
Performance evaluation of DNA copy
number segmentation methods
Morgane Pierre-Jean,Guillem Rigaill and Pierre Neuvial
Submitted: 12th March 2014; Received (in revised form): 10th June 2014

Abstract
A number of bioinformatic or biostatistical methods are available for analyzing DNA copy number profiles measured
frommicroarray or sequencing technologies. In the absence of rich enough gold standard data sets, the performance
of these methods is generally assessed using unrealistic simulation studies, or based on small real data analyses. To
make an objective and reproducible performance assessment, we have designed and implemented a framework to
generate realistic DNA copy number profiles of cancer samples with known truth. These profiles are generated by
resampling publicly available SNP microarray data from genomic regions with known copy-number state.The original
data have been extracted from dilutions series of tumor cell lines with matched blood samples at several concentra-
tions. Therefore, the signal-to-noise ratio of the generated profiles can be controlled through the (known) percent-
age of tumor cells in the sample. This article describes this framework and its application to a comparison study
between methods for segmenting DNA copy number profiles from SNP microarrays. This study indicates that no
single method is uniformly better than all others. It also helps identifying pros and cons of the compared methods
as a function of biologically informative parameters, such as the fraction of tumor cells in the sample and the propor-
tion of heterozygous markers. This comparison study may be reproduced using the open source and cross-platform
R package jointseg, which implements the proposed data generation and evaluation framework: http://r-forge.
r-project.org/R/?group_id¼1562.
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INTRODUCTION
Changes in DNA copy numbers are a hallmark of

cancer cells [1]. Therefore, the accurate detection

and interpretation of such changes are two important

steps toward improved diagnosis and treatment.

The analysis of copy number profiles measured

from high-throughput technologies such as

array-comparative genomic hybridization (array-

CGH), single nucleotide polymorphism array (SNP

array) or high-throughput DNA sequencing data

raises a number of statistical and bioinformatic

challenges.

Various methods have been proposed in the past

decade for analyzing such data. From a practitioner’s

point of view, it is quite difficult to find which

method is best for a given scientific question. In

fact, it is likely that the overall difficulty of the prob-

lem depends on the context (technology, type of

cancer, percentage of tumor cells). It is also likely

that certain methods are more appropriate for certain

contexts. Therefore, it is important to take this con-

text into account when evaluating a set of methods,

to (i) get a sense of the overall difficulty of the prob-

lem when interpreting the results and (ii) choose

appropriate methods for this context. Typically, a

practitioner chooses among available data analysis

methods or calibrates their parameters using a trial
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and error approach. A limitation of such an approach

is that it is subjective, hardly reproducible and

nonquantitative.

The present work tackles this problem by propos-

ing a reproducible framework for evaluating the per-

formance of existing segmentation methods for

identifying change points from DNA copy number

profiles from cancer patients. As any performance

evaluation strategy, addressing this question requires

the definition of three objects:

(i) data with known ‘truth’;

(ii) methods to be compared;

(iii) criteria for performance assessment.

In this article, we propose such a definition and illus-

trate how it may be used to compare segmentation

methods. The main contributions of this work are

� a framework to generate realistic DNA copy-

number profiles with known ‘truth’. This frame-

work is generic and may be applied to any copy

number data set;

� a framework to address the question of which

SNP array data segmentation method performs

best, depending on biologically relevant parameters.

These frameworks are implemented in the R package

jointseg. The rest of this article is organized as

follows. We start by giving some background on

DNA copy number segmentation (‘DNA Copy

Number Segmentation’ section) and describe our

proposed data generation framework (‘Generating

Data With Known ‘Truth’’ section). Then, we de-

scribe the pipeline we use for evaluating segmenta-

tion methods (‘Evaluation Pipeline’ section). Finally,

the result of our comparison study on two data sets

are reported in ‘Results’ section.

DNACOPY NUMBER
SEGMENTATION
DNA copy number data
Normal cells have two copies of DNA, inherited

from each biological parent of the individual. In

tumor cells, parts of a chromosome of various sizes

(from kilobases to a chromosome arm) may be

deleted or copied several times. As a result, DNA

copy numbers in tumor cells are piecewise constant

along the genome. Copy numbers can be measured

using microarray or sequencing experiments. For

illustration, Figure 1 displays an example of copy

number signals that may be obtained from SNP-

array data. Vertical lines represent change points. In

this particular example, the first region (0–2200) is

normal, the second one (2200–6100) is a region

where one of the parental chromosomes has been

duplicated, and the third one (6100–10 000) is a

region of uniparental disomy, that is, a region

where one of the parental chromosomes has been

duplicated and the other one deleted. The top

panel represents estimates of the total copy number

(denoted by c). The bottom panel represents esti-

mates of allelic ratios (denoted by b). We refer to

[2] for an explanation of how these estimates may

be obtained. In the normal region (0–2200), the total

copy number is centered around two copies and al-

lelic ratios have three modes centered at 0, 1/2 and

1. These modes correspond to homozygous SNPs

AA (b¼ 0) and BB (b¼ 1), and heterozygous SNPs

AB (b¼ 1/2). We note that in the second region

where the tumor has three copies of DNA, the aver-

age observed signal is substantially below the true

copy number. This is due to the presence of

normal cells in the ‘tumor sample’, a phenomenon

known as ‘normal contamination’ which shrinks the

observed signals toward two copies of DNA. The

reader is referred to [2] for a more detailed

Figure 1: Example SNP array data. Total copy num-
bers (c), allelic ratios (b) along 10 000 genomic loci.
Vertical lines represent change points, and horizontal
lines represent mean signal levels between two change
points. SNPs that are heterozygous in the germline are
colored in black; all of of the other loci are colored in
gray.
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explanation of this phenomenon and other sources

of noncalibration in DNA copy number signals, such

as the ploidy of the tumor. One important observa-

tion is that change points occur at the same position

in both dimensions. This is explained by the fact that

a change in only one of the parental copy numbers is

reflected in both c and b. Therefore, it makes sense to

analyze both dimensions of the signal jointly to iden-

tify change points.

