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Analysis of streaming potential 
flow and electroviscous effect 
in a shear‑driven charged slit 
microchannel
Adham Riad, Behnam Khorshidi & Mohtada Sadrzadeh*

Investigating the flow behavior in microfluidic systems has become of interest due to the need for 
precise control of the mass and momentum transport in microfluidic devices. In multilayered-flows, 
precise control of the flow behavior requires a more thorough understanding as it depends on multiple 
parameters. The following paper proposes a microfluidic system consisting of an aqueous solution 
between a moving plate and a stationary wall, where the moving plate mimics a charged oil–water 
interface. Analytical expressions are derived by solving the nonlinear Poisson–Boltzmann equation 
along with the simplified Navier–Stokes equation to describe the electrokinetic effects on the shear-
driven flow of the aqueous electrolyte solution. The Debye–Huckel approximation is not employed in 
the derivation extending its compatibility to high interfacial zeta potential. Additionally, a numerical 
model is developed to predict the streaming potential flow created due to the shear-driven motion 
of the charged upper wall along with its associated electric double layer effect. The model utilizes 
the extended Nernst–Planck equations instead of the linearized Poisson–Boltzmann equation to 
accurately predict the axial variation in ion concentration along the microchannel. Results show that 
the interfacial zeta potential of the moving interface greatly impacts the velocity profile of the flow 
and can reverse its overall direction. The numerical results are validated by the analytical expressions, 
where both models predicted that flow could reverse its overall direction when the interfacial 
zeta potential of the oil–water is above a certain threshold value. Finally, this paper describes 
the electroviscous effect as well as the transient development of electrokinetic effects within the 
microchannel.

The popularity of lab-on-chip devices has been advancing owing to their decisive influence in a wide range of 
applications such as medical diagnosis sensors1,2, DNA analysis3–5, cell sorting6,7, surface characterizations8–10, 
and drug delivery11,12. Understanding the electrokinetic phenomena in the confined channels of the lab-on-chip 
devices is essential for the development of accurate and reliable instruments with faster analysis and processing 
times. Streaming potential flow is an electrokinetic phenomenon that arises due to the relative motion of the 
electrolyte with respect to a charged wall in a microfluidic channel13. The mobile ions within the electric double 
layer (EDL) near the charged wall are carried by the fluid and result in a convective current, which is known as 
streaming current. The accumulated ions at the end side of the channel generate an induced streaming electric 
potential, which results in a conduction current in the opposite direction to the streaming current. The develop-
ment of conduction and streaming currents creates different ionic fluxes, which can significantly alter the overall 
flow field depending on the wall surface charge density and electrolyte concertation.

Streaming potential flow can happen in both single and multiphase flows14,15. For a solid–liquid interface, 
the surface charges on a solid surface are the reason behind the formation of EDL within the liquid16. Similarly, 
a liquid–fluid interface can be electrically charged due to the presence of the dissolved ions or charged colloidal 
particles17,18. For instance, an oil–water interface can act as a charged interface where the EDL often forms on the 
waterside of the interface due to the presence of dissolved salts. For such cases that the liquid–liquid interface 
is mobile, the oil layer can be assumed as a moving charged surface for electrokinetic analysis. Gao et al.19 have 
examined the steady-state electrokinetic stratified flow of two immiscible fluids analytically in a rectangular 
channel. They concluded that the interfacial zeta potential has minimal effects on the velocity profile and the 
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volumetric flow rate. However, their analytical model was based on the Debye Hückel approximation limiting 
their analysis to only low interfacial zeta potentials. Wang et al.20 investigated the electrophoretic phenomenon 
by applying a DC electric field to an oil droplet in the water where the liquid–fluid interface also has electro-
static charges. The external electric field created an electrophoretic force, which exerted on the mobile interface 
dragging the charges and caused the entire interface to deform and the bubble to move. They concluded that the 
velocity of the bubble is highly influenced by the zeta potential of the interface and is unaffected by the viscos-
ity and size of the bubble. Li et al.21 studied the electrokinetic flow of an oil Janus droplet in a charged circular 
microchannel with a mobile negatively charged oil–water interface. They were able to predict the velocity of 
the charged droplet at a steady state for different values of interfacial zeta potential but failed to provide any 
insight on the transient development of the bubble kinetics. Sherwood et al.22 developed a model to predict the 
streaming potential caused by the motion of a single and a line of charged bubbles passing through a capillary. 
They concluded that the streaming potential generated across the microchannel is proportional to the applied 
pressure, where the coefficient of proportionality depends on whether it is an oil or a gas bubble. However, one 
major shortcoming of their model is that it cannot be used to predict streaming potentials caused by flow adja-
cent to oil-wet surfaces. Moreover, oil-wet surfaces play an important role in modified salinity water flooding 
for enhanced oil recovery. This oil–water solution configuration could provide insights into flow observation 
anomalies within porous rock structures. The literature suggests that the electric double layer is the most domi-
nant surface interaction for this mechanism, while the zeta potential at both rock/brine and brine/oil interfaces 
directly affects the volume of trapped oil released from the rock23,24. Other pertaining issues with literature in 
electrokinetic flow are the predominant assumptions of steady-state flow during transport and microchannels 
having infinite lengths25–32. Such assumptions do not allow the understanding of the effect of charges present 
at the inlet and exit of the microchannel. Moreover, the assumption of an infinite microchannel enables the 
assumption of only radial change in ion concentration, using the one-dimensional Poisson–Boltzmann equation, 
and ignores the variation of ion concentration in the axial direction, which can be studied using the extended 
Nernst–Planck equations32–36.

