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Abstract: Computer-assisted analysis is expected to improve the reliability of videofluoroscopic
swallowing studies (VFSSs), but its usefulness is limited. Previously, we proposed a deep learning
model that can detect laryngeal penetration or aspiration fully automatically in VFSS video images,
but the evidence for its reliability was insufficient. This study aims to compare the intra- and inter-
rater reliability of the computer model and human raters. The test dataset consisted of 173 video
files from which the existence of laryngeal penetration or aspiration was judged by the computer
and three physicians in two sessions separated by a one-month interval. Intra- and inter-rater
reliability were calculated using Cohen’s kappa coefficient, the positive reliability ratio (PRR) and the
negative reliability ratio (NRR). Intrarater reliability was almost perfect for the computer and two
experienced physicians. Interrater reliability was moderate to substantial between the model and
each human rater and between the human raters. The average PRR and NRR between the model and
the human raters were similar to those between the human raters. The results demonstrate that the
deep learning model can detect laryngeal penetration or aspiration from VFSS video as reliably as
human examiners.

Keywords: dysphagia; swallowing; laryngeal penetration or aspiration; deglutition; reliability;
videofluoroscopic swallowing study; deep learning; machine learning

1. Introduction

The videofluoroscopic swallowing study (VFSS) is currently regarded as the gold stan-
dard method for evaluating swallowing function because it allows real-time visualization
of bolus movement along with the dynamics of anatomical structures associated with the
swallowing process [1,2]. A VFSS makes it possible to detect the presence and timing of
laryngeal penetration or aspiration and helps to identify its physiological mechanisms [2–4].

The videofluoroscopic images are recorded while the patients swallow boluses mixed
with contrast, and physicians or speech–language pathologists analyze the recorded
videos [2]. VFSS analysis depends on the subjective visual judgment of the reviewers
and is inevitably susceptible to human bias [5–7]. Human examiners usually have the
burden of reviewing the images dozens of times for one patient because the swallowing
process is repeated 10 to 15 times per test and repeated replay is required due to the fast
and complex nature of swallowing. Consequently, it is difficult to avoid human error due
to the fatigue that results from high concentration and repetitive examination. Because of
this vulnerability to human error, the reported reliability of VFSS analysis is not excellent;
wide variation is present in both intra- and inter-rater agreement (intrarater к= 0.530~1.00,
interrater к= 0.269~0.700) [5–9].
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As an alternative to overcome the limitations of human reading, recent studies have
attempted to develop computer-assisted analysis [10–15]. Aung et al. suggested that
automated reading enables more objective and immediate analysis with a quantifiable
level of accuracy, eliminates the need for high levels of training for analysis and reporting,
and provides a platform for larger-scale screening of populations with dysphagia [10].
Computer-assisted analysis typically tracks anatomical landmarks automatically after
they are demarcated by humans in the first few frames of the videos [10–15]. However,
its clinical usefulness has been limited because most of the models use obsolete semi-
automated tracking and segmentation algorithms that require manual demarcation of
anatomical landmarks.

Recently, deep learning technology has increased the accuracy of image classification
to a level exceeding that of human eyes and is expected to reduce error in reading medical
images [16–19]. In a previous study, we developed and proposed a model capable of
detecting laryngeal penetration or aspiration from VFSS images in a fully automated
manner without any human intervention by applying deep learning algorithms [20]. The
model showed an overall accuracy of 97.2% in classifying image frames and 93.2% in
classifying video files in which laryngeal penetration or aspiration was evident, exceeding
the accuracy of previous semiautomated computer-assisted analysis. The results showed
the potential value of the model for clinical practice in many respects, but the evidence for
its reliability still seems to be insufficient.

This study aims to examine and compare the intra- and inter-rater reliability of our
deep learning model and human examiners for the detection of laryngeal penetration or as-
piration from VFSS images. We anticipate that the results of this study may provide further
evidence to support the clinical application of deep learning technology in VFSS analysis,
although dichotomous results of whether penetration/aspiration was detected or not on
VFSS does not always represent the degree of pathology in the swallowing mechanism.