To facilitate segmentation, allelic ratios (b) are

generally transformed into unimodal signals, as ori-

ginally proposed in [3]. This transformation is moti-

vated by the fact that allelic ratios can be

symmetrized (‘folded’) and that SNPs that are homo-

zygous in the germline (these SNPs are plotted in

gray in Figure 1) can be discarded, as they do not

carry any information about copy-number changes.

Following [4], we define the ‘decrease in heterozy-

gosity’ d ¼ 2jb� 1
2
j for SNPs that are heterozygous

in the germline (referred to as ‘heterozygous SNPs’

in the remainder of the article for short), which is

essentially a rescaled version of the ‘mirrored/folded

BAF’ defined by [3]. After this transformation, DNA

copy numbers can be considered as a bivariate, pie-

cewise-constant signal, as illustrated by Figure 2. It

should be emphasized at this stage that because the

proportion of heterozygous markers among SNPs is

generally of the order of 1/3 for a given sample, the

number of informative markers is several times larger

for (c) than for (d). This feature of SNP array data has

implications in terms of speed and performance of

segmentation methods, which will be explained in

detail later in the article.

Typology of copy number segmentation
methods
Many different methods have been proposed for the

analysis of DNA copy number profiles. Most of them

may be classified into four categories: methods based

on Hidden Markov Models (HMM), multiple

change-point methods, fused lasso-based methods

and recursive segmentation methods.

(i) HMM-based approaches rely on the idea that

the recovered DNA copy number should be

discrete and that these different levels can be

modeled using a small number of HMM

states. A typical example of such an HMM is

the work of [5]. For the specific case of SNP

array analysis in cancer samples, several dedi-

cated HMM have been proposed [6–8].

(ii) Multiple change-point methods assume that the

observed signal is affected by abrupt changes and

that between these breaks the signal should be

homogenous [9].

(iii) Methods based on a fused lasso penalty rely on

the idea that, in most cases, two successive meas-

urements should have the same estimate. This is

encoded by a L1 penalty on successive differ-

ences. The recovered signal is guaranteed to

be piecewise constant. A typical example of

such a fused model is the work of [10]. This

class of methods can be viewed as solving a

convex relaxation of the multiple change point

problem.

(iv) Recursive segmentation approaches rely on the

intuitive idea that a segmentation can be re-

covered by recursively cutting the signal into

two or more pieces. A typical example of such

a recursive approach is the work of [11].

We refer to [2, 12] for a more mathematical intro-

duction to these methods. Here, we only note that

all of these methods assume that the signals are

Gaussian. The above classification is by no means

exhaustive (see for example [13, 14]).

Figure 2: Example SNP array data along 10 000 gen-
omic loci, after transformation of allelic ratios (b) into
decrease in heterozygosity (d), following [4, 3]. Vertical
lines represent change points, and horizontal lines
represent mean signal levels between two change
points. SNPs that are heterozygous in the germline are
colored in black; all of of the other loci are colored in
gray.
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GENERATING DATAWITH KNOWN
‘TRUTH’
Review of existing approaches
A number of data generation mechanisms have been

proposed in the context of performance evaluation

of DNA copy number analysis in cancer samples,

either in comparison studies [15–18], or in papers

describing new analysis tools. The generation of

data with known ‘truth’ can be done using either

simulated or real data, both of which have assets

and drawbacks.

At first glance, simulated data are more appealing

than real data because (i) ‘truth’ is known with no am-

biguity, (ii) the level of difficulty of the problem can be

tuned as desired and (iii) a large number of simulated

data sets can be generated. As most DNA copy number

segmentation methods rely on a Gaussian model (see

‘DNA Copy Number Segmentation’ section), their

performance is usually assessed using Gaussian simula-

tions (see, for example, [9, 19]). While we do not ques-

tion the usefulness of model assumptions for building

statistical methods and for testing implementations, we

believe that performance evaluation should as much as

possible avoid relying on a particular model. A recent

study that compared several approaches for segmenting

univariate DNA copy number profiles using the mul-

tiple change point approach showed that the best per-

forming methods on Gaussian simulations performed

quite poorly on real data [20] (Table 3). In the remain-

der of this section, we briefly review some existing

approaches that have tried to take the best of both the

‘simulated data’ and the ‘real data’ worlds:

An automatically annotated data set [15]. The authors

analyzed real data using one particular segmentation

method to generate ‘truth’. They then used resam-

pling to generate realistic copy-number profiles,

where (Gaussian) noise was added to control the

signal-to-noise ratio (SNR) of the data set. Two

drawbacks of this approach are that the notion of

‘truth’ depends on the chosen segmentation

method, and that the problem difficulty is not

driven by biological considerations.

A dilution series [3]. To address the latter point, [3]

have produced a dilution data set, where DNA from

a lung cancer cell line is mixed with matched blood

DNA from the same patient with varying (and

known) mixture proportion (see description in

Appendix A.1). Therefore, the fraction of tumor

cells in the mixture controls the difficulty of the

problem. The ‘truth’ is a panel of regions whose

DNA copy number status in the cell line (normal,

gain, hemizygous deletion, copy-neutral loss of het-

erozygosity (LOH) . . .) is known. This evaluation

method has been accepted as a de facto standard and

has been used in several subsequent papers, including

[8, 21, 22].