In the present work, we aimed at filling the gaps in literature relating to electrokinetic flow in a multilayer 
system. We propose a model for multilayer flows in a slit microchannel with a finite length. The proposed system 
consisted of an aqueous solution between a moving plate and a stationary wall. The moving plate represented the 
charged oil–water interface. The model was used to study the transient development of streaming potential and 
the subsequent impact of electrokinetic phenomena on the flow field within the microchannel.

Problem statement
Analytical analysis.  The geometry of charged slit microchannel.  Figure 1 illustrates a simplified two-di-
mensional (2D) geometry of the microchannel used for analytical modeling of the streaming potential flow. The 
upper wall of the microchannel was charged and moved at a velocity of U. The lower wall was considered neutral 
and stationary. There was one inlet and outlet, carrying electrolyte solution with constant solute concentration. 
The channel height was (H), and the length (L) was assumed to be sufficiently large to neglect the entrance and 
exit effects.

Governing transport equations in a charged slit microchannel.  The electrokinetic flow in a shear-driven slit 
microchannel was modeled by Navier–Stokes momentum equations for the velocity field, Poisson’s equation for 
the electrical potential field, and Nernst–Planck equation for the ion distribution within the channel37.

The hydrodynamic flow was modeled using the Navier–Stokes momentum equations with an electrical body 
force, as shown in Eq. (1):

(1)ρ

(

∂u

∂t
+ u.∇u

)

= µ∇2u− ρf E

Figure 1.   Schematic of the 2D geometry of the charged slit microchannel used for analytical modeling.
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where ρ is the fluid density, u is the velocity vector, μ is the solution viscosity, ρf is the free charge density (charge 
per unit volume of the solution), and E is the induced electrical field vector which can be represented by the 
gradient of the electric potential ( E = −∇�).

For a one-dimensional fully-developed laminar flow field at steady-state, Eq. (1) was simplified to:

The electrical potential distribution was obtained using Poisson’s equation as ∇2� = −
ρf
ε

 where ε is the 
dielectric permittivity of the flowing fluid within the channel.

The electric potential spatial distribution was assumed to be a superposition of the potentials due to the 
electrical double layer near the charged surface ( ψ(y) ) and the potential developed by the streaming flow ( ϕ(x)):

The assumption of the electrical double potential layer to be independent of the axial position is valid for 
long microchannels (L ≫ H) without the end effects33. Any deviation from the superposition principle implies 
that the potential variation over the height of the channel changes at different positions along the x-axis. This 
is physically impossible in steady flow along a long uniform channel in which the entry and end effects can be 
neglected38. The streaming potential in Eq. (3) was considered as33,38:

where ϕ0 is the reference potential at the inlet of the channel ( x = 0 ) and ϕ0 − xEx is the streaming potential at 
any axial location in the microchannel due to an axially invariant applied electric field Ex in the absence of an 
electric double layer.

The free charge density is related to the concentration of the electrolytic solution by ρf =
∑

zieni

where zi is the valence of ith ion, e is the elementary charge, and ni is the ionic number concentration of the ith 
ion in the solution.

