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 Background: Hypoxic conditions play roles in functioning of human tendon-derived stem cells (hTSCs). The goal of this study 
was to investigate the effect of various hypoxic conditions in self-renewal capacity and differentiation of TSCs.

 Material/Methods: hTSCs was obtain from supraspinatus tendon donors. Colony formation and cell proliferation assay were used 
to assess the self-renewal of hTSCs. qRT-PCT and Western blot analysis were used to examine stemness and 
multi-differentiation potential of hTSCs.

 Results: We found that culturing at 5% O2 is more beneficial for the self-renewal of hTSCs than the other 3 culture con-
ditions, with larger colony size and numbers. The proliferation of hTSCs in 5%, 10%, and 20% O2 cultures in-
creased after seeding. The number of cells in the 5% O2 condition was higher than that in other culture; howev-
er, self-renewal capacity of hTSCs in 0.5% O2 was inhibited. The expression levels of stem cell markers, including 
NS, Nanog, Oct-4, and SSEA-4, were highest in 0.5% O2 culture. Furthermore, hTSCs cultured in 20% O2 exhib-
ited significantly higher expression of the 3 markers (PPAR-g, Sox-9, and Runx-2).

 Conclusions: Hypoxic condition of culture encouraged self-renewal capacity of hTSCs, but inhibited their multi-differentia-
tion potential, compared to normoxic condition of culture. Moreover, excessively low oxygen concentration im-
paired the capacity of hTSCs.
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Background

Tendons are fibrous connective tissues connecting muscle 
to bone to facilitate joint movement and to maintain skele-
tal stability [1]. Tendons are mainly composed of extracellu-
lar matrix (ECM) containing 68% water, 30% collagen, and 2% 
elastin, in which a very low density of tenocytes are embed-
ded [2]. As the main cell population in tendons, tenocytes are 
responsible for synthesizing and maintaining tendon ECM [3]. 
Tenocytes were long considered as the only cell type in ten-
dons. Tendon-derived stem cells (TSCs) were first discovered 
in 2007 in the tendons of many species, including humans, 
mice, rats, and rabbits [4,5]. Like other stem cells, TSCs have 
self-renewal capacity with multi-differentiation potential to 
change into tenocytes, chondrocytes, osteocytes, and adipo-
cytes under specific conditions [5].

Due to being subjected to large mechanical loads, tendons 
are easily injured. After tendon injuries, patients often have a 
long, complex healing process with the formation of a fibrot-
ic scar [6]. As a result, the pattern of collagen fibers and fibrils 
are changed in tendons with fibrotic scarring; therefore, these 
tendons have inferior mechanical strength compared to nor-
mal tendon tissue, resulting in significant dysfunction and dis-
ability. Recently, many laboratory studies have shown promis-
ing outcomes of tendon repair treated with stem cells [7–10] 
because of various proliferation and differentiation advantag-
es of using stem cells. Moreover, many studies demonstrat-
ed that TSCs not only retained multi-differentiation potentials 
like other stem cells, but also were more prone to transform 
into tenocytes than other stem cells. Therefore, TSCs might be-
come a novel cell source for tissue engineering, attracting in-
creasing attention from experimental and clinical researchers.

The self-renewal capacity and differentiation of stem cells are 
influenced by different environments, such as ECM composi-
tion, pH value, oxygen tension, and mechanical loading. TSCs 
expansion is necessary to collect sufficient numbers of cells 
for tendon repair. However, in the expansion process TSCs are 
predisposed to differentiate quickly, causing stemness loss un-
der regular culture conditions of 95% air and 5% CO2. In vivo, 
tendons are collagen-rich, avascular structures; therefore, the 
oxygen level in tendons is relatively lower than in vascular-rich 
organs and tissues [11]. Therefore, hypoxia might favor TSCs.

A previous study has demonstrated that TSCs could better 
maintain their stemness under hypoxic conditions. However, 
the role of oxygen concentrations in differentiation potential 
of TSCs remains unclear. Therefore, we performed the pres-
ent study to investigate the effect of different hypoxic con-
ditions in self-renewal capacity and differentiation of human 
TSCs (hTSCs).

Material and Methods

Cell culture

All tendon tissues were collected from supraspinatus tendons 
of 6 young adult donors, with approval from the Research 
Ethics Committee of the Second Affiliated Hospital and Yuying 
Children’s Hospital of Wenzhou Medical University (Wenzhou, 
China). hTSCs isolation was performed according to the meth-
od previously introduced by Lee et al. [12]. A condition of 37°C 
with 5% CO2 in a humidified incubator was applied for cell cul-
ture, as previously described (13). Cells from passages 4 to 6 
were used in all experiments.

Control of hypoxic and normoxic culture conditions

The hypoxic and normoxic culture conditions was controlled ac-
cording to the procedure described by Zhang et al. [14]. Hypoxic 
conditions (0.5%, 5%, 10% O2) in the present study were achieved 
using a dedicated tri-gas incubator. A regular tissue culture in-
cubator was used to maintain normoxic culture conditions via 
feeding 95% air and 5% CO2. During all experiments, oxygen 
concentration in all incubators were kept at a constant level. 
Therefore, in the present study, hTSCs cultured under normox-
ic culture conditions were divided into a control group (20% O2 

group), and hTSCs cultured under the other 3 conditions were 
divided into 3 experimental groups (0.5%, 5%, and 10% O2).

Colony formation and cell proliferation assay

hTSCs were seeded into a culture dish at a seeding density of 
50 cells/cm2 for 14 days. