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Abstract: Sensing technologies demonstrate promising potential in providing the construction indus-
try with a safe, productive, and high-quality process. The majority of sensing technologies in the
construction research area have been focused on construction automation research in prefabrication,
on-site operation, and logistics. However, most of these technologies are either not implemented in
real construction projects or are at the very early stages in practice. The corresponding applications
are far behind, even in extensively researched aspects such as Radio Frequency Identification, ultra-
wideband technology, and Fiber Optic Sensing technology. This review systematically investigates
the current status of sensing technologies in construction from 187 articles and explores the reasons
responsible for their slow adoption from 69 articles. First, this paper identifies common sensing
technologies and investigates their implementation extent. Second, contributions and limitations
of sensing technologies are elaborated to understand the current status. Third, key factors influenc-
ing the adoption of sensing technologies are extracted from construction stakeholders’ experience.
Demand towards sensing technologies, benefits and suitability of them, and barriers to their adoption
are reviewed. Lastly, the governance framework is determined as the research tendency facilitating
sensing technologies adoption. This paper provides a theoretical basis for the governance frame-
work development. It will promote the sensing technologies adoption and improve construction
performance including safety, productivity, and quality.

Keywords: sensing technologies; construction automation; construction performance; radio frequency
identification; ultra-wideband technology; fiber optic sensing technology

1. Introduction

Data collection is crucial in management owing to the complexity and dynamic nature
of construction projects [1,2]. However, the conventional data collection process cannot
meet the increasing requirements of modern construction management due to the defects
in automation and cost [3]. Thereby, Automated Data Collection (ADC) methodologies are
in great demand, which could reduce human errors and benefit projects on planning, pro-
curement, control, construction, and management [4,5]. As a base for ADC methodologies,
sensing technology is promising in improving data collection and ongoing monitoring [6].
To a large extent, sensing technology can instantly collect and permanently store environ-
ment data, revolutionizing data collection, transmission, and analysis in the construction
industry. Meanwhile, sensing technology introduces innovative technologies including
Information Technology (IT) and digital construction sites, in which sensing technologies
promote construction safety and productivity.
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Sensing technologies have been academically researched, but their adoption has
been challenged by technology-related, adoption process-related, and human-related fac-
tors [7,8]. First, inadequate understanding and neglect of automatic sensing technologies
restrict real project adoption, despite great benefits in securing construction safety [9].
Taneja et al. [10] claimed the necessity of educating construction practitioners on sens-
ing technologies. Second, information on in-use sensing technologies such as Real-Time
Locating Systems (RTLS) is insufficient [11,12]. Specifically, the deployment, time, cost,
and accuracy of sensing technologies need to be emphasized [13–15]. Third, perceptions of
construction stakeholders toward sensing technologies and decision-making criteria for
their adoption are scarce [16]. Odubiyi et al. [7] concluded human-related factors were
critical in construction adoption, highlighting the perceptions from construction stakehold-
ers. Fourth, research on the acceptance of sensing technologies by construction workers
is insufficient. According to the previous research on ADC, acceptance of sensing tech-
nologies by construction workers has been ignored in the human-related factors [4]. Fifth,
Sepasgozar et al. [17] reported that a thorough understanding of procedures to introduce
new technologies into existing systems is a critical factor to facilitate the adoption of sensing
technologies in construction. In summary, the current status of sensing technologies and
factors restricting their adoption are not yet clear.

This review investigates the current status of sensing technologies and explores the
factors influencing their adoption. Previous research mostly focuses on one single group of
technologies. Schall et al. [18] have studied the barriers to the adoption of wearable sensors
in the workplace. In addition, Usman et al. [19] have analyzed the information and commu-
nication technology innovation for construction site management. However, this paper was
dedicated to general sensing technologies rather than specific types of sensors. To begin
with, common sensing technologies are classified and reported according to their features
on safety, quality, and productivity. Of 187 potential articles on types of sensing technolo-
gies and their applications in construction, 127 were selected to classify technologies based
on their applications. Additionally, their applications and limitations are carefully studied
to understand their application status. Then, factors influencing the adoption of various
types of digital technologies are extracted from construction stakeholders’ perceptions
about the demand, benefits, suitability, and barriers of such technologies. Compared with
previous research on ADC, acceptance of sensing technologies by construction workers
is added to the review of the human-related factors [4]. Of 69 articles relevant to the
adoption of technology, 47 were subsequently analyzed to identify factors affecting the
adoption of sensing technologies in construction. Finally, a conclusion is summarized that
the governance framework is in great demand for facilitating sensing technology adoption.
The governance framework highlights the sensing technology benefits, decision-making
considerations, and construction-specific expectations while specifying barriers to deal
with. In future research, influential factors uniquely related to sensing technologies and
common factors between sensing technologies and other digital technologies need to be
separated. This review will facilitate the sensing technologies adoption then improve the
construction industry on safety, quality, and productivity.

2. Current Status of Sensing Technologies in Construction
2.1. Methods and Material for Literature Review

The method used for the literature review took place in seven sequential steps. These
steps are “scope definition and clarification”, “a literature search” to find potential relevant
resources, “a preliminary literature analysis” and “relevant literature selection” to identify
and shortlist relevant literature, “detailed literature analysis” to extract related materials,
“classification of the findings” for the sake of easy reporting, and finally, “reporting the
results”. The process followed for the literature review in this chapter is presented in
Figure 1, which also specifies the number of articles identified and shortlisted for both
the current status of sensing technologies in construction and the factors affecting their
adoption. Of 187 potential articles on types of sensing technologies and their applications
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in construction, 127 were selected to classify technologies based on their applications.
Of 69 articles relevant to the adoption of technology, 47 were subsequently analyzed to
identify factors affecting the adoption of sensing technologies in construction.

Figure 1. Method for literature review.

2.2. Sensing Technologies in Construction Safety Enhancement
2.2.1. Location-Based Sensing Technologies

Location-based sensing technologies, also known as Real-Time Locating Systems
(RTLS), are based on wireless technologies including Wi-Fi, Bluetooth, Global Positioning
System (GPS), Radio Frequency Identification (RFID), and ultra-wideband (UWB) tech-
nology. RTLS are effective in construction management on the process, safety, and on-site
resource through locating and tracking construction materials [12,20]. These systems are
also effective in situational awareness enhancement [21,22], quantitative hazard exposure
analysis [23,24], and behavior-based safety monitoring [25]. The data collection, informa-
tion processing, and application framework of RTLS are presented in Figure 2. However,
they still have shortcomings such as weak signal, high cost, and low accuracy [14]. The
applications and limitations of the most common technologies are investigated as follows.
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Figure 2. Data collection, information processing, and application framework of RTLS [26].

Global Positioning System (GPS) Technology

GPS is the most prevalent location-based sensing technology realizing powerful capa-
bilities through satellites [1]. The main components contain the space segment, the control
segment, and the user segment. The space segment sets 24 satellites, at least four of which
must be visible from a given point on the Earth at any time for most applications. The con-
trol segment consists of one master control station, five monitor stations, and four ground
antennae to track the satellites and calibrate the clocks. The user segment is made up of the
user using a GPS receiver to determine his location based on a received signal. Great im-
provements resulting from GPS in construction safety are summarized in Table 1. However,
the GPS application is also hampered by data delays in transmission, low performance in
congested areas, and signal blockage in indoor environments [6,27].

Table 1. GPS technology in construction safety enhancement.

Benefit Reference

proximity detection of workers on foot and construction equipment [26]
unsafe proximity detection identification [28,29]

construction equipment management [30,31]
situational awareness improvement of on-site workers [32]

construction resources identification [33]
enhancement of tower crane navigation systems [34]

construction equipment activity recognition [35,36]

Radio Frequency Identification (RFID) Technology

RFID technology identifies objects through radio waves, reading digital data encoded
in RFID tags without direct contact or line-of-sight. The advanced technology is more
efficient in tracking materials and equipment compared to traditional barcode systems [37].
An RFID system usually consists of a reader transmitting radio waves, radio frequency tags
attached to items, and a software system managing collected information [38]. Furthermore,
the RFID system obtains versatile tag categories to satisfy construction demands. An active
tag equips a built-in power source enabling the tag to transmit data on its own. Passive
tags are more popular than active tags as they are smaller and cheaper. RFID technology
presents great performance on both outdoor and indoor construction projects, where
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satellite position information is unavailable [39,40]. For instance, RFID technology can
secure construction safety when the gate crane driver cannot observe the workers at the
bottom of the tunnel shaft [41]. The RFID tags on helmets and RFID readers around this
area will generate safety warnings for the potential hazard during vertical transportation
(Figure 3). Then, the nearby workers would be informed to leave this hoisting area. Other
utilities of RFID technology in reducing safety risks are summarized in Table 2. The
RFID system has been identified as the most popular sensing technology among all RTLS,
although its adoption is still slow [37]. Some limitations restrict the RFID technology
application including simultaneous identification of multiple tags and range issues due to
metal obstacles.