The total flux of each ionic species (Ji) at steady state in the solution is represented by the Nernst–Planck 
equation as the vector sum of convective, diffusive, and migration fluxes:

where Di is the diffusion coefficient of ith species, kB is the Boltzmann constant, and T is the absolute temperature.
Considering the conservation of ions ( ∇ • J i = 0 ) for the one-dimensional flow, results in Boltzmann dis-

tribution for the ionic species as:

where n∞ is the bulk ionic concentration.
Equation (7) was employed to relate the free charge distribution within the channel to the electrical double 

layer potential distribution for a symmetric (z:z) electrolyte solution as:

Furthermore, introducing the expression for the electric potential and ionic distribution Eq. (6) into the 
Poisson’s equation gives the nonlinear Poisson–Boltzmann equation as:

At steady state, the total current flow per unit width of the channel can be expressed as I =
∫ H
0 ixdy , where 

the current density in the x-direction is given by:

With the assumption of zero ion concentration gradient in the axial direction (∂ni/∂x = 0) , Eq. (9) can be 
represented by the summation of streaming current (IS) and conduction current (IC) as I = IS + IC.
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The streaming current, Is =
∫ H
0 eu

∑

zinidy , is created by the convective transport of the excess ions in the 
mobile double layer region (diffuse layer) near the charged interface, where the electroneutrality term 

∑

zini 
is not zero. The conduction current, IC = e2

KBT
Ex

∫ H
0

∑

z2i Dinidy , is due to electric conduction caused by the 
electric field through the liquid along the channel. By employing Poisson’s equation, the streaming current can 
be represented as

Furthermore, by considering identical diffusion coefficient (D+ = D− = D) and bulk concentration 
( n+∞ = n−∞ = n∞ ) for the positive and negative ions, the conduction current can be expressed as:

where σ∞ is a constant as σ∞ = 2 z2e2D
KBT

n∞.
Table 1 present the list of parameters used in the analytical and numerical simulation. The fluid properties, 

including were assumed constant and uniform across the microchannel. This assumption is valid for the dilute 
electrolyte solution, which is typically the case in most microfluidic devices.

Numerical analysis.  Geometry and governing equations in numerical simulation.  The numerical model 
was introduced by Mansouri et  al. for pressure-driven flows and was adapted for shear driven flows in our 
study39,40. The simulation geometry consisted of two reservoirs, which were connected by a slit microchannel 
with length L and height H (Fig. 2). The channel had a stationary electroneutral bottom wall and a charged mov-
ing top wall. The numerical simulation was conducted using a similar set of governing equations to the analytical 
model. The governing equations were non-dimensionalized using the parameters listed in Table 2 where k is the 
inverse of Debye length41. For a symmetric binary electrolyte such as an aqueous solution of sodium chloride, 
the Debye length can be calculated by κ−1 =

(

ǫKBT
2e2z2n∞

)1/2
.

By substituting the parameters of Table 2 into Eq. (1), and eliminating the convective term ( u • ∇u ) for creep-
ing flows such as flow in microchannels, the non-dimensional form of momentum equation can be written as:

where np and nn are the scaled concentrations of the co-ions and counterions for a symmetric binary electrolyte 
solution, respectively.

The non-dimensional form of Poisson’s equation using Table 2 becomes:

Finally, the non-dimensional Nernst–Planck equations for the transport of positive and negative ions are 
presented by Eqs. (14) and (15), respectively:

(10)IS =

∫ H

0
u

(

−ǫ
d2ψ

(

y
)

dy2

)

dy

(11)IC = σ∞Ex

∫ H

0
cosh

(

ze

KBT
ψ
(

y
)

)

dy

(12)
−
ρ

∂u

∂τ
= −∇p+ µ∇

2
u − 0.5

(

np − np
)

∇ψd

(13)∇
2
ψd = −0.5

(

np − np
)

(14)
∂np

∂τ
= −∇ .(npu − ∇np − np∇ψd)

(15)
∂nn

∂τ
= −∇ .(nnu − ∇nn + nn∇ψd)

Table 1.   Parameter values used in the present work.

Parameters Symbol Unit Value

Solvent permittivity ǫ C2/Nm2 78.54× 8.854× 10−12

Moving wall potential ξ mV −25to− 250

Dimensionless channel gap κH – 10to100

Ion valence zi – 1

Ion diffusivity D m2/s 1× 10−9

Temperature T K 298

Fluid viscosity µ Ns/m2 0.001

The magnitude of the electron charge e C 1.602× 10−19

Boltzmann constant KB J/K 1.381× 10−23

Moving wall velocity U m/s 0.001
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Figure 2.   Meshing and boundary conditions for (a) momentum equation, (b) Poisson’s equation, and (c) 
Nernst–Planck equations.

Table 2.   Non-dimensionalized parameters of the governing equations along with the scaling equations.

Parameter Non-dimensional form Relation equation

Axial coordinate x κx

Vertical coordinate y κy

Time τ κ2Dt

Gradient ∇ κ
−1∇

Pressure p z2e2

ǫκ2K2
b T

2
p

Velocity u 1
Dκ u

Fluid viscosity µ z2e2D
ǫK2

b T
2
µ

Fluid density −
ρ z2e2D2

ǫK2
b T

2
ρ

Ion concentration np , nn
np
n∞

, nn
n∞

Free charge density −
ρf

1
zen∞

ρf

Electric potential ψd
ze
KbT

ψ
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The time-dependent terms in the governing transport equations imply the coupled transient dependence of 
the physical models to each other. The simulation started initially from a quiescent point at zero flow conditions, 
and then the transient behavior of the system was traced until it reached a steady-state flow.

Boundary and initial conditions of the numerical simulation.  Figure 2 illustrates the boundary conditions of 
the simulation domain. For the momentum equations, the inlet and outlet boundary conditions (A–B and G–I) 
were set to identical pressure to eliminate the pressure gradient through the channel. The flow is thus primarily 
caused by the slip velocity boundary condition applied to the top wall of the channel (D–E). This slip velocity 
boundary condition is defined as the relative velocity in the tangential direction between the top wall (D–E) and 
the initial frame of reference of the numerical model u • t = UWall , where t =

(

ny ,−nx
)

 for our 2-dimensional 
case. The upper walls of the reservoir (B–C, F–G, A–N, and J–I) were considered as slip boundaries to mimic 
the behavior of a semi-infinite reservoir40. For the other boundaries, the Dirichlet no-slip boundary condition 
was employed to emulate the behavior of a stationary wall. It is worth mentioning the slip length between the oil 
and the water phases is assumed to be negligible in our model. In microfluidic systems, the typical slip lengths 
reported experimentally range from molecular dimensions to several nanometers42. Therefore, the impact of slip 
in microchannels, like our proposed system, can be negligible. For the Poisson equation, a scaled surface poten-
tial was assigned to the top wall (D–E) of the microchannel (Fig. 2b). The reference potential of zero was set at 
the flow inlet (A–B) to represent the charge neutrality far field condition. For the other boundaries, zero poten-
tial gradient (Neumann boundary condition) was applied to present a far-field condition with no variation in the 
potential distribution. Finally, for the Nernst–Planck equations, the inlet and outlet boundaries were assigned 
as symmetric neutral electrolytic solutions with a scaled ion concentration of one to represent the bulk ion 
concentration (Fig. 2c). All other boundaries were assigned as zero normal flux conditions(Neumann boundary 
condition) to be impermeable to any ions transport. The steady-state solution of the Poisson and Nernst–Planck 
equations, along with the no-flow quiescent state, were used as the initial conditions for the transient flow analy-
sis. The computational geometry was created for κH of 10, which translates to the height of the channel being 
ten times bigger than the Debye length. The scaled length of the microchannel, κL, was set to 50, and the scaled 
lengths of the inlet and outlet reservoirs (A–N and J–I) were assigned a value of 25.

Numerical solution methodology.  The nonlinear partial differential equations were solved using a commercial 
fully coupled finite element solver incorporated in COMSOL Multiphysics (V 5.3)43. The methodology involved 
a segregated solution method in which both the steady-state solutions for the Poisson and Nernst–Planck equa-
tions were obtained for the no-flow case in order to get the quiescent electric potential and ion distributions44. 
Then, these distributions were inputted as the initial values for the momentum equations in order to solve for the 
velocity domain. In the initial phase of streaming potential, several dynamic processes, including the capacitive 
charging of the electric double layer, take place. The basis for using this segregated approach in our methodology 
is to separate the effect of these initial dynamic processes from the development of the flow field. All the four 
governing equations, i.e., Eqs. (15–18), were solved together in a coupled manner in order to capture the axial 
ion displacement within the channel, which would ultimately lead to the development of the induced stream-
ing potential. In the transient simulations, the steady-state condition was achieved when the potential differ-
ence between the two reservoirs for two consecutive time steps became almost the same within a predefined 
tolerance41. The mesh map was systematically refined until the solution became mesh independent at around 
15,000 elements. The time needed for the simulations was within hours, highlighting the efficiency of the chosen 
computational domain. The mesh generation was performed using quadratic triangular elements with a finer 
mesh near the upper wall. This was the region where the largest gradient in the electrical potential and the veloc-
ity was expected44.

