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Abstract: Environmental factors can influence the composition of gut microbiota, but understanding
the combined effect of lifestyle factors on adult gut microbiota is limited. Here, we investigated
whether changes in the modifiable lifestyle factors, such as cigarette smoking, alcohol consumption,
sleep duration, physical exercise, and body mass index affected the gut microbiota of Korean navy
trainees. The navy trainees were instructed to stop smoking and alcohol consumption and follow
a sleep schedule and physical exercise regime for eight weeks. For comparison, healthy Korean
civilians, who had no significant change in lifestyles for eight weeks were included in this study.
A total of 208 fecal samples were collected from navy trainees (n = 66) and civilians (n = 38) at baseline
and week eight. Gut flora was assessed by sequencing the highly variable region of the 16S rRNA
gene. The α-and β -diversity of gut flora of both the test and control groups were not significantly
changed after eight weeks. However, there was a significant difference among individuals. Smoking
had a significant impact in altering α-diversity. Our study showed that a healthy lifestyle, particularly
cessation of smoking, even in short periods, can affect the gut microbiome by enhancing the abundance
of beneficial taxa and reducing that of harmful taxa.

Keywords: gut microbiome; lifestyle; smoking cessation; alpha-diversity; beta-diversity;
Bifidobacterium

1. Introduction

The human gut microbiota is a reservoir of microorganisms that plays a crucial role to human
health [1] through their involvement in metabolic interactions (e.g., food decomposition and nutrient
intake) [2,3], drug metabolism [4,5], energy production and storage [6], and protection against
pathogens [7]. The gut microbiome provides signals that influence the development of the host immune
system and stimulate the maturation of immune cells [8,9]. More importantly, the gut microbiota
is not only associated with human well-being but also with human disease conditions, including
metabolic diseases, growth disorders, mental illness (e.g., autism), and obesity [10–14]. Consequently,
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gut microbes affect human physiology both directly and indirectly [7]. Abrupt changes to the delicate
balance of the microbial assemblage can result in unexpected consequences [15]. For this reason, it is
necessary to understand the structure of microbial communities and the factors that modulate this
community structure.

Microbial establishment in the human intestine begins at birth [1,6]. Subsequently, the intestinal
microflora continues to develop through successive microbial communities, until the microbial climax
community colonizes the intestine [4,5]. Moreover, because of co-evolutionary interactions, microbes
undergo further functional modifications [16]. Between one and two years after birth, the intestinal
microbial community becomes more complex and stabilizes to an adult-like structure [17–19].
Early events such as birth mode, the presence of siblings, type of infant feeding, and the use of
antibiotics at birth can affect the formation of gut microbiota because of the relatively low diversity of
intestinal microbial communities in infancy [20].

Understanding the stability of human gut microbiota plays a key role in determining the dynamics
of gut microbiota and advancing personalized therapies [21]. Intestinal microbial communities
established in most adults remain stable [21]. However, the mechanism of microbiota stability in the
gut remains unknown [5]. A previous study demonstrated that samples obtained over time from the
same individual were more similar to each other than samples from other individuals and that each
individual had a relatively distinct and stable community [14]. Similarly, the gut microbiota is reported
to be temporarily stable based on self-restoration of microbiota after disturbance [22,23].

However, several factors including lifestyle, diet, stress, and probiotics have been implicated in
altering the gut microbiota [24–26]. Beta diversity was significantly impacted by cigarette smoking [27],
and physical activity was also reported to potentially alter the relative abundance of the Firmicutes,
Bacteroidetes, and Proteobacteria phyla [28]. In addition, drinking, sleeping, and body weight are also
known to affect the intestinal microbiota in adults [29–31]. However, the role of combined modifiable
lifestyle factors on gut microbiota of adults remains unexplained. Investigating the impact of changes
in lifestyle factors on gut microbiota could contribute to effectively preventing health risks associated
with dysbiosis. The gut microbiota is a key determinant of human health [32]. Hence, there is a need to
investigate the relationship between combined lifestyle interventions and gut microbiota. In this study,
we investigated the relationship between modifiable lifestyle factors of South Korean naval trainees
and the community structure and diversity of their intestinal microbial communities. We performed
next-generation sequencing of 16S rRNA genes to analyze the gut flora of naval trainees during the
trainee period when the trainees all experienced similar environmental conditions in the naval officer
candidate school (OCS).