An important drawback of this evaluation frame-

work is that it focuses on a very limited number of

regions (10), which results in very little discrimin-

ation between most methods in realistic settings.

For example, four of the six methods compared in

[21] reach maximum sensitivity in all 10 regions for

tumor cell fractions >25%. In practice, samples with

<50% are rarely analyzed, in particular because the

performance of most methods typically decreases se-

verely when the fraction of tumor cells is <75%. We

also note that sensitivity and specificity are evaluated

separately in [3], and this weakness has been perpe-

tuated in all subsequent papers based on the same

evaluation framework.

A manually annotated data set [18]. The authors ana-

lyzed hundreds of neuroblastoma array-CGH pro-

files to define regions containing breakpoints (true

signals) and regions not containing breakpoints

(false signals). This data set is freely distributed on

CRAN (http://cran.r-project.org/web/packages/

neuroblastoma/). Based on this large data set with

known truth, the authors have performed a compre-

hensive comparison of segmentation methods for

array-CGH data based on receiver operator charac-

teristic (ROC) curves. A drawback of this evaluation

framework is that once a particular data set is chosen,

it is not possible to tune the SNR of the problem.

Moreover, annotating a new data set is a challenging

task, because it has to be large enough to contain a

set of change points that discriminate between com-

peting segmentation methods.

Asimulationmodel [16]. The authors designed a com-

plex simulation model to generate ‘realistic’ copy-

number profiles. This model is implemented in the

R package CnaGen, which is available from the

authors’ web page (http://web.bioinformatics.cic-

biogune.es/cnagen/). The simulation model depends

on 24 parameters (CnaGen version 2.1). Some of

them are directly driven by biological considerations,

such as the percentage of tumor cells in the sample or

intra-tumor heterogeneity. We empirically found it

difficult to find a combination of parameters that

yield realistic copy-number profiles. This may be
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due to the fact that the underlying data generation

model is Gaussian. Table 1 summarizes the features

of approaches reviewed above.

Proposed data generation mechanism
Based on these considerations, we propose an ori-

ginal data generation framework which aims at com-

bining the advantages of all of the above-mentioned

existing approaches. Two necessary and sufficient in-

gredients for generating a copy-number profile of

length n are—

� truth, in the form of K breakpoint positions (out

of n� 1 intervals between two successive loci) and

K+ 1 copy-number state labels for all K+ 1 re-

gions between two consecutive breakpoints;

� signal, in the form of locus-level data. For SNP

arrays, this is generally a n� 3 matrix of total copy

numbers (c), allelic ratios (b) and germline genotypes.

Our proposed approach is described below.

Generation of ‘truth’
When breakpoints and region labels are not user-

supplied, we propose the following approach for

generating them:

breakpoints: given a signal length n, draw K break-

point positions uniformly out of the n� 1 pos-

sible intervals between successive data points

(vertical lines in Figure 3);

region labels: draw K+ 1 region labels from a pre-

defined set of copy-number state labels, such as

normal, gain of one copy, hemizygous deletion,

homozygous deletion, copy-neutral LOH (labels

on top of each plot in Figure 3). By default, all

region labels are equiprobable, but the user may

provide a vector of probabilities for each desired

region label. By default, successive regions are

constrained in such a way that only one of the

two parental copy numbers changes at the break-

point. Not adding such a constraint would be

equivalent to allowing two distinct biological

events to occur at the same genomic position,

which is possible in theory but rarely observed

in practice.

Generation of locus-level data
Given breakpoint positions and region labels, we

generate a copy-number profile as follows: for each

region of size nR between two breakpoints, we

sample nR data points from a real copy-number

data corresponding to this type of region.

The data generation mechanism therefore relies

on real data where the underlying region label is

(assumed to be) known. We have made available

two such ‘real data sets with known truth’ in the

package: each of them corresponds to a different

SNP array platform (Affymetrix or Illumina), and

both of them are taken from dilution series, consist-

ing of mixtures of DNA from a tumor cell line and

from blood cells originating from the same patient,

with varying mixture proportions. For both data sets,

we have selected several genomic regions which are

representative of the diversity of copy-number states

that are typically observed in tumor samples.

Contrary to [15], these labels do not rely on any

automatic segmentation or calling method. Both

data sets are described in Appendix A.

Features of the proposed data generation
mechanism
Our proposed data generation mechanism enjoys the

following features:

� simplicity: small number of required parameters,

all of which have a clear biological interpretation.

In particular, for a given data set, the noise level is

governed by the fraction of tumor cells. This is

illustrated by Figure 3;

� flexibility: the user may specify breakpoint pos-

itions and region labels directly, if desired.