2. Materials and Methods
2.1. Dataset

We collected a total of 205 VFSS video files from 49 patients, aiming for an even
distribution of attributes including gender, age, viscosity of diet and degree of laryngeal
penetration or aspiration. Presence of the penetration or aspiration was determined using
the PAS (Penetration/Aspiration Scale) [21] and videos scored as PAS 2 or higher were
included. The video files were selected from the database of Dankook University Hospital,
which contains the videos of VFSSs conducted between January 2015 and June 2020. The
VFSS was performed according to the protocol described by Logemann [22] with minor
modifications. Briefly, video images were acquired via lateral projection at a speed of 30 fps
(frames per second) while the seated patients swallowed boluses of various consistencies
mixed with contrast medium; the videos were stored digitally. The types of boluses
swallowed were as follows: 3 mL of thick liquid (water-soluble barium sulfate diluted to
70%); 3 mL of rice porridge; 3 mL of curd-type yogurt; 3 mL of thin liquid (water-soluble
barium sulfate diluted to 35%) from a spoon; or 5 mL of thin liquid from a cup. The video
files were selected by an investigator who had more than two years of experience in analysis
of VFSS. Every effort was made to select videos in which the presence or absence was
evident. The video files were edited to contain only one swallowing event. Each swallowing
was defined as the process from the backward movement of bolus in oral cavity to the
returning of larynx to original position. A little space was also put on the front and back
of the swallowing event to include the whole swallowing event. When the bolus was not
fully swallowed in first attempt, subsequent swallows were also included until the bolus
was completely swallowed. The videos were not included if they showed remaining of the
bolus aspirated from previous swallow in the larynx. Among those files, 32 were excluded
due to poor image quality. Ultimately, 173 video files from 42 patients were included in the
VFSS dataset; the distribution of their attributes is shown in Table 1. The shortest video
lasted 4 s, and the longest video lasted 240 s. The depth of penetration/aspiration was
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categorized as shallow (PAS 2 or 3), deep (PAS 4 or 5) and aspiration (PAS 6 or higher) and
their distribution is shown in Table 1. The proportion of presence and depth was set to
equal the overall distribution in database of authors’ institution.

Table 1. Characteristics of VFSS dataset for test.

Factors Number of Video Files (Number of Patients) %

Gender Male 87 (21) 50
Female 86 (21) 50

Age (years) 40–49 35 (8) 20
50–59 31 (7) 18
60–69 30 (8) 17
70–79 35 (7) 20
80+ 42 (12) 24

Viscosity of diet Thick liquid 40 23
Rice porridge 41 24

Curd-type yogurt 35 20
Thin liquid 33 19

Cup drinking 24 14

Laryngeal penetration or aspiration

Absent 79 46
PA2 2–3 44 25
PAS 4–5 29 17
PAS 6–8 21 12

2.2. Analysis of VFSS
2.2.1. Machine Reading

The video files were examined for the presence of laryngeal penetration or aspiration
using the computer model described in a previous study [20]. In summary, the model
consisted of three phases: (1) image normalization, (2) dynamic ROI (region of interest)
determination, and (3) detection of laryngeal penetration or aspiration (Figure 1). After
the input images were normalized using CLAHE (contrast-limited adaptive histogram
equalization) [23], an ROI was defined with reference to the cervical spinal column seg-
mented using U-net. The ROI was set to include the larynx, the cervical spine, and adjacent
areas. Noise from the movement of head and neck could be minimized by setting the ROI
to move dynamically with the cervical spines. Within the ROI, the presence of laryngeal
penetration or aspiration was classified by the deep learning network trained with the
Xception module [24]. The output was reported and displayed in the form of histograms
as shown in Figure 2. The classification and reporting process was conducted in a fully
automated manner without any human intervention except for inputting the image data.
Display of at least one peak was considered “positive” result.
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Figure 1. The same deep learning model we proposed in our previous study [20] is used in this study. After normalization of
the input images, a dynamic ROI is defined with reference to the cervical spinal column segmented by U-net. The presence
of laryngeal penetration or aspiration in the ROI can be identified by the Xception module.
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Figure 2. Example output of the deep learning model represented as histograms: (A) No laryngeal penetration or aspiration
was detected in any frame of the video. (B) Laryngeal penetration or aspiration occurred in approximately the 100th to
115th frames and the 180th to 200th frames of the video.