2. Materials and Methods

2.1. Recruitment of Subjects and Sampling

The present study was approved by the Institutional Review Board of Kyungpook National
University (KNU 2017-84) (24-08-2017), and the Armed Forces Medical Research Ethics Review
Committee (AFMC-17-IRB-092) (17-11-2017), Republic of Korea. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Subjects were recruited on the first day of training admission to the OCS. The trainees lived in the
same environment for eight weeks, ate the same food at regular intervals, and participated in similar
training and sleeping regimes. They were also not allowed to smoke or drink for eight weeks. As a
control, healthy people living in Korea at the same sampling points as the OCS were also recruited as
subjects. The civilian group did not change their lifestyle habits for the eight weeks.

Fecal samples were collected from 66 trainees of the naval OCS on the first day of enlistment
(week zero) and eight weeks after admission to the naval center (week eight). As controls, fecal samples
were also collected from 38 healthy people living in Korea at the same sampling points as the OCS.
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All samples were collected by participants using Transwab tubes (Sigma, Dorset, UK) and sent to the
laboratory, where they were stored at −80 ◦C until DNA extraction.

2.2. Data Collection

Participants were asked to complete a self-administered questionnaire to collect demographic,
lifestyle, and physical activity data at week zero (Table S1). Dietary consumption was assessed by a
food frequency questionnaire (FFQ) used in the 2017 Korea National Health and Nutrition Examination
Survey conducted by the Korea Centers for Disease Control and Prevention. The FFQ was completed
by participants. Reported intakes below 500 kcal/d or > 5000 kcal/d for civilians and > 6000 kcal/d for
navy trainees were determined inaccurate and excluded from further analyses. The OCS provided
naval trainees’ menus, which were analyzed for nutrient content using the computer-aided nutritional
analysis program (CAN Pro 5.0, Korea Nutrition Society, Seoul, Korea). The daily nutrient intake for
foods consumed by trainees that were not available in CAN Pro 5.0 were calculated by referencing the
Korean Food Composition Database, Version 9.1. Meals were served buffet style, thus the analyzed
nutrients were based on the ideal diet intake for trainees. Menus from five days immediately prior to
each naval trainees’ fecal collection date were used to estimate mean daily nutrient intake for the eight
weeks of the study for the naval trainees.

Subjects were classified into subgroups for each lifestyle based on the content of the questionnaire
obtained from the subjects at week zero (Table 1). The method described by Ryan et al. [33] was used
to classify smoking, alcohol consumption, physical exercise, and body mass index. Sleep time was
classified according to the National Sleep Foundation [34].

Table 1. Modifiable-lifestyle factors of civilian and navy trainee groups.

Modifiable Lifestyle Factors Civilians
(n = 38)

Navy Trainees
(n = 66)

Cigarette smoking 1 n (%)
Non-smokers (Never smoked) 27 (71.05) 47 (71.21)

Smokers (Currently smokes less than 1 pack per day) 11 (28.95) 14 (21.21)
Alcohol consumption 1 n (%)

Nondrinkers (Drinking frequency is less than weekly) 18 (47.37) 28 (42.42)
Regular drinkers (Drinks at least once per week) 18 (47.37) 23 (34.85)

Sleep duration 1 n (%)
7–9 h sleep (Recommended hour) 19 (50.00) 52 (78.79)

<7 h sleep (Below recommended hour) 19 (50.00) 9 (13.64)
Physical exercise 1, n (%)

Regular exercisers (≥2 h per week) 10 (26.32) 26 (39.39)
Non exercisers (<1 h per week) 28 (73.68) 35 (53.03)
Body mass index (BMI), n (%)

<18.50 2 (5.26) 1 (1.52)
18.50–24.99 26 (68.42) 38 (57.58)
25.00–29.99 10 (26.32) 22 (33.33)

1 The percentages do not sum up to 100% because of missing values: five navy trainees for cigarette smoking, sleep
time, physical exercise, and body mass index; two civilians and 15 navy trainees for alcohol consumption. n refers
to the number of subjects participated in each group.

