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Aging is characterized by increased oxidative stress, chronic inflammation, and organ dysfunction, which occur in a progressive
and irreversiblemanner. Superoxide dismutase (SOD) serves as amajor antioxidant and neutralizes superoxide radicals throughout
the body. In vivo studies have demonstrated that copper/zinc superoxide dismutase-deficient (Sod1−/−) mice show various aging-
like pathologies, accompanied by augmentation of oxidative damage in organs. We found that antioxidant treatment significantly
attenuated the age-related tissue changes and oxidative damage-associated p53 upregulation in Sod1−/− mice. This review will
focus on various age-related pathologies caused by the loss of Sod1 and will discuss the molecular mechanisms underlying the
pathogenesis in Sod1−/− mice.

1. Introduction

Aging is associated with several functional and structural
deficits in organs, which are linked to biochemical changes,
including oxidative modifications, protein aggregation, and
altered gene expression [1]. Reactive oxygen species (ROS)
are mainly generated from the electron transport chain in
mitochondria and nonspecifically oxidize cellular molecules
such as proteins, nucleic acids, and lipids, thus resulting
in the accumulation of oxidative damage in organisms
[2].

The redox balance is physiologically regulated through
the production and degradation of ROS in antioxidant
systems to protect cells from oxidative damage. Superoxide
dismutase (SOD) enzymes play a major role in the antiox-
idant system by catalyzing the conversion of superoxide
radicals (O

2

∙−) to hydrogen peroxide (H
2

O
2

) and O
2

[3]. In
mammals, there are three SOD isoforms: CuZn-SOD (Sod1),
which exists in the cytoplasm; Mn-SOD (Sod2), which is
distributed in the mitochondrial matrix; and extracellular
SOD (Sod3), which is localized in extracellular fluids, such
as lymph, synovial fluid, and plasma.

Mice lacking Sod2 showed dilated cardiomyopathy,
steatosis, and metabolic acidosis, which resulted in neonatal
lethality [4]. Therefore, heterozygous (Sod2+/−) knockout
or tissue-specific knockout mice are used to analyze the
physiological role of Sod2 in various tissues and organs
[5, 6]. Carlsson et al. generated Sod3-null mutant mice [7].
Although Sod3−/−mice exhibited a shorter survival time than
wild-type controls under hyperoxic conditions, themice grew
with no apparent abnormalities until late in life. In contrast,
Reaume et al. first described the characterization of global
Sod1-deficient (Sod1−/−) mice. These mice exhibited marked
vulnerability to motor neuron loss after axonal injury [8].
Subsequently, Sod1−/− mice showed a significantly shortened
mean lifespan by approximately 30% and a high incidence
of liver tumors by 20 months of age compared with those of
Sod1+/+ mice [9]. In vitro studies also revealed that Sod1−/−
fibroblasts showed a significantly decreased growth rate and
higher sensitivity to O

2

stress than Sod1+/+ cells [10]. In the
following paragraphs, we will introduce the various organ
and tissue changes associated with the cellular phenotypes in
Sod1−/− mice.
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Table 1: The age-related pathologies in Sod1−/− mice.

Brain Acceleration of Alzheimer’s disease [11, 12]
Eye Macular degeneration [13, 14]

Cataract [15]
Dry eye [16, 17]

Ear Cochlear hair cell loss [18]
Hearing loss [19]

Blood Hemolytic anemia [20]
Bone Osteopenia [21, 22]
Skin Skin atrophy [23, 24]
Muscle Skeletal muscle atrophy [25]
Pancreas Glucose intolerance [26, 27]
Liver Hepatocellular carcinoma [9]

Fatty deposits [28]
Ovary Infertility [29, 30]

Luteal degeneration [31]