Results and discussion
Analytical analysis of shear‑driven streaming potential flow.  EDL potential distribution within the 
channel.  The electrical potential distribution within the electric double layer (EDL), in the straight microchan-
nel (Fig. 1), can be obtained using Eq. (16):

where �
(

y
)

 and �s are dimensionless electrical potentials defined as �
(

y
)

= ze/KBTψ
(

y
)

 and �s = ze/KBTξ.
Figure 3 illustrates the EDL potential distribution as well as the distribution of ions within the microchan-

nel for different surface zeta potentials of the upper wall. Based on Fig. 3a, for low surface zeta potentials, the 
potential distribution within the channel decayed quickly to zero suggesting the formation of narrow EDL near 
the upper wall. In contrast, at higher surface potentials ( �s = 9) , the EDL extended further to about mid-height 
of the channel, which indicated the formation of a thicker EDL by increasing the zeta potential of the upper 
wall. Figure 3b demonstrates similar behavior for the distribution of ion concentrations over the channel height. 
At low surface potential ( �s = 1 ), the spatial distribution of the co-ions and counterions were slightly affected 
by the presence of the charged wall. However, as the surface zeta potential of the upper wall increased, more 
concentrations of counter ions were attracted to the charged surface and resulted in the formation of thicker 
EDL near the upper wall.

Induced electric field.  An analytical expression for the induced electric field Ex was derived by considering a 
zero net current within the channel at a steady state. Starting with conduction current expression, substituting 
Eq. (16) into Eq. (11) provided the relation between the conduction current and the potential distribution as:

(16)�
(

y
)

= 4arctanh
(

tanh(�s/4)exp
(

−κ(H− y)
))
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where FCS is the parameters under the integral sign and presents the non-electroneutrality of the solution 
( 
∑

z2i ni  = 0 ) due to the formation of the electrical double layer near the charged wall33.
Figure 4 illustrates the variation of FCS versus κH at different non-dimensional wall surface potentials (ΨS). By 

increasing the ΨS, the FCS values increase due to the stronger redistribution of ions near the charged wall, lead-
ing to more deviation from the electroneutral state within the fluid layer. Furthermore, the FCS values decrease 
as κH increases and approach unity at a very large κH. This observation can be interpreted that when the EDL 
thickness decreases (κH increases), the nonuniform distribution of ions will be limited to a smaller scale near 
the charged wall, and thus, more electroneutrality will be achieved in the liquid phase.

The induced electric field (Ex) due to streaming potential flow can be formulated by assuming that at steady-
state condition, the streaming and conduction currents will be equal in the opposite direction, resulting in a zero 
net electric current through the liquid. Setting the total electrical current to zero, I = IC + IS = 0 , and solving 
for Ex gives the strength of the induced electric field as:

where

(17)IC = σ∞ExH

∫ H

0
cosh

(

4arctanh
(

tanh(�s/4)exp
(

−κy
)))

dy = σ∞ExHFcs

(18)Ex = −µU�

Figure 3.   (a) Distribution electric potential, and (b) distribution of co-ions and counter ions within the channel 
where the dashed lines are for the co-ions while the solid lines are for the counterions (κH = 10).

Figure 4.   Variation of the FCS with surface potential for different κH.
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and the constants C1 and C2 are

Figure 5 demonstrates the variation of Ex with respect to ΨS at different κH. The magnitude of the induced 
electric field increases by the increase in surface potential of the upper wall. A higher surface potential increases 
the ionic concentration within the electric double layer. Therefore, more ions move due to the shear-driven flow 
and buildup larger concentration at the ends of the channel resulting in higher induced electric field magnitudes. 
Furthermore, the Ex increases more rapidly at smaller κH values. For a diluted solution (small κH), the ionic 
concentration (n∞) is low. Since the conduction current is directly proportional to the ionic concentration, a 
higher Ex is required for a diluted solution to satisfy the net-zero current at the steady-state compared to a con-
centrated electrolyte solution (large κH).