2.3. DNA Extraction, PCR Amplification, and Sequencing

Genomic DNA was extracted from approximately 500 µL (wet weight) of each sample
using QIAamp PowerFecal DNA Isolation kits (Qiagen, Hilden, Germany). Extracted DNA
was assessed for quality by electrophoresis and was quantified using a Qubit 2.0 Fluorometer
(Life Technologies, Carlsbad, CA, USA). DNA isolated from each sample was amplified
using the universal primers, 515 F (5′-barcode-GTGCCAGCMGCCGCGGTAA-3′) and 907 R
(5′-barcode-CCGYCAATTCMTTTRAGTTT-3′), targeting the V4-V5 regions of prokaryotic 16S rRNA
genes. The barcode was an eight-base sequence unique to each sample. PCR experiments were
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performed under the following conditions: 95 ◦C for 5 min, 30 cycles of 95 ◦C for 30 s, 57 ◦C for 30 s,
72 ◦C for 30 s, and then 72 ◦C for 5 min and held at 4 ◦C. PCR was performed in duplicate in 24µL reaction
volumes, consisting of 20 µL Emerald AMP GT PCR 1×Master Mix (Takara Bio, Shiga, Japan), 0.5 µL
(10 µM) of each barcoded PCR primer pair, and 3 µL of DNA template (10–50 ng DNA). PCR products
were purified using an AMPure XP bead purification kit (Beckman Coulter, Brea, CA, USA) and pooled
in equal concentrations. An Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
was used to confirm the correct concentration needed for sequencing. Each amplified region was
sequenced on an Illumina MiSeq sequencing platform (Illumina, San Diego, CA, USA) using a MiSeq
Reagent Kit v3 (Illumina, Inc., San Diego, CA, USA), according to the manufacturer’s protocols.

2.4. Bioinformatic Analysis

16S rRNA amplicon primers were removed from sequencing reads using cutadapt version
2.8 [35]. The primer-trimmed files were imported into Quantitative Insights Into Microbial Ecology 2
(QIIME2) v. 2020.2 software [36] in Casava 1.8 single-end demultiplexed format for further processing
using different algorithms (implemented in QIIME2). Quality-filtered reads were then input into
the QIIME2 plugin Deblur [37] to produce amplicon sequence variants (ASV). A trim length of
200 base pairs was used, and the minimum number of reads required to pass filtering was set to
1; ASVs that were found in an abundance of < 0.1% of the mean sample depth were then removed
from analysis. After filtering a total of 12,509 ASVs were recovered. The sequences were filtered to
remove non-bacterial, mitochondrial, and chloroplast sequences. Representative sequences were then
assigned taxonomy using a custom trained V4–V5 16S rRNA naive Bayesian QIIME2 classifier [38]
trained on the 99% Silva V132 database [39]. The mafft, mask and FastTree protocols were then used
to generate rooted and unrooted phylogenetic trees of aligned representative sequences for use in
diversity analysis. The final feature table was rarefied to 3124 reads per sample. Sample diversity
metrics were generated for α-diversity and β-diversity.

2.5. Statistical Analysis

The D’Agostino-Pearson Omnibus test was used to determine the distribution of data in RStudio
1.0.153 (https://www.rstudio.com/). Statistical analysis was performed by Kruskal–Wallis tests for
multiple comparisons. Wilcoxon matched-pairs signed-rank was assessed to compare the differences
in α-diversity across subgroups and over time. Analyses were performed using Prism 8 software
(GraphPad Software, San Diego, CA, USA). A p-value of <0.05 was considered significant; data were
tested to determine whether diversity indices were significantly different between samples collected at
different time points. Statistical analyses for β-diversity were completed by calculating Bray–Curtis
distance using QIIME2. A permutational multivariate analysis of variance (PERMANOVA) was run to
complete pairwise comparisons of samples for each subgroups. The heatmap of the top 30 genera
of each subject were performed in R 3.6.3 using the packages phyloseq [40], qiime2R [41], and vegan
(version 2.5-6) [42]. The edgeR package [43] was used to evaluate univariate differential abundance of
operational taxonomic units (OTUs). OTUs having a false discovery rate (FDR) < 0.05 were considered
as differentially abundant. Contrast analyses were performed between T0 and T8 to generate statistical
differences from the OTU sequences selected by the edgeR package version 3.16. Figures were created
in R using ggplot2 [44], ggpubr [45], and VennDiagram [46].

3. Results

3.1. Characterstics of the Participants and Data Summary of Amplicon Sequencing

To determine whether a change in lifestyle influenced gut microbial community structure and
diversity, 16S rRNA-based metagenomic profiling of fecal samples collected from civilians and navy
trainees was performed. The samples were collected on the first day of admission to the OCS (baseline,
T0) and eight weeks after admission (T8). The trainees were instructed to stop smoking and drinking

https://www.rstudio.com/
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alcohol during the eight week training period. In addition, the trainees were expected to maintain the
sleep schedule and time of physical exercise. Physical exercise was performed every day for eight weeks
through basic military training, and cardio (mean = 255.15, Interquartile range (IQR) = 132.50–245.00)
and weight training (mean = 39.78, IQR = 10.00–24.50) were performed together. The navy trainees
were exposed to the same lifestyle at the naval OCS for eight weeks. The civilian group had no
significant lifestyle change during the eight week study (Table 2).

Table 2. Characteristics of participants at T0 and T8. Data are shown as mean ± SD; p-values are
obtained by Wilcoxon matched-pairs signed-rank test.

Variables
Civilians (n = 38) Navy Trainees (n = 66)

T0 T8 p-Value T0 T8 p-Value

Cigarette smoking (cigarettes
smoked per day) 4.50 ± 7.88 3.90 ± 7.15 0.250 2.28 ± 4.73 0.00 ± 0.00 <0.001

Alcohol consumption (alcohol
consumption days per week) 0.83 ± 1.08 0.83 ± 1.08 >0.999 0.90 ± 1.33 0.00 ± 0.00 <0.001

Sleeping duration (hours per day) 6.37 ± 1.30 6.42 ± 1.18 0.856 7.69 ± 1.29 7.57 ± 0.49 0.400
Physical exercise (exercise duration

in the past week, min) 84.34 ± 171.20 85.26 ± 155.00 0.587 178.60 ± 228.20 1347.00 ±
203.80 <0.001

Body mass index (BMI, kg/m2) 22.91 ± 2.97 22.83 ± 2.92 0.632 24.52 ± 2.59 23.82 ± 2.24 <0.001

Where n refers to the number of subjects participated in each group.

The intestinal microbial communities of the fecal samples of navy trainees and civilians collected
at T0 and T8 were analyzed. A total of 208 fecal samples was collected from the 66 naval trainees and 38
Korean civilians. We detected 1635 features from 3,210,100 high-quality sequence reads. The average
number of reads per sample was 15,433 (ranged from 3124 to 26,765). For each feature, there was
a mean frequency of 1963 observations (ranging from 15 to 203,394). For downstream analysis, the
frequency tables were rarified at an even sampling depth of 3124 reads per sample. At this level,
649,792 of the original sequences (20.24%) and all of the 208 samples were retained in the data set.

3.2. Intestinal Microbial Communities after Eight Weeks of Lifestyle Intervention

The effect of significant lifestyle changes on gut flora of navy trainees was investigated after eight
weeks of intervention in comparison with civilians, who had no significant lifestyle changes for eight
weeks. The relative bacterial abundance after eight weeks in the two groups is presented by the heat
map at genus level (Figure S1a). Alpha diversity indices including the Shannon index, observed OTUs,
Faith’s phylogenetic diversity (PD), and evenness index were calculated at T0 and after T8 (Figure S1b).
The diversity indices did not significantly differ between T0 and T8 in either the navy trainee group or
the civilian group (Figure S1b). We also performed Bray–Curtis principal-coordinate analysis (PCoA)
ordination to determine the β-diversity of the intestinal microbial communities of the navy trainee
and civilian groups at T0 and T8. The PCoA plot showed that intestinal microbial communities at T0
and T8 were not separate to each other in each group (Figure S1c). However, there were significant
differences among individuals (Table 3).

Table 3. Permutational multivariate analysis of variance (PERMANOVA) table showing the significant
effect of individuals in comparison with lifestyle factors on gut microbiota.

Groups
PERMANOVA

Pseudo-F p-Value

All participants 4.281 0.001
All participants at T0 vs. T8 0.789 0.771

Civilians 5.120 0.001
Civilians at T0 vs. T8 0.250 1.000

Navy trainees 3.674 0.001
Navy trainees at T0 vs. T8 1.206 0.189
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To observe microbial changes at lower taxa levels after eight weeks in each group, edgeR was used
for contrast analysis. Among the 1635 tested features, 20 and 39 taxa were found to be significantly
different between the civilian and navy trainee groups, respectively (Figure 1 and Table S2). In the
civilian group, the majority (80%) of OTUs that had undergone changes over eight weeks belonged
to the Firmicutes phylum, followed by Actinobacteria (10%), Proteobacteria (5%), and Bacteroidetes
(5%) (Figure 1a). In this group, OTUs belonging to the Anaerococcus genus were the most decreased
(LogFC = −4.80, p = 8.85 × 10−10), whereas the Lactococcus genus had the most increased OTUs
(LogFC = 4.24, p = 5.56 × 10−12) at T8 in comparison with OTUs at T0 (Figure 1a). In the navy trainee
group, the majority (82%) of OTUs that had undergone changes over eight weeks belonged to the
Firmicutes phylum, followed by Bacteroidetes (13%), Proteobacteria (3%), and Actinobacteria (3%)
(Figure 1b). OTUs belonging to the Ruminococcus 2 (LogFC = −4.01, p = 1.02 × 10−12), Holdemanella
(LogFC = −3.62, p = 1.76 × 10−11), Streptococcus (LogFC = −3.55, p = 1.46 × 10−9 / LogFC = −2.13,
p = 2.80 × 10−8), and Turicibacter genera (LogFC = −3.41, p = 7.91 × 10−13) were significantly reduced,
whereas those of Bifidobacterium (LogFC = 5.18, p = 7.38 × 10−27) and Murdochiella genera (LogFC = 3.49,
p = 1.28 × 10−14) were found to be significantly increased at T8 compared with OTUs at T0 (Figure 1b).
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Figure 1. Differential abundance analysis of amplicon sequencing data of the samples from (a) civilian
and (b) navy trainee groups after eight weeks using the edgeR package. Operational taxonomic units
(OTUs) which significantly distinguished either navy trainee or civilian groups at week zero and week
eight are presented. Only OTUs with a false discovery rate (FDR) value < 0.05 were considered as
being differentially abundant. Each point represents an OTU belonging to the respected genera. Points
in different colors represent different phylum.

3.3. Effects of Modifiable Lifestyles Factors on Diversity of Intestinal Microbial Communities

To determine if the lifestyle changes over eight weeks for the navy trainees modulated the
intestinal microbial diversity, we compared the diversity indices of T0 and T8 of each lifestyle factor
(Figure 2). The results showed that quitting smoking resulted a significant (p < 0.05) increase in
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the number of observed OTUs after eight weeks (Figure 2a). Smokers in the navy trainee group at
T0 had low OTUs (mean = 103.90, IQR = 95.18–118.20), which were significantly higher (p = 0.031)
(mean = 119.60, IQR = 105.30–132.30) at T8. In contrast, there was no significant difference in the navy
trainee nonsmoking group in OTUs (p = 0.222) between T0 (mean = 122.60, IQR = 104.70–136.90) and
T8 (mean = 121.30, IQR = 94.50–143.30). In civilians, regardless of smoking history, there was no
significant change (p = 0.207) in OTUs between T0 and T8. The number of OTUs in smokers in the
civilian group at T0 (mean = 91.55, IQR = 67.50–108.30) and T8 (mean = 91.75, IQR = 69.10–104.60)
was not significantly different. This is because of the fact that civilian group unlike navy trainees
were able to continue smoking cigarettes. As expected, the nonsmoking civilian group displayed
no significant difference in OTUs (p = 0.242) between T0 (mean = 139.80, IQR = 104.30–177.10) and
T8 (mean = 147.00, IQR = 113.70–164.60). Similarly, the remaining lifestyle factors had no impact in
modulating the OTUs of civilians. In addition, the change in the other lifestyle factors after eight
weeks in the navy trainees did not result in a significant change in the number of OTUs (Figure 2b–e).
Navy trainees who stopped drinking alcohol for eight weeks displayed a slight increment, though
this was non-significant, of OTUs at T8 (mean = 125.60, IQR = 96.60–136.90) compared with that at T0
(mean = 115.70, IQR = 103.60–122.80) (Figure 2b).Microorganisms 2020, 8, x FOR PEER REVIEW 8 of 16 
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Figure 2. Number of observed OTUs detected at week zero (T0) and week eight (T8) in civilian and
navy trainee groups. Number of OTUs at T0 and T8 in different categories: cigarette smoking (a),
alcohol consumption (b), sleep duration (c), physical exercise (d), and body mass index (BMI) (e).
Values are expressed as means ± SEM. Asterisk (*) indicates statistically significant (p < 0.05) differences
between groups based on Wilcoxon matched-pairs signed-rank test. At T8, the navy trainees had
stopped smoking and drinking alcohol, and had been instructed to do physical exercise for 5 h per day
and obey the 8 h sleep schedule.
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Furthermore, similar to the OTU results, the navy trainee smokers who had stopped for eight
weeks had a significantly higher (5.01 ± 0.58; p < 0.05) Shannon index compared with that at T0
(4.81 ± 0.46) (Figure S2). However, there was no difference between T0 and T8 of navy smokers in
Faith’s PD and evenness index (Figure S2). Similarly, civilians who kept smoking for eight weeks
showed no significant difference in Shannon index at T8 compared with that at T0 (Figure S2). These
results signify that quitting smoking was the most important factor in modulating the intestinal
microbial community diversity within a short period of time. However, significant change of the
remaining lifestyle factors in the eight week period (Table 2) did not significantly alter the Shannon
index, Faith’s PD, or evenness index of navy trainees (Figure S2). In addition, in the civilian group,
who did not have a significant (p > 0.2) lifestyle changes (Table 2), there was no difference in Faith’s PD
or evenness index between T0 and T8 (Figure S2). Nevertheless, those in the civilian group who kept
drinking alcohol for eight weeks, had a significantly (p < 0.05) lower Shannon index at T8 (4.59 ± 0.86)
compared with that at T0 (4.77 ± 0.83) (Figure S2a). These results suggest that with the exception of
stopping smoking, a significant change in healthy lifestyle factors such as physical exercise, sufficient
sleep, and reducing alcohol consumption over a short period of time had no impact in modulating the
intestinal microbial diversity.

In the case of beta-diversity, PERMANOVA analysis was performed using distance matrices to
determine if the change in lifestyles for eight weeks significantly contributed to the difference in gut
microbiota of navy trainees and civilians (Table S3). The results showed that the lifestyle changes over
the eight weeks did not significantly (PERMANOVA: p > 0.05) alter the beta-diversity in either navy
trainees or civilians.

3.4. Cigarette Smoking Altered the Abundance of Individual Bacterial Taxa

Among the lifestyle factors, smoking had the most significant impact in altering alpha diversity.
Hence, to further investigate the impact of stopping smoking on specific bacterial taxa, we compared
the log2 fold change of the relative abundance of individual taxa in non-smokers and smokers of navy
trainees (Figure 3 and Table S4). The abundance of 13 genera (16 OTUs) was significantly (p < 0.001)
changed in the gut of navy trainees who had previously smoked cigarettes but then quit for eight
weeks. Nine of the 13 genera were significantly more abundant, whereas the abundance of four other
genera was significantly reduced. Genera that were more abundant at T8 compared with abundance at
T0 were: Ruminococcus 1 (LogFC = 4.03, p = 1.12 × 10−4), Porphyromonas (LogFC = 4.44, p = 4.63 × 10−5),
S5-A14 (LogFC = 5.37, p = 5.41 × 10−6), Mogibacterium (LogFC = 5.39, p = 5.67 × 10−6), Peptoniphilus
(LogFC = 5.45, p = 6.53× 10−6), Murdochiella (LogFC = 5.70, p = 4.38× 10−6), and Ezakiella (LogFC = 6.94,
p = 6.15 × 10−7 / LogFC = 5.73, p = 2.22 × 10−6). In contrast, two taxa, namely Ruminiclostridium 5
(LogFC = −4.45, p = 4.22 × 10−5) and Clostridium sensu stricto 1 (LogFC = −3.88, p = 1.72 × 10−3) were
significantly reduced at T8 compared with the abundance at T0. Furthermore, in the nonsmoking
group, 20 genera (28 OTUs) were significantly changed after eight weeks. Among 20 taxa, 14 taxa
were increased while the remaining six taxa were reduced at T8 compared with their abundance at T0.
The relative abundance of two bacterial taxa, Turicibacter and Streptococcus, was significantly reduced,
whereas that of Coprococcus 2 and Bifidobacterium was increased after eight weeks regardless of smoking
history of navy trainees (Figure 3). Overall, two phyla, namely Firmicutes and Bacteroidetes, were the
most modulated phyla after quitting smoking in short periods.
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4. Discussion