2. Sod1−/− Mice Exhibit Age-Related
Pathological Changes in Various
Organs and Tissues

We and other groups have demonstrated that Sod1−/− mice
show various aging-like tissue changes, such as acceleration
of Alzheimer’s disease (AD) [11, 12], macular degeneration
[13, 14], cataracts [15], dry eye [16, 17], cochlear hair cell loss
[18], hearing loss [19], hemolytic anemia [20], osteopenia
[21, 22], skin atrophy [23, 24], skeletal muscle atrophy [25],
glucose intolerance [26, 27], hepatic carcinoma [9], fatty liver
[28], infertility [29, 30], and luteal degeneration [31] (Table 1).
Furthermore, the biochemical analyses revealed that Sod1 loss
in organs led to the accumulation of oxidative molecules
such as carbonylated proteins, lipid peroxidants, oxidized
nucleic acids, and advanced glycation end products (AGEs),
which resulted in broadly impaired cellular signaling, gene
expression, energy metabolism, cytoskeletal morphology,
and cell death in the tissues.

3. Effects on the Individual Organs and Tissues

3.1. Effects on the Brain. Brain function declines in patients
with neurodegenerative diseases, as well as during normal
aging [32]. Ansari and Scheff reported a strong correlation
between oxidative damage levels (total SOD, glutathione,
catalase, thiobarbituric acid reactive substances, protein car-
bonyl, 3-nitrotyrosine, 4-hydroxynonenal, and acrolein) and
the variable dementia status of subjects [33]. In addition,
we have previously reported a specific reduction of SOD1
protein level, but not SOD2 and SOD3, in neocortex of
AD brains [11]. We also reported that a mouse model for
AD lacking Sod1 showed exacerbation of memory loss and
behavioral abnormalities associated with accelerated plaque
formation and amyloid accumulation [11, 12]. Furthermore,
a biochemical analysis also revealed high levels of intracel-
lular N𝜀-(carboxymethyl) lysine (CML) and 8-hydroxy-2󸀠-
deoxyguanosine (8-OHdG) in the mouse brain. In addition,

Sod1 deficiency induced neuronal inflammation, as demon-
strated by astrocyte and microglial activation in a mouse
model for AD. These findings strongly suggested that SOD1
expression plays a pivotal role in maintaining cellular redox
balance and brain function during aging.

3.2. Effects on the Eyes. Several eye diseases, such as age-
related macular degeneration, cataracts, dry eye, phacoemul-
sification, and presbyopia, are closely related to the aging
process [32, 34]. Sod1 deficiency induced the development of
drusen-like deposits in the retina, choroidal neovasculariza-
tion, and retinal pigment epitheliumdysfunction, thus result-
ing in age-related retinal degenerative disorders, including
age-related macular degeneration [13, 14]. An immunohisto-
chemical analysis also revealed that CML-positive deposits
were abundantly detected in the retinas of aged Sod1−/− mice
[13]. Moreover, the Sod1−/− mouse lens showed twice the
level of O

2

∙− generation compared with that of control mice
and had accelerated cataractogenesis following ultraviolet
irradiation [15]. Furthermore, Dogru and colleagues reported
that Sod1−/− mice also exhibited typical dry eye associated
with lacrimal gland and meibomian gland changes, and
this occurred in an age-dependent manner [16, 17]. The
Sod1−/− lacrimal and meibomian glands showed increased
4-hydroxy-2-nonenal and 8-OHdG staining, apoptotic cells,
and inflammatory infiltrates at 50 weeks of age compared
to Sod1+/+ mice. In addition, electron microscopy observa-
tions detected ultrastructural alterations in themitochondria,
including swelling, disorientation, shortening, disorganized
cristae, marked fragmentation, shrinkage of the nuclei, and
cytoplasmic vacuole formation, as well as the loss of nuclear
membranes in Sod1−/− mice.

3.3. Changes in the Ears. The cochlear structure in the ear is
progressively degenerated during aging, leading to hearing
loss [35, 36]. McFadden et al. reported that Sod1 defi-
ciency morphologically induced a reduction of the inner
and outer hair cells during aging [18]. In addition, Sod1
ablation impacted the noise-induced permanent threshold
shifts, leading to hearing loss [18, 19]. On the other hand,
systemic overexpression of human Sod1 protected against
age-related and noise-induced hearing loss in C57BL/6 mice
[37].