Velocity field and volumetric flow within the microchannel.  The scaled local velocity field within the microchan-
nel is presented by Eq. (22), which was derived by employing Poisson’s equation for electric potential, along with 
the boundary conditions of ux = U at y = H and ux = 0 and y = 0 for momentum equation in axial direction:

Equation (22) implies that the velocity field within the channel is a superposition of two components: (1) 
a linear shear-driven flow, and (2) a streaming potential flow. The variation of scaled local flow velocity at dif-
ferent scaled surface potentials of the upper moving wall is presented in Fig. 6a (for κH = 10) and Fig. 6b (for 
κH = 100). Figure 6a shows that for small surface potentials, the velocity profile is almost linear, suggesting the 
fluid is entirely driven by viscous flow due to the motion of the upper wall, and the reverse streaming potential 
flow has a negligible effect on the velocity distribution. However, at higher surface potentials, the velocity profile 
becomes nonlinear, revealing the significant effect of the electrokinetics on the flow field. The shear driven flow 
is proportional to the slip velocity of the moving wall, while the streaming potential flow is proportional to the 
surface potential of the moving wall. Therefore, as the surface potential increases, the velocity profile deviates 
more from the linear profile, due to the buildup of an opposing streaming potential flow. For scaled surface 

(19)� =
C1κH + ξ

µD(κH)2Fcs + C2κHǫ − ǫξ2
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Figure 5.   Variation of the induced electric field (Ex) vs. non-dimensional surface potential (ΨS) at different κH. 



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18317  | https://doi.org/10.1038/s41598-020-75531-6

www.nature.com/scientificreports/

potentials above �s = 5 (~ 125 mV), the streaming potential backflow became sufficiently large to reverse the 
direction of the net flow velocity at transverse positions near the moving charged wall. Such high zeta poten-
tials are common in enhanced oil recovery applications. Moutray, Leduc Crude, and ST-86-1 oils all exhibit 
an interfacial zeta potential above 100 mV at 0.01 M NaCl solution and pH values greater than 1045. Figure 6b 
illustrates the impact of surface potential on the velocity profile for a large κH value of 100, which is the case for 
a microchannel with a concentrated electrolyte solution. As EDL is very thin in this case, the mobile counterions 
in the diffuse layer are very close to the charged wall, and thus the electroneutral bulk phase of the fluid follows 
the shear-driven flow field.

The volumetric flow can be obtained by integrating the velocity field over the cross-section area of the micro-
channel as:

Figure 7a demonstrates the variation of non-dimensional volumetric flow rate with respect to κH at dif-
ferent scaled surface potentials. The graph shows that the induced streaming potential reduces the volumetric 
flow rate, especially for low values of κH. The reduction in the volumetric flow rate resembles the flow of a fluid 
with increased viscosity, which is called the “electroviscous effect”. Figure 7b presents that the non-dimensional 
viscosity enlarges at low κH values with the maximum at κH = 5, and then reduces at higher κH values. As the 
surface potential increases (Fig. 7a), the electroviscous effect becomes larger and reduces the volumetric flow 
rate more. For instance, at the surface with zeta potentials of around 75 mV ( �s = 3) , the electroviscous effect 
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Figure 6.   Effect of surface potential ( �s ) on non-dimensional velocity profile, (a) κH = 10, (b) κH = 100.

Figure 7.   (a) A plot of non-dimensional flow rate versus κH for different surface potentials; (b) plot of 
normalized viscosity µa

µ
 versus κH The flow rate was scaled by the volumetric flow rate in the simple shear 

driven flow case with the absence of any electrokinetic effect Qscaling = UH/2.
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can reduce the flow rate by about 35% at κH ~ 5. For very high surface potentials ( �s = 7) , the “electroviscous 
effect” dominates over the shear driven flow resulting in negative values for the volumetric flow rate at κH ~ 10.

A potential application for the significant electroviscous effect (reduction in apparent viscosity) is microfluidic 
drug delivery. Most antibody formulations are highly viscous, which poses a significant challenge for the subcu-
taneous delivery of these highly concentrated protein formulations using microfluidic devices46–48. Designing a 
microfluidic system with high surface potential and the addition of specific additives to control the electrolyte 
conditions can be used to reduce the viscosity of these fluids to manageable levels. This reduction in viscosity is 
critical for drug delivery as it allows for more control in dose administration, increased patient compliance and 
comfort, and reduces the overall drug costs due to its substitution of intravenous infusions.