2.2.2. Human Reading

The human raters were three physicians: “Human 1”, with more than 20 years of
experience in VFSS analysis; “Human 2”, with 10 years; and “Human 3”, the novice with
1 year. Working in separate locations, the three human examiners judged the existence of
laryngeal penetration or aspiration, regardless of severity or depth, in the same video files.
When multiple swallowing attempts were included in the video clip, the result was rated
as “positive” if any one of the attempts shows penetration/aspiration. Discussion was not
allowed, and no information about the subjects in the videos (including gender, age, and
medical history) or the viscosity of the bolus was given to the raters.

2.3. Analysis of Intra- and Inter-Rater Reliability
2.3.1. Intrarater Reliability

Trials were conducted in two sessions, separated by four weeks, to calculate the
intrarater reliability of machine and human reading. In both sessions, the presence or
absence of laryngeal penetration or aspiration was judged by three human raters and the
deep learning model. In the second session, 173 video files were reordered and randomly
assigned to the raters by an investigator who was blinded to the results of the first session.
The results were collected from the three human raters and the model in both sessions,
and Cohen’s kappa coefficient was calculated. However, the meaning of epidemiological
statistics derived in this way can be limited because there is no absolute gold standard
for VFSS analysis. Therefore, we used the positive reliability ratio (PRR) and negative
reliability ratio (NRR), as suggested by Kuhlemeier et al. [8]. In the absence of a gold
standard, PRR and NRR can provide statistics about the agreement between session results
from the same interpreter [8]. According to the definition of Kuhlemeier et al. [8], we
calculated the PRR as the percentage of cases a given rater judged abnormal in the first
session that he or she also judged abnormal in the second session. The NRR was calculated
in the same way for normal ratings.

Therefore, the PRR and NRR were calculated by the following formulas:
PRR = Abn(1 and 2)/Abn(1), where Abn(1 and 2) = number rated abnormal in both

the first and second sessions and Abn(1) = number rated abnormal in the first session.
NRR = Normal(1 and 2)/Normal(1), where Normal(1 and 2) = number rated normal in

both the first and second sessions and Normal(1) = number rated normal in the first session.
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2.3.2. Interrater Reliability

The interrater reliability was verified in the same way as the intrarater reliability. As
with the intrarater reliability, the interrater PRR and NRR were defined according to the
definition by Kuhlemeier et al. [8]. PRR and NRR were calculated between each possible
combination of human raters and machine, not between sessions. For interrater reliability,
PRR denoted the percentage of cases judged abnormal (i.e., having laryngeal penetration
or aspiration) by rater “A” that were also judged abnormal by rater “B”. In the same way,
NRR was calculated based on the cases judged to be normal.

Thus, interrater PRR and NRR were calculated by the following formulas:
PRR = Abn(A and B)/Abn(A), where Abn(A and B) = number rated abnormal by both

“A” and “B” and Abn(A) = number rated abnormal by “A”.
NRR = Normal(A and B)/Normal(A), where Normal(A and B) = number rated normal

by both “A” and “B” and Normal(A) = number rated normal by “A”.
All statistical analysis was performed with SPSS for Windows version 26.0, and

the whole study protocol was approved by the institutional review board of Dankook
University Hospital (approval No. 2020-11-015).

3. Results
3.1. Intrarater Reliability

Intrarater reliability is shown in Table 2. The kappa coefficients of all human raters
showed almost perfect agreement except for Human 3 (a novice physician), who had
only moderate agreement. The kappa coefficients of the model showed perfect agreement
(intrarater kappa = 1.00), as expected. The PRRs of all human raters were above 90%. The
NRRs of experienced human raters (Human 1 and Human 2) were above 90%, but Human
3 showed an NRR of only 68%. The PRR and NRR of the model were both 100%.