3.4. Changes in the Blood. During aging, the levels of oxi-
dative stress markers, including 8-isoprostane and 2-
thiobarbituric acid reactive substances (TBARS), are
gradually increased in the plasma and erythrocytes of
Sod1−/− mice [20]. Furthermore, Iuchi et al. reported that
an intracellular ROS indicator, CM-H

2

DCFDA (DCF), in
erythrocytes was spontaneously elevated in Sod1−/− mice.
Sod1−/− mice also showed hemolytic anemia associated
with splenomegaly. In fact, the erythrocyte lifespan from
Sod1−/− mice was decreased by 60% compared to that of
Sod1+/+ erythrocytes [20]. We independently measured the
serum levels of various markers of inflammation in Sod1−/−
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Table 2: The serum biomarker levels in Sod1−/− mice.

Markers Concentrations Sod1+/+ Sod1−/− 𝑃 value
IL-10 ng/mL 425 ± 54 451 ± 60 0.495
IL-11 pg/mL 39 ± 14.4 33 ± 13.2 0.627
IL-12p70 ng/mL ND ND —
IL-17 pg/mL ND ND —
IL-18 ng/mL 10 ± 1.1 12 ± 1.21 0.105
IL-1alpha pg/mL 83 ± 63 134 ± 89.4 0.467
IL-1beta ng/mL 12 ± 1.1 13 ± 1.6 0.268
IL-2 pg/mL ND ND —
IL-3 pg/mL ND ND —
IL-4 pg/mL 20.2 ± 0.0 20.2 ± 0.0 1
IL-5 ng/mL 0.23 ± 0.066 0.19 ± 0.055 0.406
IL-6 pg/mL 4.4 ± 1.7 18 ± 14.3 0.102
IL-7 ng/mL 0.02 ± 0.016 0.05 ± 0.025 0.296
IP-10 pg/mL 99 ± 17.1 150 ± 60.3 0.109
M-CSF pg/mL 6.9 ± 0.50 6.0 ± 0.25 0.010∗

MCP-1 pg/mL 100 ± 34.2 124 ± 60.0 0.457
MCP-3 pg/mL 235 ± 50.9 235 ± 69.3 0.996
MCP-5 pg/mL 18 ± 1.7 24 ± 7.0 0.094
MIP-1alpha ng/mL 1.6 ± 0.21 1.7 ± 0.09 0.307
MIP-1beta pg/mL 55 ± 16.5 80 ± 17.5 0.005∗

MIP-1gamma pg/mL 26 ± 3.6 34 ± 3.7 0.013∗

MIP-2 pg/mL 18 ± 2.1 20 ± 5.2 0.371
MIP-3beta ng/mL 1.8 ± 0.37 1.7 ± 0.14 0.349
MDC pg/mL 547 ± 234 626 ± 42 0.481
RANTES pg/mL 0.26 ± 0.130 0.45 ± 0.049 0.014∗

TNF-alpha ng/mL 0.066 ± 0.004 0.077 ± 0.010 0.041∗

TPO ng/mL 75 ± 9.4 86.5 ± 5.6 0.049∗

ND indicates “not detected”. ∗indicates a significant difference.

mice. A multiplex analysis revealed an altered pattern
of inflammation markers, such as macrophage colony
stimulating factor (M-CSF), macrophage inflammatory
protein-1 beta (MIP-1 beta), macrophage inflammatory
protein-1 gamma (MIP-1 gamma), regulated on activation,
normal T cell expressed and secreted (RANTES), tumor
necrosis factor-alpha (TNF-alpha), and thrombopoietin
(TPO) in the Sod1−/− mouse sera (Table 2).

3.5. Effects on Bone. Aging stress generally causes bone loss
and fragility [38]. We previously clarified that the loss of Sod1
caused bone loss without leading to developmental skeletal
abnormalities in both male and female mice [21]. The three-
dimensional computed tomography analyses revealed that
there was marked bone loss in both cortical and cancellous
bones of Sod1−/− mice, which was associated with decreased
bone formation and resorption, indicating the presence
of low-turnover osteopenia (Figure 1). Sod1 deficiency also
enhanced the intracellular ROS production and the forma-
tion of pentosidine, one of the AGEs, in osteoblasts and
bone [21]. Furthermore, Wang et al. also reported that young
Sod1−/− mice showed bone fragility in the femora at the
growth stage [39].

Recently, we found that mechanical unloading-induced
bone loss associated with intracellular ROS generation in
bone-forming cells and bone marrow cells [22]. Interestingly,
we also detected specific Sod1 upregulation at both the RNA
and protein levels in bone during mechanical unloading
[22]. Notably, Sod1 deficiency significantly exacerbated the
bone loss during mechanical unloading. In addition, Sod1−/−
mice clearly displayed four-layered structural abnormalities
and fragmented tidemarks in the enthesis, indicating tendon
enthesis degeneration [40]. These findings suggested that
Sod1 plays a protective role in regulating bone and tendon
enthesis homeostasis, as well as the redox balance during
unloading and aging in mice.

3.6. Changes in the Skin. Aged skin is characterized by wrin-
kles, sagging, dryness, and collagen degradation [41, 42]. We
have previously reported that Sod1 deletion caused typical
age-related skin thinning [23]. In hematoxylin and eosin
stained sections, the epidermis and dermis of the Sod1−/−
back skin showed remarkable thinning (Figure 2(a)). In
addition, the skin weight and hydroxyproline content, which
is a unique amino acid present in collagen and elastin, in the
Sod1−/− mice were compared with those of Sod1+/+ mice [24].
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Figure 1:The bone loss in Sod1−/− mice.The treatment with 1% vitamin C in drinking water started from 4 weeks of age and continued for 12
weeks. Axial (upper panels) and coronal (lower panels) sections of 𝜇CT images of the distal ends of the femora of Sod1+/+ and Sod1−/− females
at 16 weeks of age.

An in vitro analysis using primary dermal fibroblasts from
Sod1−/− neonates revealed severe cellular phenotypes,
such as apoptosis and growth arrest, under normal
conditions (Figure 2(b)). Furthermore, Sod1−/− fibroblasts
showed excessive intracellular DCF-positive fluorescence
(Figure 2(c)). Interestingly, Sod1−/− fibroblasts also had
a significant enhancement of mitochondrial O

2

∙− and
impairment of the mitochondrial membrane potential [43].

3.7. Effects on Muscle. Aging contributes to the structural
and functional changes in skeletal muscle in a wide range
of mammals [44]. Sod1−/− mice showed significant decreases
in the whole hindlimb muscle mass compared with age-
matched Sod1+/+mice, and this occurred in an age-dependent
manner [25]. A biochemical analysis also revealed a sig-
nificant increase in oxidative damage, such as the forma-
tion of F2-isoprostanes, protein carbonyls, and 8-OHdG,
in Sod1−/− skeletal muscle [25]. Sod1 loss also induced
aberrant mitochondria with abnormal shapes and led to
lower ATP production in muscle. Mitochondria isolated
from Sod1−/− muscle revealed significant increases in O

2

∙−

and H
2

O
2

production and no compensatory upregulation

of other antioxidant enzymes [45]. Recently, Zhang et al.
reported that skeletal muscle-specific Sod1−/− mice failed to
show muscle loss and ROS production [46]. Interestingly,
a neuron-specific Sod1 transgene in Sod1−/− mice prevented
muscle loss [47]. The muscle from Sod1−/− mice with a
brain-specific Sod1 transgene did not show any differences
in the muscle morphology, function, lipid peroxidation, or
protein nitration compared with those of Sod1+/+ muscle,
suggesting that Sod1 insufficiency in neuronal cells could lead
to a dysregulation of the muscle mass and function in a
nonautonomous manner.