Figure 3. Hazard energy monitoring and safety barrier response in the tunnel shaft area [41].

Table 2. RFID technology in construction safety enhancement.

Benefit Reference

risky behavior of workers recognition [41]
accidents and collision prevention [42–44]
proximity detection alert systems [45]

storage of safety information [46]
controls of workers and vehicles to specific positions [47]

indoor localization of mobile and stationary construction resources [48,49]
detection of construction workers localization [50]

Ultra-Wideband (UWB) Technology

UWB technology monitors construction resources and materials by high-bandwidth
radio communications. The advanced technology has been used in locating hazard zones,
avoiding collision, and increasing situational awareness [51–53]. Teizer et al. [54] validated
the outstanding functions of UWB technology in obstacle avoidance and field personnel
tracking. Experiments employing UWB technology in workforce and materials monitoring
is demonstrated in Figure 4. UWB technology exhibits great performance in interior con-
struction sites and harsh environments, even where wooden materials block signals [55–57].
However, metal blockage reduces the effect of UWB technology [58,59]. The function of
UWB technology is also weakened by range issues over long distances, missing data,
possible calibration difficulties, and limited update rates [6].
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Figure 4. Experiments for obstacle avoidance and field personnel tracking: (a) receiver (Rx . . . ) and tag (00 . . . ) layout
during field trial; (b) predefined hazardous areas, UWB path, and alarm box; (c) steel structure in field trial; and (d) unfiltered
UWB data on the trajectory of a worker [54].

2.2.2. Vision-Based Sensing Technologies

Vision-based sensing technologies range from well-established technology photographs
and video recordings to contemporary technology laser scanning, benefit safety manage-
ment. Photographs and video recordings technology promotes decision making of op-
erations, blind lifts of tower cranes, and communication between project network and
work-front operations [60–62]. Laser scanners capture detailed geometries and environ-
mental conditions through laser signals emitted from a rotating laser photon source [10].
The scanners are used in intensifying situational awareness of crane operators [21], sim-
ulating construction sites [63], and monitoring the construction activities [11,64,65]. The
hazardous situation of workers and equipment measured using a 3D laser scanner is
demonstrated in Figure 5. However, laser scanning technology is not suitable for moving
objects or providing information about colors, textures, and materials. Other factors also re-
strict the implementation, including a clear line-of-sight requirement, long data processing
time, and high data storage capacity.
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Figure 5. Hazardous situation of worker and equipment measured by a 3D laser scanner [66].

2.2.3. Wireless Sensor Networks (WSN) Technologies

WSN technologies enable wireless communication between sensors and data record-
ing devices. Common sensors applied in WSN to improve construction safety manage-
ment include temperature sensors, displacement sensors, light sensors, pressure sensors,
and Fiber Optic Sensing (FOS) [67–69]. For instance, FOS technology measures temper-
ature, strain, and pressure by the transmission of light through an optical fiber [70–72].
It is completely immune to electromagnetic interference and capable of functioning in
hostile surroundings [73,74]. Meanwhile, fiber optic sensors are user-friendly devices
with an elevated sensitivity which makes them suitable for detecting crack damage in
concrete structures [75–77]. Fibre Bragg grating (FBG) sensor is one type of FOS which
realizes real-time temperature monitoring and displacement measurement, such as tunnel
segments [78–80]. The utilization of WSN technology supports construction safety greatly,
which is summarized in Table 3.

Table 3. Wireless sensor networks in construction safety enhancement.