Numerical modeling of flow in finite microchannel.  Validation of the simulation analysis.  Figure 8a 
presents the comparison between the results of the numerical simulation and analytical analysis for the induced 
electric field in the microchannel at the steady-state condition. The numerically predicted electric field was in 
good agreement with the analytically derived electric field, especially at low surface potentials. However, for 
larger surface potentials (ΨS) above 4, the numerical simulation predicted a lower magnitude of the induced 
electric field compared to the analytical solution. The discrepancy can be ascribed to the simplifying assump-
tions employed in the derivation of the analytical expression. The analytical expression can not capture the non-
linearity of the velocity profile associated with high surface potentials (ΨS > 4). This deficiency can be attributed 
to using the simplified one-dimensional Poisson–Boltzmann equation in the analytical expression rather than 
solving the Poisson and Nernst–Planck equations simultaneously. This simplification consequently led to incor-
porating a constant electric field in the transverse direction for the analytical expression while the numerical 
model predicted a varying electric field, as shown in Fig. 8b. The effect is exaggerated as the induced electric field 
increases in magnitude. For low surface potentials and in microchannels where L ≫ H, the transverse fluctua-
tions in the electric field are negligible and can be assumed constant. However, for high surface potential and 
microchannels with comparable length to height ratio, the effect this variation has on the induced electric field 
and, consequently, the velocity profile inside the channel is significant.

Figure 9 presents a comparison of the numerical simulation with the analytical model for the scaled flow rate 
and the flow reversal phenomenon. Again, the predictions of the numerical simulation were in good agreement 
with the analytical expressions. However, there is a reasonable disagreement (16.1%) between the numerical 
predictions and analytical results for the simple shear driven flow case in the absence of any electrokinetic effects 
(Ψs = 0). The reason behind this disparity is the infinite length assumption of the analytical model. The analyti-
cal model relies on a linear velocity distribution for shear-driven flows. However, this assumption is not valid 
for microchannels with finite dimensions, leading to the entrance and exit effects for the flow of the electrolyte 
solution. To investigate the stagnation point (where flow starts to reverse its overall direction), the obtained 
numerical simulation results were normalized by the flow rate at Ψs = 0 to discard any dimensional effects from 
our comparison. The comparison of the normalized numerical results shows a better agreement with the analyti-
cal expressions. Both the analytical expressions and the numerical model show that the stagnation point occurs 
for microchannels with a scaled surface potential above �s = 5 (~ 125 mV). The analytical model predicts an 
exact value of Ψs = 5.56 at the stagnation point.

Transient analysis of the streaming potential flow in the microchannel.  Model development for transient elec-
trokinetics can provide more insights into the practical development and operation of lab-on-chip devices. For 
example, the efficiency of electrophoretic-based separation strongly depends on evolution parameters such as 
the injection rate and the rise time of the flow. Additionally, high-speed electrokinetic pumps were reported to 

Figure 8.   (a) Comparison of the numerical and analytical predictions of the induced electric field for different 
surface potentials, κH = 10. (b) Scaled electric field distribution, κH = 10. For a comparison of the numerical and 
analytical predictions of the induced electric field for κH = 100 (see Supplementary Figure S1).
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achieve the separation process within the micro-second range49. Depending on the position of molecules in the 
transverse direction, the rise time for this separation process is estimated to be in the order of 10−9 − 10−5s 
(thousands of the diffusion time scale)50.

This section presents how the electrokinetic flow develops from an initial quiescent state after applying the mov-
ing wall boundary condition. The transient analysis was performed using a diffusion-based time scale τ = κ2Dt 
where t  is the dimensional time. Figure 10 illustrates the velocity profile across the microchannel at low (Ψs = 1) 
and high (Ψs = 6) surface potentials as time progresses. Based on Fig. 10a, the fluid velocity deviates slightly from 
the initial profile for low surface potentials, showing a minor impact of the induced electric field on the flow field. 
This behavior agrees with the analytical velocity profile obtained in Fig. 6. The slight non-linearity of the numeri-
cal simulation compared to analytical results is attributed to the effect of entrance/exit effects. In contrast to the 
analytical analysis where an infinitely long channel was considered with a negligible entrance/exit effect, the velocity 
distribution in the numerical analysis was obtained for a finite length. Figure 10b presents the variation of scaled 
velocity across the scaled height of microchannel at the high surface potential of Ψs = 6 and κH = 10. At the initial 
time step (τ = 0), there was no streaming potential backflow, and the flow was shear-driven, following the direction 
of the moving plate. As time progresses (τ = 100), the ions start to move in the axial direction and accumulate at the 