3.8. Effects on the Pancreas. Aging stress also impairs insulin
secretion and sensitivity in the pancreas [48]. Wang et al.
reported that Sod1−/− islets exhibited a decreased 𝛽-cell
mass, impaired glucose-stimulated insulin secretion, and a
decreased ATP content, accompanied by elevated intracellu-
lar ROS levels [26]. In addition, Sod1 ablation also downreg-
ulated the duodenal homeobox-1 (Pdx1) expression and fork-
head box protein A2 (Foxa2) pathway in an O

2

∙−-dependent
fashion by affecting these targets at the epigenetic, mRNA,
and protein levels in the islets [26]. Furthermore, Muscogiuri
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Figure 2: The skin and cellular phenotypes of Sod1−/− mice. (a) The hematoxylin and eosin staining of the back skin of Sod1−/− and Sod1+/+

mice. Sod1−/− mice (5 months of age) were transdermally treated with 1% L-ascorbyl 2-phosphate 6-palmitate trisodium salt (APPS) for 4
weeks. (b) Dermal fibroblasts were dissected from Sod1−/− neonates at 5 days of age. The cells were cultured with or without 10𝜇MAPPS for
48 h under 20%O

2

. (c)The intracellular ROS levels in Sod1−/− fibroblasts treated with 10 𝜇MAPPS were measured by examining the presence
of CM-H

2

DCFDA.The scale bars represent 100𝜇m.

et al. also showed that Sod1 loss significantly impaired the
glucose tolerance and led to a reduced 𝛽-cell mass, as well as
insulin secretion in a hyperglycemic clamp test [27]. Interest-
ingly, Sod1 ablation failed to alter the peripheral and hepatic
insulin sensitivity. These results proved that the absence of
Sod1 impaired 𝛽-cell function and glucose tolerance, but not
insulin sensitivity, thus resulting in diabetes-like phenotypes.

3.9. Changes in the Liver. Aging of the liver is associated
with an increased incidence of tumorigenesis [49]. The liver
weight to body weight ratio in Sod1−/− mice was significantly
higher than that of Sod1+/+ mice [9]. Sod1−/− mice also
showed increased oxidative damage such asmalondialdehyde
(MDA), F2-isoprostane, and 8-OHdG accumulation in their

livers [9]. In addition, the Sod1−/− livers showed an approx-
imately 30% increase in hepatocarcinogenesis at 20 months
of age compared to wild-type mice [9]. We also observed
that Sod1−/− mice showed significantly accelerated hepatic
lipid accumulation and peroxidation and impaired low-
density lipoprotein secretion due to apoB degradation that
occurred via a posttranslational mechanism [28]. Further-
more, Wang et al. reported that Sod1 loss enhanced glycolysis
and lipogenic signaling but decreased gluconeogenesis in
the liver [50]. Recently, Kondo et al. described that the
loss of senescence marker protein-30 (SMP30), which is a
key enzyme required for L-ascorbic acid biosynthesis [51],
accelerated the hepatic steatosis in Sod1−/− mice [52]. Both
Sod1 and Smp30 deficiency led to a remarkable elevation of
the triglyceride and cellular O

2

∙− levels in the liver compared
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to those of Sod1−/− or Smp30−/− mice. These findings indi-
cated that elevated oxidative stress and/or L-ascorbic acid
depletion altered the glucose and lipid metabolism in the
liver, suggesting that normal SOD1 expression is essential to
maintain the hepatic glucose and lipid homeostasis.

In pharmacological studies, acetaminophen (APAP)
injection induces glutathione depletion, the formation of
reactive nitrogen species, and plasmaALT elevation, resulting
in lethal hepatotoxicity in the case of an overdose [53].
Interestingly, Sod1 deficiency attenuated the APAP-induced
hepatotoxicity and lethality owing to its reduction of hep-
atic APAP-cysteine adducts, protein nitration, and CYP2E1
activity, which acts as an APAP-metabolizing enzyme, in
the liver [53, 54]. These data indicated that the increases in
intracellular O

2

∙− caused by Sod1 deletion inhibited CYP2E1
activity, thus resulting in protection against APAP-induced
hepatotoxicity.