Benefit Reference

improvement on a communication platform for tower crane operations [61,81,82]
environmental and structural health monitoring [78,83,84]

recognition and detection of construction operation [85,86]
access control of restricted areas and examination of proper personal protective equipment [87]

automated monitoring of construction processes [88,89]

2.3. Sensing Technologies in Occupational Health and Safety (OHS) Enhancement

OHS is a major division of construction safety management in which sensing technolo-
gies contribute to remarkable improvements. Articles on sensing and warning technologies
have increased exponentially since 2016, indicating that sensing technologies are effective
in OHS (Figure 6). OHS is strengthened by vision-based sensing technologies comprising
Closed-Circuit Television (CCTV), video cameras, range cameras, and built-in sensors of
smartphones [90,91]. Methods of the above technologies to assess the effects of wearing
hard hats are demonstrated in Table 4. Additionally, RFID technology secures OHS by
checking the presence and compliance of personal protective equipment. Moreover, wear-
able sensors and environmental sensors have been a focus of research in securing OHS [92].
Wearable devices could simply be available devices such as smartwatches and wristbands
which integrate various sensors for monitoring of workers’ health [93,94]. Specific devices
such as a chest sensor recording heart rate and heart rate variability are also included in
wearable sensing technologies. The effects of wearable sensing technologies in promoting
OHS are demonstrated as follows.
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Figure 6. The annual publication trend of sensing and warning-based technology [9].

Table 4. Methods of vision-based sensing technologies in hard hats detection.

Method Reference

object detection methods [95]
movement prediction of workers [90]

posture estimation and classification [96]
identification of potential bodily work-related ergonomic risks [91]

identification of unsafe behavior [97,98]

2.3.1. Physiological Sensors

Physiological wearable sensing devices benefit OHS through emotional wellbeing
monitoring, physical workload and fatigue monitoring, and posture detection [99].
Electroencephalograms (EEGs) monitor stress levels, mental fatigue, emotional states,
and attention level [100,101] by tracking and recording brain wave patterns. EEGs pro-
vide a base for investigating and addressing any psychological problems of construction
workers and, therefore, avoid unsafe behaviors. In addition, electrocardiograms (ECGs)
used in chest sensors monitor heart rate and variability of construction workers [102].
Wristband-type heart rate monitoring devices are also used to capture significant varia-
tions in physical demands [94,103], estimate energy expenditure [102], and track heart
rate [104,105]. Furthermore, ECG, EEGs, and infrared temperature sensors are combined
for real-time monitoring of physical fatigue in construction workers [106]. Moreover, sur-
face electromyography monitors the spinal biomechanics of a construction workforce by
measuring the electrical activities of muscles. It secures OHS of construction workforces
exposed to repetitive lifting tasks and tying rebars [107,108].

2.3.2. Integrated Sensors in Personal Protective Equipment (PPE)

Wearable sensing technologies attached to PPE realize safety risk detection and health
monitoring. To begin with, Inertial Measurement Units (IMUs) are the most common mo-
tion sensors in PPE to detect awkward postures [109], gait abnormalities [110], and fall-risk
assessments [111]. IMU-based wearable motion capture system (Perception Neuron) used
in acquiring experiment data is exhibited in Figure 7. Furthermore, pressure sensors and
three-axis accelerometers are valid in assessing the PPE wearing effect [112,113]. Moreover,
dust sensors can monitor fine particle concentration and protect workers against excessive
respirable dust [114,115]. Lastly, Adjiski et al. [116] proposed a prototype system, which
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was an outstanding example of different sensors integrated into a system and attached
to PPE. In the system, helmets and safety glasses were equipped with sensors connected
with smartphones and smartwatches (Figure 8). Sensors used in the system included gas
sensors, dust sensors, sound sensors, smoke sensors, temperature sensors, accelerometers,
gyroscopes, magnetometers, heart rate sensor measures, and cameras. The prototype
system designed to secure OHS during mining operations also meets requirements on
other underground construction operations.

Figure 7. IMU-based wearable motion capture system (Perception Neuron) [111].

Figure 8. Smart technology and sensors attached in PPE [116].

2.4. Sensing Technologies in Construction Quality Enhancement

Sensing technology can also improve construction quality management. FBG tech-
nology realizes real-time and convenient quality control for asphalt mixture compaction
operation during lab experiments (Figure 9). An FBG sensor consists of a compression end,
sensing part, fixed end, and supporting legs [117,118]. The compression end is regarded as
a load-bearing plate that can make the FBG sensor deform coordinately well with asphalt
pavement. The sensing part is made up of a core with gratings and core-protecting ma-
terials. Fixed end and supporting legs are used for fixing sensing parts and making the
sensor stand stable, respectively. FOS technology is effective in monitoring temperature
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and stress/strain variation of reinforced concrete structures during construction [119–121].
Furthermore, RFID technology facilitates construction quality controls by assisting with
monitoring of concrete curing progress and material quality assurance [122,123]. Moreover,
temperature sensors measure the internal temperature of in-place concrete in real-time dur-
ing the early curing stages and assess the strength [124]. Finally, laser scanning technology
prevents the failure of precast concrete elements by identifying deviations of prefabricated
modules and assessing precast concrete quality [125,126].