This was an intervention study to determine the impact of changes in healthy lifestyles on
gut microbiota modulation. The study was performed by recruiting navy trainees in the naval
OCS. The trainees were instructed to stop smoking and drinking alcohol during the eight week
training period. In addition, the trainees were ordered to obey the sleep schedule and time of
physical exercise. Chiuve et al. [47] discussed that an overall healthy lifestyle includes smoking
cessation, alcohol abstinence, regular exercise, and optimal body weight. Such healthy lifestyles
have been reported to reduce the risk of several diseases such as cardiovascular disease, diabetes,
and cancer [48–50]. For comparison, we profiled the metagenomics of fecal samples of healthy
civilians, who had no significant lifestyle change in eight weeks. Our study showed that navy trainees,
who had a significant change in their healthy lifestyles for eight weeks, had slightly higher OTUs
(mean = 119.70, IQR = 95.65–135.10) and Shannon index (mean = 4.93, IQR = 4.58–5.29), though these
were not significant, compared with those at baseline (T0), OTUs (mean = 116.60, IQR = 98.03–133.60)
and Shannon index (mean = 4.88, IQR = 4.72–5.25) (Figure S1c). Similarly, civilians, who had no
significant change in their lifestyle for eight weeks, lacked significant difference between T8 and T0
in all diversity indices (Figure S1c). A lack of significant change in the alpha diversity indices after
eight weeks in either of the groups might be attributed to the relatively short period, as the adult
gut microbiome is stable and resilient [5]. Furthermore, our study revealed that there was a highly
significant microbial community structure among individuals. Notably, host genetics could potentially
influence microbial community in the intestine [51]. Genetically-driven intrinsic factors play a role
in organizing the gut microbiota structure and formation [52]. Small et al. [53] also investigated
the importance of genotype–environment interactions to understand the mechanisms and complex
molecular interactions between hosts and their resident microbes. Similar studies have demonstrated
that the gut microbiota is influenced by both environmental and genetic factors [54–56]. This is due to
the fact that intestine could potentially be colonized by microorganisms present in the environment [57].
Nevertheless, the current research data is not sufficient to address the influence of host genetic factors on
gut microbiota. The lack of clinical and genomic data from the participants are some of the limitations
of this study.
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At a lower taxonomic level, the abundance of Bifidobacterium spp. was significantly increased in
navy trainees at T8 compared with that at T0. This genus is an important component of human gut
microbial communities and is known to play an important role in human health [58]. The Bifidobacterium
genus has been reported to reduce hypercholesterolemia, a major risk factor for cardiovascular disease
when taken as probiotics [59] and to improve diabetes when administered to diabetic rats [60].
Furthermore, Bifidobacterium spp. regulate intestinal homeostasis, modulate local and systemic immune
responses, and protect against inflammatory and infectious diseases [61,62]. Bifidobacterium spp. are
also associated with a healthier status in adults, and a decrease in Bifidobacterium spp. in patients has
been associated with severe depression in comparison with people without severe depression [63].
In a different study, the abundance of Bifidobacterium was found to be significantly increased in rats
who underwent moderate exercise [64]. In contrast, several taxa were significantly decreased in
abundance after eight weeks of significant changes in lifestyles. The most reduced genera were
Holdemanella and Turicibacter. Interestingly, these genera were not significantly reduced in the civilian
group, who had no significant changes in their lifestyles. Holdemanella spp. has been reported
to be positively associated with chronic kidney disease [65] and the android fat ratio in male [66],
and Turicibacter spp. were positively associated with inflammation [67]. Several OTUs belonging
to the Ruminococcus two genus were significantly reduced while others were enriched after eight
weeks. Ruminococcus is an enterotype bacteria that enters the intestine [68], has the ability to ferment
complex carbohydrates, such as cellulose, pectin, and starch [69,70], and also produces acetate and
propionate [71,72]. The Ruminococcus genus is heterogeneous and includes both beneficial and harmful
species. For example, Ruminococcus bromii is known to exert beneficial effects on health [73], whereas
other Ruminococcus species are proinflammatory [74,75]. Recently Ruminococcus gnavus and R. torques
have been reported to be associated with allergic diseases, Crohn’s disease in infants, and autism
spectrum disorders [76,77]. An increase in beneficial Bifidobacterium and Ruminococcus gut microbes is
thought to assist in restoring a heterogeneous balance within the gut and thereby help in the recovery
from various diseases or help prevent their occurrence.