Table 2. Intrarater reliability represented by kappa coefficients, PRR and NRR.

Kappa PRR (%) NRR (%)

Human 1 0.830 93 91
Human 2 0.930 96 97
Human 3 0.693 98 68

Model 1.000 100 100

3.2. Interrater Reliability

The interrater kappa coefficients are shown in Table 3. All pairs of two human raters
showed substantial agreement in both sessions, except that there was only moderate
agreement between Human 2 and Human 3 in the second session. The machine and every
human rater also showed substantial agreement in both sessions, except that there was
only moderate agreement between the machine and Human 3 in the second session.

Table 3. The interrater Cohen’s kappa coefficients.

Session Human 2 Human 3 Machine

Human 1
1 0.672 0.781 0.660
2 0.672 0.668 0.705

Human 2
1 0.672 0.732
2 0.457 0.732

Human 3
1 0.705
2 0.488

Scale for kappa coefficient: below 0.00 = poor agreement; 0.00–0.20 = slight agreement; 0.21–0.40 = fair agreement;
0.41–0.60 = moderate agreement; 0.61–0.80 = substantial agreement; 0.81–1.00 = almost perfect agreement.

The calculated PRRs and NRRs are shown in Table 4. Overall, the PRR values ranged
from 62% to 100%, and the NRR values ranged from 50% to 100%. No particular pattern
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was found in the distribution of PRR or NRR among the human and machine ratings. The
ratios were somewhat variable among the raters and between sessions. In order to delineate
the difference in reliability, the PRR and NRR values were averaged and compared. The
average PRR was 86.6% when measured between each pair of human raters and 85.5%
when measured between the machine and each human rater. The average NRRs were
82.4%, and 81.3%, respectively. PRR and NRR values were not significantly different
regardless of whether they were between human raters or between machine and human
raters (Figure 3).

Table 4. PRR and NRR values calculated between each human rater and the machine.

PRR 1 (%) NRR 2 (%)

Session Human 1 Human 2 Human 3 Machine Human 1 Human 2 Human 3 Machine

Human 1
1 73 91 73 100 88 99
2 73 97 75 99 66 100

Human 2
1 100 99 86 70 70 87
2 99 99 86 70 50 50

Human 3
1 92 73 75 85 99 100
2 82 62 63 94 98 100

Machine
1 99 85 100 69 88 72
2 100 85 100 72 88 51

1 positive reliability ratio = Abn(A and B)/Abn(A), 2 negative reliability ratio = Normal(A and B)/Normal(A).: A changes according to
rows into Human 1, Human 2, Huma 3, Model, and B changes according to columns into Human 1, Human 2, Human 3, Model. See the
method Section 2.3 for further details.
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4. Discussion

One of the major limitations of VFSS is unsatisfactory interrater reliability. Its poor reliability
may originate from the rapidity and complexity of the swallowing process and resultant
difficulties in its analysis [25], as well as incomplete standardization of the definitions and
judgment criteria of parameters [9]. Several methods have been used to improve the reliability
of VFSS, including training and education [26], group discussion [25], directed search [27], frame-
by-frame observation [5] and computer-assisted automated analysis [10–15]. Most previously
proposed computer-assisted analyses use semiautomated algorithms that require human
manual demarcation of salient anatomical structures [10–15]. To our knowledge, the deep
learning model we proposed in our previous study was the first fully automated model
capable of detecting laryngeal penetration or aspiration in VFSS images [20]. The model
showed more than 90% accuracy, but its reliability has not been tested sufficiently. The
reliability of computer-assisted analysis, whether with semiautomated or deep learning
models, has never been compared with that of human examination. This is the first study
designed to compare the reliability of machine and human examiners for VFSS analysis
and demonstrate the reliability of VFSS analysis using a deep learning model.
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Since there is not yet an absolute gold standard for the analysis of VFSS results, the
significance of classical epidemiologic statistics, such as the kappa coefficient, intraclass
correlation coefficient or positive and negative predictive values, may be limited for as-
sessing the reliability or validity of VFSS analysis. Kuhlemeier et al. [8] proposed that the
PRR and NRR, modified from the positive and negative predictive values, can be useful
for verifying the reliability or agreement among raters in the absence of a gold standard.
They used the PRR to denote the probability that a condition that has been judged to be
abnormal by a rater will also be judged the same by a separate rater or in a second rating
by the same rater [8]. Similarly, the NRR was used to denote the probability that a rating of
“normal” would be followed by a second rating of “normal” either by a different rater or by
the same rater at a different time [8]. In this study, we used the PRR and NRR in addition
to the kappa coefficient to increase statistical strength.