Figure 9. FBG sensor embedded in asphalt pavement [117].

2.5. Sensing Technologies in Construction Productivity Enhancement

Construction productivity benefits from optimizing scheduling, cutting back on con-
struction time and cost, and reducing construction waste. Real-time progress reporting
of construction activities can overcome cost overruns and scheduling delays. However,
conventional data collection processes are labor-intensive, costly, and error-prone. Remote
sensing technologies have been proposed to achieve an automated data acquisition plat-
form to improve construction productivity.

2.5.1. Location-Based Sensing Technologies to Improve Productivity

GPS technology obtains multiple potential applications comprising resource localiza-
tion and materials tracking to increase construction productivity [127–129]. For instance,
GPS technology collects and provides real-time information of a delivery fleet to reduce
productivity loss and idleness [59,130]. Similarly, position tracking of key personnel is
also achieved through RFID technology to save cost and time [131,132]. Fang et al. [48]
concluded that the BIM and cloud-enabled RFID indoor localization solution had great
potential in asset management and productivity monitoring. The cloud-enabled remote
monitoring user interface is demonstrated in Figure 10. Moreover, GPS and RFID tech-
nologies are combined to realize automated tracking of construction resources, which is
beneficial in construction productivity monitoring [133]. Applications of RFID technology
in increasing construction productivity are demonstrated in Table 5.
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Figure 10. (a) recognition rate evaluation by comparing localization results to video recording;
(b) cloud-enabled remote monitoring user interface [48].

Table 5. RFID technology in construction productivity enhancement.

Benefit Reference

construction waste management and machinery maintenance records [13]
identification of construction material and resources [33]

recognition of construction staff location [131]
automatic progress reports [134,135]

operational cost reduction in precast construction supply chain [136]
material localization, monitoring, and tracking [137–139]

active information flow between construction progress and material monitoring staff [140,141]
applications in time and schedule management [142]

supply network visibility [143,144]
asset management and supply chain management [145,146]

2.5.2. Vision-Based Sensing Technologies to Improve Productivity

Video cameras can monitor and track construction resources to improve construction
productivity [147,148]. Three-dimensional (3D) laser scanning technology combined with
schedule information can result in more effective and efficient tracking of construction
progress than manual works [149]. 3D point clouds, project 3D computer-aided design
(CAD) model, and schedule information are combined to track construction progress.
First, 3D laser scanning data provides current site conditions. Second, the 3D CAD model
combined with schedule information (the project 4D model) provides designed spatial
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characteristics of the facility under construction over time (Figure 11). A time-stamped 3D
CAD model can thus be formed automatically for a given date with such a 4D model. The
3D point clouds and the 4D model must be registered in the same coordinate system to
extract useful data for progress tracking. Once registered, as-built objects can be recognized,
progress estimated, and the schedule updated all automatically. Moreover, vision-based
sensing technologies are also used along with other technologies for a more robust accuracy
in material tracking especially in congested and indoor construction sites. Construction pro-
ductivity is significantly promoted by integrations such as Photogrammetry with GPS [150]
or robotic total stations [151], and the incorporation of video recording with UWB [152,153].

Figure 11. (a) 3D model, (b) time-stamped 3D model, (c) 4D model, and (d) procedure for automated progress calculation
and schedule update [149].

3. Factors in the Determination of Sensing Technologies Adoption

Sensing technologies lack adoption in real construction projects, though they have
been academically explored and proven to yield positive potential. Sepasgozar et al. [154]
discovered the adoption process influenced emerging technologies promotion. The process
was classified as new technologies identification, existing options cognition, and options
comparison. Opinions from construction stakeholders are crucial factors in the process.
Therefore, perceptions of construction managers and the acceptance of construction work-
ers toward sensing technologies are in great demand. Emerging technologies will benefit
from the investigation of factors determining the adoption process.
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3.1. Perceptions of Construction Managers toward Sensing Technologies

The decision-making process for adopting new technology is affected by the man-
agers [155]. General awareness about the benefits, capabilities, and effects will contribute
to an improved adoption process [156]. Resistance attributes to insufficient understanding
and exposure [157]. In contrast, an understanding of market conditions and technol-
ogy capabilities increases confidence about the adoption. However, sensing technologies
have not yet been fully adopted into the construction industry. Perceptions toward other
technologies are also worth exploring, such as Information Technology (IT), Informa-
tion and Communication Technology (ICT), ADC, and Building Information Modeling
(BIM) [158,159]. The scope of the investigation is expanded beyond sensing technologies to
extract as much information as possible.