Therefore, it is also possible to generate profiles

Table 1: Features of existing frameworks for real copy number data with known ‘truth’

Reference [15] [3] [18] [16] This article

Based on real biological data? ˇ ˇ ˇ ^ ˇ
Noise level based on a biological parameter? ^ ˇ ^ ˇ ˇ
Data generation possible? ˇ ^ ^ ˇ ˇ
Available as an R package? ˇ ^ ˇ ˇ ˇ
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Figure 3: Illustration of the variety of copy-number profiles that can be generated from the same ‘truth’ as in
Figure 1. Each block of two plots corresponds to total copy numbers (c) and allelic ratios (b) for one particular com-
bination of fraction of tumor cells (in rows) and data set (in columns).Vertical lines represent change points. SNPs
that are heterozygous in the germline are colored in black; all of the other loci are colored in gray.
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with the same underlying ‘truth’, but with differ-

ent SNR, as illustrated by Figure 3;

� reliability: copy-number regions were identified

using the profiles with 100% tumor cells. In

these profiles, the region labels may be defined

manually unambiguously. Because the same

tumor cell line is used for the dilutions series

from a given platform, the regions identified on

the profiles with 100% tumor cells can also be

considered as ground truth for the profiles with

less tumor cells, where direct manual identification

would have been more problematic;

� versatility: the design choice of separating ‘truth’

generation from locus-level data generation

implies that it is relatively easy to:

– annotate a new data set. Although dilution series

are not publicly available for all possible platforms,

it is also possible to annotate representative profiles

from a given data set. Moreover, annotating a new

data set is not time-expensive, as one only needs

to identify a few copy-number regions.

– extend the framework to other data types (for

example array-CGH or high-throughput exome

capture or whole genome sequencing): only a set

of annotated data is required.

EVALUATION PIPELINE
Now that we have a framework to generate data, we

describe how to evaluate the performance of seg-

mentation methods.

Benchmark
Synthetic copy-number profiles were generated as

described in ‘Generating Data With Known

‘Truth’’ section:

region-level ‘truth’: Each profile contains

n¼ 200 000 loci in copy number signal and

K¼ 20 breakpoints. We chose to impose the

constraint that on average, 90% of segments are

either normal (1,1), copy-neutral LOH (0,2),

single copy-gain (1,2) or hemizygous deletion

(0,1). The remaining 10% of regions are given

less common copy-number states, such as homo-

zygous deletion, or balanced duplication. These

parameters were inspired by our experience with

SNP array data from The Cancer Genome Altas

(TCGA), especially on ovarian cancers, where

normal regions and regions of copy-neutral

LOH, single copy-gain, and hemizygous deletion

are fairly common, while other types of alter-

ations are much more rare [23].

Locus-level data: For each of B¼ 50 such ‘truth’

profiles, corresponding locus-level data are then

generated for 100, 70 and 50% of tumor cells for

data set 1, and 100, 79 and 50% of tumor cells for

data set 2. These percentages are among those

available from the dilution series from which real

data were extracted, see Appendix A. Pure tumor

samples (100%) are typically observed in studies

about tumor cell lines, while percentages as low

as 50% are typically observed in primary tumors.

Preprocessing
We log -transformed total copy numbers to stabilize

their variance and smoothed outliers using

smooth.CNA [11], as it improved segmentation

results for all methods. Allelic ratios were converted

to (unimodal) decrease in heterozygosity (d) as

described in ‘DNA copy number data’ section.

Compared segmentation methods
We evaluated different types of methods belonging to

the different classes described in ‘Typology of copy

number segmentation methods’ section: multiple

change-point, recursive, fused and HMM-based meth-

ods. These methods are described in Table 2, where we

mention which of them are able to process both signal

dimensions (c and d) or only one of them. Not all of

these methods were implemented in R. We ported

from Matlab GFLseg (available at http://cbio.

ensmp.fr/�jvert/svn/GFLseg/html) to R the imple-

mentation of multi-dimensional dynamic program-

ming and the group-fused LARS [29], and we

implemented recursive binary segmentation [27] in R.

In practice, as recommended by [27–29], both group-

fused LARS and recursive binary segmentation are used

to quickly identify a list of candidate change points,

which is then pruned using dynamic programming.

All of the compared methods are reasonably

fast and memory-efficient, except those based on

two-dimensional dynamic programming (DP):

cnaStruct and our implementation of DP in R.

Indeed, two-dimensional DP is quadratic in time and

memory and thus cannot handle profiles of size

n ¼ 105. It may be surprising that the two-dimensional

version of GFLars is faster than its one-dimensional

counterpart. This is a consequence of the fact that the

number of informative markers is several times larger

for (c) than for (d) (as explained in ‘DNA copy number
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data’ section). As the implementation of GFLars does

not handle missing values, the 2d version of GFLars was

applied to non-missing entries in (c, d), while the 1d

version was applied to a much longer signal (all (c)
entries). This phenomenon does not happen for

other two-dimensional segmentation methods, as

their implementation does handle missing values.

Criteria for performance evaluation
Comparison studies typically assess the performance

of DNA copy number analysis methods either in

terms of their ability to accurately identify break-

point locations [17, 18], copy-number states [3, 16]

or both [15]. This article focuses on the former only,

because we are interested in comparing segmentation

methods. The problem of evaluating strategies for

calling copy-number states is left for future work.

As our proposed data generation framework pro-

vides copy number profiles with known ‘truth’, a

natural way to evaluate the performance of a given

method is to cast the problem of breakpoint detec-

tion as a binary classification problem. Specifically,

for each generated copy number profile, we know

where the true breakpoints are located. The number

of true positives TP is the number of true break-

points for which at least one breakpoint is detected

closer than a given tolerance parameter. The number

of false positives FP is defined as FP¼P-TP, where P

is the number of ‘positives’, that is, the total number

of detected breakpoints. With this definition, when-

ever a method identifies two or more breakpoints

within the tolerance area of a true breakpoint, one

of these breakpoints counts as a true positive, while

all others count as false positives. This definition of

true and false positives is illustrated by Figure 4,

where gray areas highlight tolerance areas around

the true change points, whose positions are identified

as t1 and t2 on the x axis. In this example, breakpoints

were detected in both shaded areas; therefore, the

number of true positives (solid lines) is two. There

are four false positives (dashed lines): one in a gray

area where there is already one true positive, and

three which are not within the tolerance area of

any true breakpoint. Alternative definitions of true

and false positives may be considered. Some of these

alternatives are implemented in the jointseg
package, including one in which a second breakpoint

found within a tolerance area is not counted as a false

positive. We chose to stick with the above-described

evaluation (where such breakpoints are called false

positives) in order not to favor methods such as the

(group) fused lasso that tend to systematically find

multiple breakpoints very close to each other,

which is generally inconsistent with the biology of

cancers.

Related works. A similar definition of true and false

positives is used in [15], although the authors do not

mention how the above case of multiple breakpoints

within the tolerance area is handled. Another related

approach has been proposed in [18]. There, copy-

number profiles are real, array-CGH profiles for

which regions containing a breakpoint and regions

containing no breakpoints have been delineated by

experts. The main difference is that only a subset of

the ‘true’ and ‘false’ breakpoints are annotated, and

Table 2: List of DNA copy number segmentation methods evaluated

Name R package function Dimension Time (s) Reference

n¼104 n¼105

Multiple change-point
DP cghseg segmeanCO 1D 0.24 2.37 [24]
CST cnaStruct segment 2D 120 Fail [25]
DP jointseg doDynamicProgramming 2D 140 Fail

Recursive
CBS DNAcopy segment 1D 0.34 1.69 [26]
PSCBS PSCBS segmentByPairedPSCBS 2D 1.04 4.00 [21]
RBS jointseg doRBS 2D 0.15 1.15 [27]

Fused
GFLars jointseg doGFLars 1D 0.29 3.70 [28]
GFLars jointseg doGFLars 2D 0.08 0.60 [29]

HMM
PSCN PSCN segmentation 2D 7.25 73 [8]
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that the tolerance parameter cannot be tuned with-

out the expert re-annotating the data set. Finally, a

similar type of evaluation has been used by [17], at

the the locus level instead of the breakpoint level.

This locus level-based evaluation method tends to

favor segmentation methods that accurately identify

large altered regions, even if they fail to detect break-

points delineating smaller altered regions.

ROC-based evaluation
Usually, each method provides a segmentation and

its associated set of breakpoints. This can be trans-

lated into a measure of sensitivity and specificity

using the above definition of true and false positives.

However, the methods have to be compared at the

same specificity or sensitivity level in order for this

comparison to be fair. Ideally, we would like to

compute an ROC curve for each method. To do

this, one needs to explore a large set of possible

segmentations with varying sensitivity and specificity,

obtained by exploring the set of tuning parameters of

each method. Such an exhaustive exploration is

tedious and time consuming as soon as the number

of parameters is larger than 2 or 3, and may lead to

over-optimistic results. To overcome this problem,

we adopted the following strategy: for any given

method m, we recovered a segmentation in km
change points using default parameters, and we

retrieved for each k 2 f1 . . . kmg the best k subset of

these km using dynamic programming. Another pos-

sible strategy would be to sort the km change points

according to a measure of confidence.

One could be worried that the range of explored

sensitivity/specificity is highly variable across meth-

ods. In practice, our experience is that the default

parameters of a method generally tend to over-seg-

ment the data and that typically, most of the true

change points are found, at the cost of a more or

less large number of false positives. This is in agree-

ment with [18].

RESULTS
Quantifying problem difficulty for
known change points
Segmentation methods rely on a statistic to quantify

the biological difference between any two regions.

Based on this statistic, they aim at locating a good

set of regions or equivalently, of change points.

This location problem is combinatorial in nature. In

this section, we try to quantify this biological differ-

ence independently of this combinatorial problem.

To do this, we assume that change point positions

are given a priori and we compare the power to call

a change using total copy numbers (c) or allelic signals

(d) for different types of change points. To perform

this power study, we need to formally define the

notion of power, or SNR, between copy number

regions. We chose a definition of SNR which is con-

sistent with our proposed data-generation mechan-

ism, in which DNA copy number data from a

given region are sampled from a population which

represents the corresponding copy-number state (see

‘Features of the proposed data generation mechanism’

section). Let us consider two regions and label by ‘0’

and ‘1’ the copy number state of two regions. For

univariate signals (c or d), a natural definition of SNR

is the (squared) Z statistic of the comparison between

the sample means of region ‘0’ and region ‘1’:

SNRðcÞ ¼
c0 � c1ð Þ

2

s2
c;0=n0 þ s2

c;1=n1

ð1Þ

SNRðdÞ ¼
d0 � d1

� �2
s2
d;0=n

*
0 þ s2

d;1=n
*
1

; ð2Þ
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Figure 4: Definition of false positive and true positive to build performance evaluation.
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where ni is the total number of loci in region i, ci and

sc;i are the sample mean and population standard

deviation of total copy numbers in state i and

di;sd;i are the sample mean and population standard

deviation of the decrease in heterozygosity in state i.
Note that the decrease in heterozygosity is only

defined for SNPs that are heterozygous in the

germline, whereas the total copy number is defined

for all loci. Therefore, di is calculated based on n*
i

heterozygous SNPs, while ci is calculated based on

all ni loci. For a given DNA sample, the fraction of

heterozygous SNPs among those present on the

microarray is typically close to 1/3; moreover, data

set 1 contains not only SNP probes but also nonpo-

lymorphic loci, with a 1:1 ratio. As a result, the frac-

tion n*
i =ni is approximately 1/6 for data set 1 and 1/3

for data set 2. A natural extension of this definition

of SNR to the two-dimensional case of the statistic

(c, d) is

SNRðc; dÞ ¼ ðc0 � c1; d0 � d1Þ S0 þ S1ð Þ
�1
ðc0

� c1; d0 � d1Þ
0
; ð3Þ

where Si is the population covariance matrix

of the bivariate vector (c,d), that is Si ¼
s2
c;i=ni tcd;i=n*

i

tcd;i=n*
i s2

d;i=n
*
i

 !
with tcd;i the covariance

between c and d in state i. In practice, the population

parameters for copy-number state i (that is, sc;i; tcd;i
and sd;i) are calculated from the annotated data.
The sample parameters (ci and di) are calculated

from samples of ni and n*
i loci, respectively.