3.10. Effects on the Ovaries. Ovarian aging is characterized
by a decline in the follicle numbers and sex steroid hormone
secretion, which are associated with a gradual decline in fer-
tility [55]. Although Sod1−/− female mice had normal estrous
cycles and numbers of ovulated ova, their reproductive per-
formance was inferior to that of female Sod1+/+ and Sod1+/−
mice [29, 30]. A hormonal analysis revealed that Sod1−/−
females showed normal plasma levels of follicle-stimulating
hormone (FSH), luteinizing hormone (LH), and estradiol at
proestrus [31]. On the other hand, the plasma progesterone
level was specifically repressed in Sod1−/− females compared
to that in Sod1+/+ females during pregnancy. Although Sod1
loss in the ovaries and oocytes upregulated the intracellular
ROS production, Sod1−/− oocytes could be normally fertilized
and developed to the two-cell stage in vitro [31, 56]. How-
ever, Sod1−/− embryos failed to divide to the four-cell stage
under conventional culture conditions (20% O

2

) [56]. When
Sod1−/− embryos were cultured under hypoxic conditions (1%
O
2

), they developed to themorula stage but could not develop
into blastocysts [56], indicating that O

2

stress inhibited the
development of Sod1−/− embryos at the two-cell stage.

4. Intervention Strategies Using Antioxidants

Vitamin C (VC) is a soluble vitamin and the best charac-
terized antioxidant [57]. In order to evaluate the protec-
tive effects of this antioxidant in Sod1−/− mice, we treated
them with VC to try to rescue the organ phenotypes.
Oral administration of VC suppressed the bone loss of
Sod1−/− mice, indicating that O

2

∙−-induced bone loss could
be improved by antioxidant treatment (Figure 1) [21]. In
addition, VC treatment also normalized the bone strength
and composition of collagen cross-links, without aberrant
bone modeling [21]. We further applied a VC derivative, L-
ascorbyl 2-phosphate 6-palmitate trisodium salt (APPS), on
the Sod1−/− mouse skin. APPS is conjugated to a phosphate
group and a long hydrophobic chain to promote stability and
membrane permeability. The transdermal administration of
the APPS reversed the skin atrophy and lipid peroxidation

in Sod1−/− mice (Figure 2(a)). In vitro experiments revealed
that APPS treatment completely improved the cell viability
and suppressed the intracellular ROS production in Sod1−/−
fibroblasts (Figures 2(b) and 2(c)). Furthermore, Iuchi et al.
reported that oral N-acetyl cysteine (NAC) treatment attenu-
ated the hemolytic anemia and inflammatory response, with
ROS suppression, in the erythrocytes for Sod1−/− mice [20].
Additionally, we found that NAC treatment also improved
the cell viability and decreased the intracellular ROS level in
Sod1−/− fibroblasts [43].

The oxidative stress induced by Sod1 deficiency is closely
related to the progression of AD.Therefore, we hypothesized
that antioxidant treatment would be able to alleviate the
progression of AD. In this context, we treated mice with
AD-like pathologies with VC. Confirming our hypothesis,
chronic VC treatment restored the behavioral abnormalities,
apparently by attenuating the oxidative stress in AD model
mice [58]. VC also significantly suppressed the soluble A𝛽
accumulation in the brain, but not the plaque formation in
the ADmodel mice [58]. Recently, we found that VC admin-
istration significantly prevented unloading-induced bone loss
in wild-type mice [22]. These data strongly indicated that
antioxidant intervention has remarkable protective effects
against ROS-mediated tissue damage in mice.

5. Molecular Mechanisms Underlying
the Organ and Tissue Pathologies
in Sod1−/− Mice

To analyze the molecular mechanisms underlying the tissue
damage induced by Sod1 deficiency, we have investigated the
phenotypes using double-knockout Sod1 and liver-specific
Sod2 mice. As described above, the Sod1−/− mice showed
acceleration of hepatic lipid accumulation, accompanied by
increased oxidative damage. In contrast, liver-specific Sod2
knockout mice did not show any obvious morphological
abnormalities or spontaneous oxidative damage in the liver
[59]. The double-knockout mice had an indistinguishable
hepatic phenotype, including lipid peroxidation, lipid accu-
mulation, and TG secretion, from that of Sod1−/− mice,
indicating that the loss of Sod2 failed to exacerbate the hepatic
changes in Sod1−/−mice [28], demonstrating that the different
enzymes do not have overlapping functions. Sentman et al.
reported that combined Sod1 and Sod3 deficiency showed no
additive effect on the lifespan and body weight in mice [60].
Likewise, Fujita et al. reported that Sod1 and Sod3 double
mutant mice showed the same phenotypes, such as O