3.1.1. Benefits of Sensing Technologies Adoption

Motivations for the construction industry to adopt digital technologies help discover
the factors that can promote sensing technologies in construction. One significant moti-
vation for new IT-based technologies is the competitive advantage in the market [160].
Most new technologies are problem-driven and solution-driven. Digital Twins (DT) create
a digital replica of a physical object and synchronize data to achieve monitoring, simulating,
and optimizing the physical object [161]. The visualization technology presents dynamic
and complex information generated by DT, helping construction managers and on-site
workers to make better decisions. New technologies also might be forced by external
requirements, such as the request of clients, or compliance with regulations [162,163].

Sensing technologies employment can lead to savings both in terms of social costs and
health costs. Therefore, future research should cover the relevant contents to contribute to
the states and insurance companies to support the technology application. Analysis of the
benefits in Table 6 will facilitate the sensing technologies adoption.

Table 6. Benefits of digital technologies according to construction stakeholders.

Benefit Reference

cost reduction [164–166]
time-saving and improved productivity [167–169]

reduced risk of injury and illness [170]
increase employees’ wellness and satisfaction [171]

better document quality [172,173]
better facilities management [174]

process and performance improvement [175,176]
improved leadership and decision support systems [177]

mechanical enhancement on concrete printing [178–180]
improved quality of construction project delivery [181]

3.1.2. Barriers to Sensing Technologies Adoption

Barriers have been identified through the perceptions of stakeholders such as operating
cost, lack of well-trained staff, and technology immaturity, etc. Odubiyi et al. [7] divided
barriers in ICT into three broad categories related to technology, process, and people.
Sardroud et al. [4] classified the barriers to ADC technologies into cost-related, process-
related, and technology-related issues. As most barriers are people-related, solutions will
be found through an investigation on the factors that construction stakeholders perceive
as barriers.

As a major barrier, the capital cost of implementation has been noted repeatedly [166].
Training costs, maintenance costs, and operating costs [164] are also key components in
the barriers. Besides cost-related barriers, challenges related to people are also involved,
such as a lack of interest and well-trained staff [157,182]. In addition, technical compli-
cations such as lack of integrity, durability, and reliability negatively affect innovative
technologies [18,183]. Meanwhile, changes in the management process and complications
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in the construction site also influence technology adoption [182,183]. Analysis of the
barriers in Table 7 will promote the adoption of emerging technologies.

Table 7. Barriers to digital technology adoption according to construction stakeholders.

Barriers Reference Barriers Reference

cost-related people-related
operating cost [164] lack of well-trained staff [167]

cost of training and
employing professionals [177] compliance of employees [166]

cost of maintenance [184] legal or ethical concerns [171]
implementation cost [185] resistance to change [182]
uncertain cost-benefit

relation [186] company culture [187]

lack of government support [188]
technology-related other barriers

operational difficulties [19,189] manufacturing requirements [18]
power supply issues [174] change in the process [182]

data management issues [177] site-related issues [183]
lack of proper IT

infrastructure [182] temporary nature of
construction

[187]
technology immaturity [183]

3.2. Acceptance of Construction Workers toward Sensing Technologies

User acceptance and trust-building are the two key components of the Internet of
Things (IoT)-based technologies adoption in OHS [171]. Engineers, operating crews, and fit-
ters are also consulted before adopting new technology, though managerial support affects
employees’ intentions to accept a new system [17]. The acceptance of construction work-
ers has been investigated on IT, mobile computing devices, BIM, and wearable sensing
technologies [190,191]. Previous research studies, especially on wearable technologies,
reported that privacy, security, and confidentiality were major concerns held by construc-
tion workers [18,192]. Workers show great willingness to use wearable sensors if data is
only collected during working hours [191]. Meanwhile, the top motivation of construction
workers to accept wearable sensing technologies is to identify health risks and promote
occupational safety [171]. Therefore, perceived usefulness and perceived ease of use are the
two concepts dominating the literature on the acceptance of construction workers toward
innovative technologies.