The results of reliability analysis for VFSS data can be influenced by test videos
because VFSS data frequently shows diverse findings according to the severity and type
of dysphagia. If the test videos contain only mild or vague laryngeal penetrations and
aspirations, raters may have difficulties in judgment, and the reliability will be lowered. If
the videos contain only severe laryngeal penetrations and aspirations, agreement between
the raters may appear excessively high because judgment of definite laryngeal penetration
or aspiration might be easy for all raters. We made our best effort to include test videos
with a balanced distribution of characteristics, including the gender and age of patients and
the viscosity of the diet. Efforts were also made to include patients with diverse degrees of
penetration and aspiration in the test dataset. In this way, we believe that selection bias
was minimized in the measurement of reliability.

The experience of the raters may also affect the results of reliability analysis. [25].
Experienced raters usually have highly accurate standards of judgment, while less ex-
perienced raters can have confusion or difficulty in making decisions. We invited and
compared three human raters with different levels of experience to minimize the effect
of experience. The raters comprised one with more than 20 years of experience, one with
approximately 10 years and one with approximately one year. We believe that the bias
caused by different degrees of experience was minimized by comparing human raters with
different experience levels. In addition to experiences, more extensive training also affected
the difference between experienced and less experienced examiners because it had been
recommended for precise use of the Penetration/Aspiration Scale [26].

As expected, the intrarater reliability was excellent for human and machine reading
except in the novice physician (Human 3). Regarding interrater reliability, the kappa
coefficients between the deep learning model and each human rater showed moderate to
substantial agreement, except for Human 2 vs Human 3 and the machine vs Human 3 in
the second session. Human 3 showed the lowest agreement with other human raters and
machines as well as the lowest intrarater reliability, suggesting that experience may play
an important role in the analysis of VFSS results by humans. It is reasonable to speculate
that our deep learning model might be more reliable than an inexperienced human reader
for VFSS analysis.

The PRRs showed inconsistent results both between human raters and between the
machine and human raters, but the values were generally above 70%, except for Human 3
in the second session. It can be speculated that the agreement between experienced human
raters and the deep learning model is high for positive results (the presence of penetration
or aspiration). The lower PRR values between Human 3 and the other human raters as
well as the machine may again suggest that interrater agreement may be affected by the
raters’ experience level. The PRRs of the machine to the human raters showed almost
perfect agreement (above 80%), although the PRRs of the human raters to the machine
showed much lower values. The meaning of the difference between “machine-to-human”
and “human-to-machine” PRRs is unclear. The NRRs, meaning the agreement for negative
results (the absence of laryngeal penetration or aspiration), were generally lower, but not
by a wide margin. To compare the agreement between the human raters and the agreement
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between the machine and human raters, we averaged and compared the PRRs and NRRs.
The differences were not significant, suggesting that the overall agreement between the
machine and human raters was noninferior to that between the human raters for both
positive and negative results.

These results indicate that computer-assisted analysis using a deep learning model
is a reliable method for detecting laryngeal penetration or aspiration through a VFSS.
Considering its consistency and efficiency, deep learning computer analysis could provide
good assistance to human examiners, who are vulnerable to fatigue and variability. It is
anticipated that machine reading with a deep learning model will be able to improve the
reliability and accuracy of VFSS analysis by reducing the time and effort required of human
observers. The concept of computer-assisted detection of penetration or aspiration is of
great clinical value for many reasons such as the potential for lower cost screening for
aspiration or the facilitation of telehealth.