Note that SNRðcÞ and SNRðdÞ are comparable

with each other, as they follow (noncentered) w2

distributions with 1 degree of freedom under the

null hypothesis of no breakpoint between state 0
and state 1.

By definition, SNR is an increasing function of

the length of each flanking segment. For i 2 f0; 1g,
we chose ni¼ 500. n*

i depends on the proportion

of heterozygous SNPs in the sample; as explained

above, it is very close to n0=6 for data set 1

and n0=3 for data set 2. Therefore, the length

of the flanking regions essentially acts as a constant

scaling factor across all transitions and settings.

Therefore, SNR only reflects differences between

the underlying copy number states. Figure 5

showsthe average (and standard error) of log ðSNRÞ

across 100 samplings for three levels of tumor purity

level, for three common types of copy number

transitions for data set 1 (top panel) and data

set 2 (bottom panels). Several conclusions may be

drawn:

� Difficulty generally increases with normal
contamination: SNR generally increases with

the percentage of tumor cells. This is true for

all types of transitions for c. For d, the only

situation in which SNR is not an increasing func-

tion of tumor purity is the case of transitions

between loss and copy-neutral LOH (Figure 5,

rightmost column). This is expected theoretically

because both of these states correspond to LOH in

the tumor cells of the sample, implying that the

true d in these cells is 1. In presence of normal cells,

d estimates in both states are shrunk d toward 0,

but in a state-specific way (see [4, Figure 4] for a

detailed explanation of this phenomenon);

� SNR levels depend on the type of copy
number transition for a given data set (that is, for

a given row in Figure 5). This holds for both statistics

(cor d). Note that in the case of c, this is unexpected, as

all plotted transitions correspond to a one-copy gain.

� Possiblylowpower. Note that in some cases (e.g.

data set 1, (a) and (c)), the computed SNR is lower

than 2. Under the null hypothesis of no difference

in mean levels, SNR follows a centered w2ð1Þ dis-

tribution, so that this range of observed SNR cor-

respond to p-values of the order of 1%, which is

not low considering the large number of data

points (ni¼ 500).

� Neither c or d is always the best statistic. For a

given type of transition (that is, for a given column

in Figure 5) and a given statistic, the trend in SNR

is comparable across data sets. However, the rela-

tive power of c with respect to d is much higher

for data set 1 than for data set 2. This is directly

related to the above-mentioned difference

between ratios n*
i =ni of the number of informative

loci for each statistic.

In this subsection, we assessed the intrinsic

difficulty of calling a change point if the positions

to test are known a priori. This study suggests that

c and d are complementary sources of information,

implying that change point detection methods

should ideally take both of them into account.

This study also sheds light on the fact that low per-

centages of tumor cells severely impacts SNR. In the

remaining subsections, we assess the ability of seg-

mentation methods to recover the true location of

change points.
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Robustness of the evaluation to the toler-
ance parameter
Our first goal was to check the influence of the

tolerance parameter on the methods’ performance.

Our simulations were run using data generation

as described in ‘Benchmark’ section. We computed

partial areas under the ROC curves (pAUC) with a

number of false positives between 0 and 10. Mean

and 95% confidence intervals of pAUCs across

simulation runs were calculated for each method

for five values of the tolerance parameter (1, 2, 5,

10 and 20). For example, a tolerance of 5 means

that a breakpoint is considered correct if it lies

within 5 data points of the true breakpoints (see

‘Criteria for performance evaluation’ section for

more details). These results are reported in Figure 6

in the scenario without normal contamination.

Similar results were observed for other scenarios.

Increasing tolerance clearly increases pAUC for all

methods. This is the case even in the arguably

‘simple’ scenario where no normal cells are present.

However, in most cases, the ranking of all methods is

not affected by tolerance. Based on these results, we

decided to report only pAUC for one particular

value of tolerance: 5 loci on each side of the

breakpoints.

Joint segmentation generally increases
performance
This section aims at comparing the quality of segmen-

tations obtained using total copy numbers only (c),
allelic ratios only (d) and both of them (c, d) and how

the quality of the segmentation is affected by the purity

of the sample. As explained in ‘Quantifying problem

difficulty for known change points’ section, it is typi-

cally expected that localization of the breakpoints is

easier using both dimensions of the signal. To do so,

we compared six scenarios corresponding to two data

sets and three levels of purity (high, intermediate and

low). Table 3 reports the pAUC of the best (c), (d) and

(c, d) methods for data set 1 and 2, respectively. Detailed

results for all methods are presented in Table 4.