2

∙−

and NO production and the TBARS level, in the kidneys
compared with those of wild-type mice [61]. Moreover,
glutathione peroxidase-1 (GPX1) loss also had no impact on
the Sod1−/− phenotypes in the liver and pancreas [26, 62].
However, Sod1 loss significantly decreased the GPX1 activity,
but not the Gpx1 level in the liver. The Lei group reported
that Sod1 loss increased the conversion of selenocysteine to
dehydroalanine residues in the active site of hepatic GPX1,
thus leading to proportional decreases in the activity of the
enzyme as a whole [63]. Additionally, many reports have
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demonstrated that Sod1−/− mice showed no compensatory
upregulation of antioxidant enzymes including Sod2 and
Sod3 [43, 46, 60, 61].These reports suggested that Sod2, Sod3,
and/or Gpx1 deficiency failed to further modify the organ
pathologies in Sod1−/− mice.

Accumulating evidence suggests that both ataxia-
telangiectasia mutated (ATM) and p53 play a central role
in the DNA damage response induced by oxidative damage
in organs and tissues [64]. In this context, Erker et al.
investigated the organ phenotypes in mice lacking both Sod1
and Atm to elucidate DNA damage response in the organs.
The loss of Atm and Sod1 did not show any interaction with
regard to the overall cellular metabolism and survival in
mice [65], indicating that Sod1 regulates organ metabolism
and lifespan in an Atm-independent manner.

Interestingly, we found that Sod1−/− skin displayed obvi-
ous p53 activation [43]. Additionally, treatment with a VC
derivative remarkably suppressed the p53 expression and
oxidative damage in the skin of Sod1−/− mice, suggesting
that the antioxidant activity of VC normalized the skin
pathologies, at least in part, by suppressing O

2

∙−-mediated
p53 activation in vivo [43]. Furthermore, the Sod1 loss
induced the phosphorylation of H2AX at Ser139 (𝛾H2AX),
a DNA damage marker, and upregulated p21, a target gene
of p53, in fibroblasts [43]. Of note, the Sod1−/− fibroblasts
exhibited a loss of mitochondrial membrane potential and
enhanced mitochondria ROS generation. Likewise, Muller
et al. reported that Sod1−/− skeletal muscle showed significant
alterations in mitochondrial function, including increased
mitochondrial ROS generation and reduced ATP production
[66]. Han et al. also revealed significantly higher levels
of p53 and phospho-p53 in nuclei isolated from Sod1−/−
livers [67]. Moreover, Wang et al. showed that Sod1 ablation
led to increased p53 and phospho-p53 levels in islets [26].
In humans, decreased Sod1 expression and enhanced p53
expression were observed in AD-affected brain tissues [11,
68], osteoarthritic tissues [69, 70], bones in older individuals
[71, 72], and tissues in infertility patients [73, 74]. Taken
together, these data suggest that cytoplasmic SOD1 loss
induced the DNA damage response, which was associated
with p53 upregulation, resulting in age-related pathologies.

6. Conclusion and Perspective

In the present review, we introduced various organ and
tissue phenotypes of Sod1−/− mice. Using Sod1−/− mice, we
and other groups have demonstrated that Sod1 deficiency
enhances the intracellular O

2

∙− production and oxidative
damage, resulting in global, age-related pathological changes,
including changes in the brain, eyes, ears, blood, bones, skin,
muscles, pancreas, liver, and ovaries during aging. Antiox-
idant treatment prevented or improved the pathological
changes in Sod1−/− organs and tissues. Interestingly, Sod1 does
not appear to interact with other major antioxidant enzymes,
such as Sod2, Sod3, and Gpx1, in terms of the organ and
tissues pathologies, as demonstrated using double-knockout
mice. These lines of evidence strongly indicated that Sod1

plays a central role in maintaining the cellular redox balance
and organ function in vivo. We also suggest that p53 plays
a fundamental role in Sod1−/−-related pathologies. Further
analyses will be needed to clarify the contribution of p53 to
the molecular signaling and age-related pathological changes
induced by Sod1 deficiency, including those using double
mutant mice with Sod1−/− and p53−/−.
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