This study has several limitations. In the present study, human raters and the ma-
chine judged the existence of laryngeal penetration or aspiration only, although most
VFSS examiners evaluate the depth and amount of laryngeal penetration or aspiration
as well as its presence. The ultimate purpose of VFSS is not only to detect penetration
or aspiration, but also to evaluate the pathophysiology and mechanism of swallowing.
However, variables other than laryngeal penetration and aspiration were not considered
in the analysis because the deep learning model was designed and trained only for the
detection of laryngeal penetration or aspiration. Therefore, the machine described in this
study is at best a prototype that proves that penetration/aspiration can be detected by
computers, but in no way resembles human interpretation of VFSS at least for now. There
was no distinction between penetration and aspiration in this study, although they have
different clinical meanings [28]. Dynamics of continuous eating was not verified in this
study because the analysis was limited to the video containing only one swallowing event.
Additionally, the meaning and usefulness of the reliability results might be limited by the
absence of a gold standard for comparison. For the same reason, selection bias could not
be eliminated completely in choice of video files although we made every effort to avoid it.
Despite these limitations, we believe that machine reading by a deep learning algorithm
can assist human observers, helping to minimize the variability and improve the efficiency
of VFSS analysis. Further studies are required to develop more sophisticated models that
can assess VFSS images more comprehensively. The results presented in this study are only
descriptive statistics. This study did not aim to determine the superiority or inferiority of
machine reading, only to demonstrate its usefulness.

5. Conclusions

Computer analysis using a deep learning model can provide a reliable method for
detecting the existence of laryngeal penetration or aspiration in VFSS images. This deep
learning model has promising prospects for use in VFSS analysis although further research
will be required to increase its reliability and accuracy.

Author Contributions: Conceptualization, S.J.L. and Y.K.; methodology, S.-I.C., H.-I.K., S.J.L. and
Y.K.; software, H.-I.K. and S.-I.C.; validation, S.J.L. and S.-I.C.; formal analysis, S.J.L. and Y.K.;
investigation, Y.K., S.J.L., G.S.P. and S.Y.K.; resources, S.J.L. and Y.K.; data curation, Y.K. and S.J.L.;
writing—original draft preparation, Y.K.; writing—review and editing, S.J.L., S.Y.K. and S.-I.C.;
visualization, Y.K. and H.-I.K.; supervision, S.J.L. and S.-I.C.; project administration, S.J.L.; funding
acquisition, S.J.L. and S.-I.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported in part by the National Research Foundation of Korea through
the Korean Government (MSIT) under 2021R1A2B5B01001412 and in part by the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry
of Education (Grant Number 2018R1D1A3B07049300).



J. Clin. Med. 2021, 10, 2681 9 of 10

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Review Board of Dankook University
Hospital (IRB No. 2020-11-015).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Martin-Harris, B.; Logemann, J.A.; McMahon, S.; Schleicher, M.; Sandidge, J. Clinical utility of the modified barium swallow.

Dysphagia 2000, 15, 136–141. [CrossRef] [PubMed]
2. Martin-Harris, B.; Jones, B. The videofluorographic swallowing study. Phys. Med. Rehabil. Clin. N. Am. 2008, 19, 769–785.

[CrossRef] [PubMed]
3. Logemann, J.A. Behavioral management for oropharyngeal dysphagia. Folia Phoniatr. Et Logop. 1999, 51, 199–212. [CrossRef]
4. Robbins, J.; Coyle, J.; Rosenbek, J.; Roecker, E.; Wood, J. Differentiation of normal and abnormal airway protection during

swallowing using the penetration–aspiration scale. Dysphagia 1999, 14, 228–232. [CrossRef] [PubMed]
5. Baijens, L.; Barikroo, A.; Pilz, W. Intrarater and interrater reliability for measurements in videofluoroscopy of swallowing. Eur. J.