For both data sets, it is quite clear that perfor-

mance in terms of pAUC severely deteriorates

when the level of contamination increases. (c) meth-

ods perform better than (d) methods for high level of

purity. For example in the case of data set 2, the

minimum difference in pAUC between (c) and (d)
is 19% for high level (Table 4). For an intermediate

level of purity, for data set 1 (c) outperforms (d) with

a minimum pAUC difference of 41% and for data set

2 (c) is similar to (d). For a low level of purity, the

pAUCs are low or very low for both data sets; for

normal/gain normal/deletion loss/copy-neutral LOH
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Figure 5: Average log ðSNRÞ and corresponding standard errors across 100 samples as a function of the percen-
tage of tumor cells for total copy numbers (c, solid lines) and allelic ratios (d, dashed lines). Each column corresponds
to a type of copy number transition. Each row corresponds to a given data set.
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data set 1, (c) outperforms (d) with a minimum

pAUC difference of 6%; for data set 2, (d) outper-

forms (c) with a minimum pAUC difference of 15%.

These observations are in agreement with the results

of ‘Quantifying problem difficulty for known change

points’ section. The difference between data sets 1

and 2 can be explained by the fact that the propor-

tion of informative markers is different, namely

around 1/6 and 1/3, respectively. This low propor-

tion of informative markers also explains the poor

performance of GFLars (c, d) (which could also be

seen in Figure 6), as the current implementations of

2d GFLars do not handle missing values in one of the

dimensions.

Not all (c, d) methods outperform (c)-only and

(d)-only methods. For example, for data set 1 and

100%, although Parent-Specific Circular Binary

Segmentation (PSCBS) has good performance, it is

outperformed by 2 to 5% by all (c) methods.

However, as can be seen in Table 3, there are

always several (c, d) approaches among top

performers.

Choosing the appropriate method for a
given context
In practice, when analyzing SNP array data, biosta-

tisticians and bioinformaticians will choose one par-

ticular method to perform data segmentation. This

choice is often ad hoc and based on personal experi-

ence. Our purpose here is not to make a comparison

of all existing segmentation methods, but to compare

relevant candidates in different classes of approaches.

In the settings that we have considered it seems that

Recursive Binary Segmentation (RBS) (c,d) performs

very well. However, the point of our framework is

not to select once and for all a best segmentation

tool, but rather to justify the use of one method

for one particular type of scenario (cancer type,
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Figure 6: Method performance increase with the tolerance parameter for both data sets. Partial AUC for FP � 10
for data set 1 and 100% tumor cells. A colour version of this figure is available at BIB online: http://bib.
oxfordjournals.org.

Table 4: pAUC by for each combination of method,
statistic, data set and percentage of tumor cells

Statistic Method Data set 1 Data set 2

100% 70% 50% 100% 79% 50%

(c, d) PSCBS 0.89 0.60 0.16 0.97 0.88 0.51
GFLars 0.60 0.42 0.14 0.97 0.91 0.60
RBS 0.93 0.63 0.22 0.97 0.95 0.75

(c) CBS 0.92 0.59 0.16 0.91 0.84 0.45
GFLars 0.94 0.64 0.18 0.96 0.89 0.49
RBS 0.91 0.62 0.17 0.90 0.84 0.48
cghseg 0.93 0.61 0.18 0.95 0.88 0.49

(d) CBS 0.35 0.17 0.10 0.71 0.83 0.64
GFLars 0.35 0.18 0.10 0.71 0.84 0.66
RBS 0.34 0.17 0.09 0.69 0.83 0.65
cghseg 0.35 0.18 0.10 0.70 0.84 0.67

Table 3: Best pAUC across methods for each combin-
ation of statistic, data set and percentage of tumor cells

Statistic Data set 1 Data set 2

100% 70% 50% 100% 79% 50%

(c, d) 0.93 0.63 0.22 0.97 0.95 0.75
(c) 0.94 0.64 0.18 0.96 0.89 0.49
(d) 0.35 0.18 0.10 0.71 0.84 0.67
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cellularity, data set). In particular, we make no claim

about the performance of RBS for other data sets.

Heterogeneity of breakpoint
detection difficulty
An important question when using a biostatistical or

bioinformatic tool is to assess its ability to recover

events and to know which events they are likely to

find and which of them are harder to detect. In

Table 3 it can be seen that the pAUC is never at

100%. This is not necessarily surprising, as the signal

is quite noisy and in fact considering noise level the

pAUC is quite high. Figure 7 demonstrates that (as

could be expected) missed change points are those

for which we have a low SNR (the right panel is

darker than the left panel). However, the SNR sub-

stantially depends on the type of change point.

Typically, in Figure 7 the column corresponding to

the (0,2)-(1,2) transition is much darker than that of

the (1,1)-(1,2) transition. This is confirmed by

Table 5, which indicates that for a high level

of normal contamination in data set 2, the propor-

tion of missed (1,1)-(1,2) change points is greater

than 1/2.

SUMMARYANDDISCUSSION
We have developed a framework to assess the per-

formance of various DNA copy number

segmentation methods. A critical aspect of this fra-

mework is that it generates realistic copy-number

profiles by resampling real SNP array data. This

allows us to study a large number of scenarios with-

out relying on a particular statistical model. It is our

opinion that this framework is simple to use, as it

depends on few parameters, all of which have a

straightforward biological interpretation. An R pack-

age is available and we believe that our proposed data

generation scheme can be used readily as well as

applied to other data sets and technologies. It is

also possible to extend the set of segmentation
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Figure 7: log (SNR) for missed (left) and caught (right) breakpoints for four types of breakpoints on data set 2
with 50% normal cell contamination.