Perceived usefulness is the extent users believe that the system will assist them to
achieve better performance [193]. It is determined by various factors such as social influ-
ence, job relevance, top management support, and benefits at the organizational level [194].
Perceived usefulness has been recognized as a motivation towards using emerging technolo-
gies such as BIM [156], scanner technology [11], and wearable sensing technologies [192].
Perceived usefulness has been a determining factor for technology adoption in the context
of construction research [195]. Perceived ease of use is another important factor, which is
the degree to which the user believes that they can use a system effortlessly and free from
difficulties [193]. Perceived ease of use is usually measured through training and techno-
logical complexity [194–196]. User satisfaction is more influenced by perceived usefulness
than perceived ease of use [166]. As the application of wearable sensors is quite new, it is
important to research the acceptance of construction workers. Choi et al. [192] investigated
factors influencing the adoption of wearable sensing technologies by construction workers.
They discovered that “perceived usefulness”, “social influence”, “perceived privacy risk”,
and “perceived ease of use” were the major factors determining workers’ acceptance.

4. Future Research

The final goal is to develop a governance framework, which could be referred to for eas-
ier decision making on the suitability of particular sensing technology. Sensing technologies
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demonstrate promising potential in construction safety, productivity, and quality enhance-
ment. However, the construction industry lacks an understanding of these advanced
technologies. Information about sensing technologies in real projects is scarce. Addition-
ally, the adoption process demonstrates the crucial factors as opinions of stakeholders
and workers. This paper embraces a review of factors that affect the adoption and imple-
mentation of digital technologies. The future research will identify, extract, supplement,
and rank the factors conducted from this review to determine the significant factors in
sensing technology adoption. Awareness of the advantages resulting from the sensing tech-
nology implementation is crucial to counter the resistance from the construction industry
and promote innovative sensing technologies. Therefore, the construction industry needs
a governance framework, which contains a core structure depicting the adoption process,
from a proposal to its evaluation and approval. Barriers and benefits work in opposite
directions during the proposal, while the risk of introducing new devices into the existing
systems is also considered. The proposal progresses to detailed evaluation and approval
when the totality of benefits, barriers, and all relevant considerations conclude new sensing
technology is suitable. During the evaluation, considerations for the suitability of the
proposed sensing technology, the whole of life costs, and factors related to people should
be justified. The framework will assist with the implementation of sensing technologies
during construction processes. In the case study of the governance framework, overall
cost-benefit analyses of these technologies in the construction site need to be considered to
incentivize their adoption by stakeholders.

5. Conclusions

Applications of sensing technologies and the rationale behind their slow adoption have
been explored in this paper. This literature review, as opposed to previous reviews, is not
limited to a specific group of technologies. The focus is on sensing technologies effectively
improving construction performance such as safety, productivity, and quality. Eight popular
sensing technologies are selected, including GPS, RFID, UWB, FOS, pressure sensing
technology, temperature sensing technology, visual sensing technology, and 3D scanning
technology. The benefits, shortcomings, and their application in construction have been
reviewed. Even the most popular technologies such as GPS and visual sensing technology
were not fully adopted. Despite sensing technologies having been academically explored
and proven to yield positive potential, they lack adoption in real construction projects.
This review is not only limited to the factors affecting the adoption, but also covered factors
affecting the acceptance of sensing technologies by construction workers. Meanwhile,
this review embraced all relevant factors reported in the literature regarding the adoption
of almost all types of innovative digital technologies such as IT and BIM. In future research,
influential factors uniquely related to sensing technologies and common factors between
sensing technologies and other digital technologies need to be separated. Furthermore,
research should cover the points of stakeholders inside and outside of the construction
industry. It is concluded that the capital cost of sensing technology implementation is the
strongest barrier to its adoption. Technical barriers, safety concerns, and ethical concerns
are also involved in the decision-making process. Aside from financial constraints and
challenges related to skill acquisition, another barrier is related to decision makers or
end-users who are resistant to change and lack awareness of the benefits of the proposed
new technology. Such barriers could be diminished by raising awareness of the benefits
and effectiveness of the intended sensing technology. These factors form the basis of
the governance framework, which could be referred to for easier decision making on the
suitability of particular sensing technology. Safety, productivity, and quality performance of
construction processes will benefit from sensing technologies adoption, and the governance
framework will promote a more straightforward adoption process.
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