Radiol. 2013, 82, 1683–1695. [CrossRef] [PubMed]
6. Kim, D.H.; Choi, K.H.; Kim, H.M.; Koo, J.H.; Kim, B.R.; Kim, T.W.; Ryu, J.S.; Im, S.; Choi, I.S.; Pyun, S.B. Inter-rater reliability of

videofluoroscopic dysphagia scale. Ann. Rehabil. Med. 2012, 36, 791. [CrossRef]
7. McCullough, G.H.; Wertz, R.T.; Rosenbek, J.C.; Mills, R.H.; Webb, W.G.; Ross, K.B. Inter-and intrajudge reliability for videofluoro-

scopic swallowing evaluation measures. Dysphagia 2001, 16, 110–118. [CrossRef]
8. Kuhlemeier, K.; Yates, P.; Palmer, J. Intra-and interrater variation in the evaluation of videofluorographic swallowing studies.

Dysphagia 1998, 13, 142–147. [CrossRef]
9. Stoeckli, S.J.; Huisman, T.A.; Seifert, B.A.; Martin–Harris, B.J. Interrater reliability of videofluoroscopic swallow evaluation.

Dysphagia 2003, 18, 53–57. [CrossRef]
10. Aung, M.S.; Goulermas, J.Y.; Hamdy, S.; Power, M. Spatiotemporal visualizations for the measurement of oropharyngeal transit

time from videofluoroscopy. IEEE Trans. Biomed. Eng. 2009, 57, 432–441. [CrossRef]
11. Aung, M.; Goulermas, J.; Stanschus, S.; Hamdy, S.; Power, M. Automated anatomical demarcation using an active shape model

for videofluoroscopic analysis in swallowing. Med. Eng. Phys. 2010, 32, 1170–1179. [CrossRef] [PubMed]
12. Chang, M.W.; Lin, E.; Hwang, J.-N. Contour tracking using a knowledge-based snake algorithm to construct three-dimensional

pharyngeal bolus movement. Dysphagia 1999, 14, 219–227. [CrossRef] [PubMed]
13. Hossain, I.; Roberts-South, A.; Jog, M.; El-Sakka, M.R. Semi-automatic assessment of hyoid bone motion in digital videofluoro-

scopic images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2014, 2, 25–37. [CrossRef]
14. Lee, W.H.; Chun, C.; Seo, H.G.; Lee, S.H.; Oh, B.-M. STAMPS: Development and verification of swallowing kinematic analysis

software. BioMed. Eng. OnLine 2017, 16, 1–12. [CrossRef]
15. Natarajan, R.; Stavness, I.; Pearson, W., Jr. Semi-automatic tracking of hyolaryngeal coordinates in videofluoroscopic swallowing

studies. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2017, 5, 379–389. [CrossRef]
16. Dong, Y.; Pan, Y.; Zhang, J.; Xu, W. Learning to read chest X-ray images from 16000+ examples using CNN. In Proceedings of the

2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE),
Philadelphia, PA, USA, 17–19 July 2017; pp. 51–57.

17. Le, M.H.; Chen, J.; Wang, L.; Wang, Z.; Liu, W.; Cheng, K.-T.T.; Yang, X. Automated diagnosis of prostate cancer in multi-
parametric MRI based on multimodal convolutional neural networks. Phys. Med. Biol. 2017, 62, 6497. [CrossRef] [PubMed]

18. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Für Med. Phys. 2019,
29, 102–127. [CrossRef]

19. Song, Q.; Zhao, L.; Luo, X.; Dou, X. Using deep learning for classification of lung nodules on computed tomography images. J.
Healthc. Eng. 2017, 2017. [CrossRef] [PubMed]

20. Lee, S.J.; Ko, J.Y.; Kim, H.I.; Choi, S.-I. Automatic Detection of Airway Invasion from Videofluoroscopy via Deep Learning
Technology. Appl. Sci. 2020, 10, 6179. [CrossRef]

21. Rosenbek, J.C.; Robbins, J.A.; Roecker, E.B.; Coyle, J.L.; Wood, J.L. A penetration-aspiration scale. Dysphagia 1996, 11, 93–98.
[CrossRef] [PubMed]

