neutralization of IL-

4, a cytokine secreted by Th2-CD4
+ lymphocytes, prevents

interstitial fibrosis in the kidney, suggesting that these Th cells

are also involved because ofMR activation by Aldo (Figure 1). The

previous findings indicate that NGAL may act as an

immunomodulator in AH-associated PA, triggering a pro-

inflammatory phenotype related to target organ damage, where

the action of APCs (mainly DCs and Mf) is required.
Limited information is available regarding the cell types

targeted by NGAL and the pathways involved. Recombinant

NGAL has been shown to promote M1 polarization in microglia

(100), which are the resident Mf in the central nervous system.

This is relevant given that M1 Mf are responsible for producing

a wide range of pro-inflammatory cytokines and chemokines,
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including TNF-a, CCL5, and monocyte chemokine protein

(MCP)-1 (101–103). Similarly, Pawar et al. reported that 3

days of intraperitoneal injections of recombinant NGAL

upregulated MCP-1 in the kidneys of wild-type mice (104).

These mediators are critical for Th cell infiltration during Aldo-

dependent AH, which would be modulated by NGAL

(Figure 1, insert).

Finally, whether NGAL can activate a specific receptor on

APCs and target cells at the CV and renal levels in the MR–Aldo

complex remains unknown. In physiological conditions, NGAL

acts mainly through its endocytic 24p3 receptor (24p3R), which

is present in neurons (105), the intestinal epithelium (106), the

distal and collecting tubules (107), and immune cells, such as Mf
and neutrophils (108). However, additional studies will be

needed to determine whether 24p3R is modulated by the MR–

Aldo complex in the APCs involved in AH.
Concluding remarks

Over the last 20 years, several studies have shed light on the

role of the immune system in the development of AH and target

organ damage, emphasizing some emerging mechanisms by
FIGURE 1

Proposed mechanisms of NGAL as an immunomodulator on APCs during Aldo-dependent endocrine hypertension. Elevated Aldo (or Gluco)
levels can activate the MR in APCs (DCs or Mf) and promote the transcription of several genes, such as NGAL. NGAL may promote the release
of pro-inflammatory factors from APCs, such as MCP-1, TNFa, and CCL-5, triggering lymphocyte infiltration in target tissues, particularly Th2
lymphocytes. Th2 lymphocytes release IL-4, favoring interstitial fibrosis and augmenting renal damage. By contrast, NGAL modulates the
production of IL-23, a cytokine essential for Th17 lymphocyte polarization, which has been closely related to renal and CV fibrosis, as well as
NHE3 and NCC induction and transcriptional increases of NGAL. Finally, NGAL may directly activate the Mf to M1 pro-inflammatory phenotype,
which has also been associated with MR-dependent AH (see insert).
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which APCs activate Th cells, which has also been extensible for

endocrine hypertension. Among the various origins of endocrine

AH, PA seems to be the principal etiology.

Experimental studies have demonstrated that in the presence

of abnormally elevated levels of Aldo, the APCs, mainly

CD11chigh DCs and Mf , may potentiate additional

mechanisms for antigen presentation driving T lymphocyte

polarization through molecules, such as NGAL by MR

activation. However, the effects of these APCs in endocrine

AH, and the mechanisms by which NGAL modulates T cells,

have not been fully clarified. Additional pre-clinical and clinical

studies are needed to answer this question.

NGAL after MR activation in APCs would favor the

differentiation and recruitment of Th17 and Th2 lymphocytes

through the release of IL-23 and CCL-5, respectively. However,

whether NGAL modulates polarization toward other Th

lymphocytes strongly associated with AH, such as Th1
lymphocytes and T CD8+-lymphocytes, in the context of

endocrine hypertension and high Aldo levels is still unknown.
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