Table 5: Proportion of missed breakpoints by
method, statistic and type of copy-number transition
(data set 2, 50% of tumor cells)

Statistic Method (0,1)^(0,2) (1,1)^(1,2) (0,1)^(1,1) (0,2)^(1,2)

(c, d) RBS 0.40 0.47 0.32 0.31
GFLars 0.51 0.66 0.44 0.34
PSCBS 0.55 0.63 0.51 0.47

(c) RBS 0.57 0.69 0.52 0.63
GFLars 0.54 0.70 0.45 0.58
CBS 0.59 0.71 0.52 0.62
cghseg 0.66 0.79 0.55 0.69

(d) RBS 0.49 0.54 0.39 0.24
GFLars 0.49 0.51 0.34 0.20
CBS 0.51 0.49 0.41 0.23
cghseg 0.51 0.51 0.38 0.23
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methods compared, as explained in the package doc-

umentation. In this article, we illustrated the usage of

this framework on two SNP array data sets from

Affymetrix and Illumina.

We were able to identify which technological and

biological parameters drive the performance of seg-

mentation methods. First, it appears that the percen-

tage of tumor cells in the sample plays a critical role:

for a percentage <70%, it is probably hopeless to

recover the whole set of breakpoints with a high

accuracy. We emphasize the relevance of the con-

sidered range of cellularity for applications: we

expect that tumor cell lines should be well repre-

sented by the 100% setting, while the 50% is not

unusual for clinical practice. Second, it seems that

different microarray technologies might lead to dif-

ferent performances. Specifically, the ratio between

the number of informative allelic probes (heterozy-

gous SNPs) to the total number of probes is a crucial

aspect, particularly for a high level of normal con-

tamination. Finally, not all methods achieve similar

performance across the scenarios that we have con-

sidered. Interestingly, we show that methods that

take advantage of both signal dimensions are gener-

ally but not always better than those using only one

of them. This variability between segmentation

methods may be attributed to some extent to the

biological and technological contexts, in the sense

that some methods might be more adapted to certain

scenarios.

Our framework provides a way to critically eval-

uate the performance of segmentation methods, and

therefore to rationally select one or several of them

for a particular data set. Such a quantitative assess-

ment is also useful for interpretation. For example,

we showed that even in favorable scenarios, perfor-

mances are not perfect. Furthermore, perhaps unex-

pectedly, we showed that copy number transitions

involving the gain or loss of a single DNA copy are

not equally easy to recover, meaning that the pro-

portion of different types of copy number transitions

recovered by a particular segmentation method may

not be directly interpretable.

Key Points

� A number of methods are available for segmenting DNA copy
number profiles in cancer studies.

� Arobust andreproducible comparison of suchmethods requires
the definition of a framework for generating realistic copy
number profiles, and a framework for assessing methods’
performance.

� A data generation framework based on resampling from real
data makes it possible to compare different methods across a
large number of different realistic scenarios.

� The performance of segmentation methods is mainly driven by
biological parameters such as the proportion of tumor cells in
the sample and the proportion of heterozygousmarkers.

� Using the open source and cross-platform R package jointseg,
the present comparison study may be reproduced either on the
data sets provided or on other data sets.
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APPENDIX
A. SNP array data sets
A.1Data set 1
We have worked with a lung cancer data [30], for

which raw data are accessible at NCBI GEO database

[31], accession GSE29172. DNA from patient-

matched lung cancer and blood cell lines NCI-
H1395 and NCI-BL1395 were mixed to simulate

tumor tissue with 30, 50, 70, 100% cancer cells.

DNA was analyzed on Affymetrix SNP6.0 microar-

ray. Data were normalized using ASCRMAv2 [32]

followed by TumorBoost [4]. For the sake of

reproducibility, the R scripts that were written

to normalize this data set are distributed in the

jointseg package, together with the normalized

data itself. The size of annotated copy-number

regins for each of the two data sets is given in the

Table A1.

A.2 Data set 2
We have also worked with a breast cancer data [3],

for which raw data are accessible at NCBI GEO

database [31], accession GSE11976. DNA from

patient-match breast cancer cell line (HCC1395)

and its match normal HCC1395BL were mixed to

simulate tumor tissue with 14, 34, 50, 79, 100%

cancer cells. DNA was analyzed on Illumina

HumanCNV370-Duov1 microarrays. We obtained
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the BAF-normalized and summarized data as calcu-

lated by the Illumina BeadStudio software [33–35].

A.3 Description of annotated copy-number regions
The list below describes the different copy number

states available for data generation. They are labeled

as a pair (c1, c2), where c1 corresponds to the minor

copy number (the smallest of the two parental copy

numbers), and c2 corresponds to the major copy

number (the largest of the two) [2].

(1,1): normal (one copy from each parent)

(0,1): hemizygous deletion (loss of one parental copy)

(0,0): homozygous deletion (loss of both parental

copies)

(0,2): copy-neutral LOH (loss of one parental copy

and gain of the other)

(0,3): loss of one parental copy and gain of two

copies from the other parent

(1,2): single copy gain

(1,3): unbalanced two-copy gain (gain of two copies

from the same parent)

(2,2): balanced two-copy gain (gain of one copy

from each parent)

(2,3): three-copy gain (gain of one copy from each

parent, and two copies from the other parent)

(Table A1)

B. Reproducing the figures and tables of
this article

The scripts used for the performance evaluation

reported in this article are available in the subdirec-

tory ‘eval’ of the jointseg package:

C. Session information

Table A1: Size of annotated copy-number regions for each of the two data sets

CN state (0,1) (0,2) (0,3) (1,1) (1,2) (1,3) (2,2) (2,3) (0,0)

Data set 1 22615 24135 25 405 21539 19 048 20 903 27924 31098 0
Data set 2 2492 5484 6545 3196 2746 0 3044 0 838

Performance evaluation of DNA copy number segmentation methods 615