22. Logemann, J.A. Evaluation and treatment of swallowing disorders. Am. J. Speech-Lang. Pathol. 1994, 3, 41–44. [CrossRef]
23. Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Academic Press Professional Inc.:

Cambridge, MA, USA, 1994; pp. 474–485.
24. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

http://doi.org/10.1007/s004550010015
http://www.ncbi.nlm.nih.gov/pubmed/10839826
http://doi.org/10.1016/j.pmr.2008.06.004
http://www.ncbi.nlm.nih.gov/pubmed/18940640
http://doi.org/10.1159/000021497
http://doi.org/10.1007/PL00009610
http://www.ncbi.nlm.nih.gov/pubmed/10467048
http://doi.org/10.1016/j.ejrad.2013.05.009
http://www.ncbi.nlm.nih.gov/pubmed/23773554
http://doi.org/10.5535/arm.2012.36.6.791
http://doi.org/10.1007/PL00021291
http://doi.org/10.1007/PL00009564
http://doi.org/10.1007/s00455-002-0085-0
http://doi.org/10.1109/TBME.2009.2019828
http://doi.org/10.1016/j.medengphy.2010.08.008
http://www.ncbi.nlm.nih.gov/pubmed/20855227
http://doi.org/10.1007/PL00009609
http://www.ncbi.nlm.nih.gov/pubmed/10467047
http://doi.org/10.1080/21681163.2013.833859
http://doi.org/10.1186/s12938-017-0412-1
http://doi.org/10.1080/21681163.2015.1046190
http://doi.org/10.1088/1361-6560/aa7731
http://www.ncbi.nlm.nih.gov/pubmed/28582269
http://doi.org/10.1016/j.zemedi.2018.11.002
http://doi.org/10.1155/2017/8314740
http://www.ncbi.nlm.nih.gov/pubmed/29065651
http://doi.org/10.3390/app10186179
http://doi.org/10.1007/BF00417897
http://www.ncbi.nlm.nih.gov/pubmed/8721066
http://doi.org/10.1044/1058-0360.0303.41


J. Clin. Med. 2021, 10, 2681 10 of 10

25. Scott, A.; Perry, A.; Bench, J. A study of interrater reliability when using videofluoroscopy as an assessment of swallowing.
Dysphagia 1998, 13, 223–227. [CrossRef]

26. Hind, J.A.; Gensler, G.; Brandt, D.K.; Gardner, P.J.M.; Blumenthal, L.; Gramigna, G.D.; Kosek, S.; Lundy, D.; McGarvey-Toler, S.;
Rockafellow, S. Comparison of trained clinician ratings with expert ratings of aspiration on videofluoroscopic images from a
randomized clinical trial. Dysphagia 2009, 24, 211. [CrossRef]

27. Bryant, K.N.; Finnegan, E.; Berbaum, K. VFS interjudge reliability using a free and directed search. Dysphagia 2012, 27, 53–63.
[CrossRef] [PubMed]

28. Allen, J.E.; White, C.J.; Leonard, R.J.; Belafsky, P.C. Prevalence of penetration and aspiration on videofluoroscopy in normal
individuals without dysphagia. Otolaryngol. Head Neck Surg. 2010, 142, 208–213. [CrossRef] [PubMed]

http://doi.org/10.1007/PL00009576
http://doi.org/10.1007/s00455-008-9196-6
http://doi.org/10.1007/s00455-011-9337-1
http://www.ncbi.nlm.nih.gov/pubmed/21484603
http://doi.org/10.1016/j.otohns.2009.11.008
http://www.ncbi.nlm.nih.gov/pubmed/20115976

	Introduction 
	Materials and Methods 
	Dataset 
	Analysis of VFSS 
	Machine Reading 
	Human Reading 

	Analysis of Intra- and Inter-Rater Reliability 
	Intrarater Reliability 
	Interrater Reliability 


	Results 
	Intrarater Reliability 
	Interrater Reliability 

	Discussion 
	Conclusions 
	References