Our study also revealed that a significant change in healthy lifestyle factors including physical
exercise, loss of weight, and avoiding alcohol in a short period of time (eight weeks) failed to have
a significant impact in modulating the gut microbial diversity. However, ceasing smoking showed
a substantial impact on the number of observed OTUs. Recently, other studies have also reported
the effect of smoking on gut microflora [27,78,79]. The composition of microbial communities is
known to differ between the intestines of smokers and non-smokers with a lower diversity present in
smokers compared with that in non-smokers [27,78]. Similarly, Bierderman et al. [79] reported that
not smoking for eight weeks caused a substantial shift in microbial composition and the increment of
microbial diversity. Although several studies have reported the effects of smoking on the gut, there is
limited information about the mechanism of the effects of smoking on intestinal microflora [80,81].
Nicotine has been reported to affect mucosal eicosanoids and adherent surface mucus secretion [81],
and these changes in the intestinal physical feature may affect the intestinal microbial community [82].
Allais et al. [80] reported that cigarette smoke affects the immune system and thereby causes a shift in
the microbiota of the gut. Furthermore, smoking has been reported to enhance oxidative stress and
acid–base balance in the gut [83], which in turn influences the intestinal microbiota composition [84].

Here, the navy trainees who had previously smoked but quit for eight weeks were found to
have several more abundant genera compared to baseline. OTUs belonging to the Ruminococcus 1,
Porphyromonas, Mogibacterium, Peptoniphilus, Murdochiella, and Ezakiella genera were enriched.
However, the relative abundance of harmful microorganisms such as Ruminiclostridium five and
Clostridium sensu stricto genera and Turicibacter spp. and Streptococcus spp. were diminished.
Ruminiclostridium has been proposed as a reclassification of several Clostridium spp. to solve taxonomic
problems [85]. Ruminiclostridium spp. have been reported to be more abundant in throat cancer
patients than healthy subjects [86] and were also more abundant in adults with kidney stones [87].
Clostridium sensu stricto one spp. have been reported to cause several human diseases such as tetanus
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and botulism [88,89]. In addition, Streptococcus spp. were found to be enriched in patients with several
diseases [90,91]. The Ruminococcus one group, which contains 67% of all sequences of Ruminococcus,
is mainly composed of R. flavefaciens and R. albus species [92]. Similar to our study, Wang et al. [93]
reported that the decrease in the relative abundance of R. albus was attributed to smoking. In our study,
Porphyromonas, which had previously been classified in the genus Bacteroides with Prevotella, was be
more abundant in the navy trainees who quit smoking for eight weeks compared to the abundance
at T0 [94]; Porphyromonas is part of the salivary microbiome and is found in healthy people [95].
Our results also showed that the Murdochiella, Peptoniphilus, and Ezakiella genera, which belong to the
Peptoniphilaceae family, were found to be more abundant after subjects stopped smoking for eight
weeks compared with abundance at baseline. This family is known as the human commensal flora [96].
The Murdochiella genus was also found to be abundant in healthy children compared with abundance
in HIV-infected children [97], and both Murdochiella and Peptoniphilus genera were also known to be
present in distal mucosa among other mucosa and lumen sites in healthy people [98].

5. Conclusions

In conclusion, we demonstrated that healthy lifestyles, and particularly quitting smoking, even
for short periods, could have a potential positive impact in enhancing the abundance of beneficial
microbial taxa and reducing the abundance of harmful microorganisms. Among the various lifestyle
changes, stopping smoking for eight weeks resulted in a significant increase in alpha diversity, although
a significant change in the other lifestyle factors for eight weeks did not alter the gut microbial diversity.
Hence, further intervention studies are warranted to investigate the impacts of combined lifestyle
changes for an extended periods on gut microbiota composition. In addition, it is relevant to investigate
the long-term effect of healthy lifestyle changes on intestinal bacteria.
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