Figure 9.   Comparison of the numerical (circles) and analytical predictions (squares) of the scaled flow rates for 
different surface potentials, κH = 10. The normalized numerical flow rates (triangles) is the normalized flow rate 
by the numerical result at Ψs = 0 (finite microchannel with simple shear driven flow case). 

Figure 10.   Velocity profile across the non-dimensional channel height for (a) Ψs = 1, and (b) Ψs = 6. The velocity 
field was obtained for κH = 10. 
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end reservoir of the microchannel. The accumulation of ions creates a streaming potential that induces an electric 
field in the opposite direction, which restrained the axial flow. At the time steps τ = 200 to 300, the overall flow 
starts to stagnate as the streaming potential backflow became almost equal to the shear driven flow in the central 
part of the channel. The streaming potential flow starts to dominate over the shear-driven flow in time steps of 
τ = 1000–10,000, and flow reversal occurred near the central part of the channel closer to the charged wall.

Figure 11 illustrates the development of streaming potential and ion concentrations along the centerline of the 
microchannel. Both the streaming potential and axial ion concentration exhibit similar behavior for both high 
and low surface potentials; therefore, only the case for low surface potential is presented here. After solving for 
the initial distributions, the transient Navier–Stokes equations were solved coupled with Poisson–Nernst–Planck 
equations beginning from an initial no-flow condition. The solid lines in Fig. 11b represent the counter ions 
concentration while the co-ions were represented by the dashed lines. At the initial state (τ = 0), the electrical 
potential was almost constant across the channel as there was no axial variation of ions. At this time, the concen-
tration of co-ions was less than the bulk concentration (n/n∞ = 1), while counter ions were greater than the bulk 
concentration. As time progresses, streaming potential developed along the channel. The streaming potential 
increased rapidly at the first-time step (τ = 100) and reached 50% of its steady-state value. As time progressed, 

Figure 11.   (a) Development of streaming potential along the centerline of the channel, (b) scaled ion 
concentration along the centerline of the channel, the dashed line represents the co-ion concentration while the 
solid lines are for the counterion concentration. κH = 10 and ΨS = 1.

Figure 12.   Contour plot of scaled co-ions concentration within the microchannel with a zoomed-in inset of the 
region near the charged wall highlighting the asymmetric axial variation of the electric double layer. κH = 10 and 
ΨS = 1.
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the streaming potential increases with a milder rate when it reached its final steady value at τ = 1.0 × 105 s. This 
observation can be attributed to the generation of backward conduction current and streaming potential flow, 
which limited the ionic buildup near the ends of the microchannel. Figure 11b confirms the justification as it 
illustrates that the counterions accumulate near the exit of the channel while the co-ions were more depleted 
towards the entry at a steady state.

Figure 12 depicts a contour plot of co-ion concentration in which the co-ion concentration was significantly 
lower than the bulk concentration due to the formation of the EDL near the wall. The plot also highlights the 
asymmetry of the shear driven flow in both vertical and horizontal directions. The co-ion concentration near 
the electric double layer was higher towards the inlet reservoir than to the exit reservoir, which was not similar 
to what was derived at the centerline due to the overall charge conservation of the solution.

Conclusion
In the present work, the electrokinetic phenomenon for a shear-driven flow in a charged slit microchannel was 
analyzed using analytical expressions and numerical simulation. The results show that the surface charge of the 
moving interface, as well as the thickness of EDL, greatly influenced the flow field within the microchannel. It 
was obtained that above a threshold, the streaming potential flow could reverse the main shear-driven flow in 
the region close to the charged wall, resulting in a stationary plane within the flow domain. Furthermore, it was 
demonstrated that the generation of induced streaming potential within the channel reduced the overall flow rate 
due to electroviscous effects. Finally, the numerical model showed the transient development of the streaming 
potential from the electroneutral condition, which provides useful information for a better understanding of 
electrokinetic flow within a confined media such as a charged microchannels.
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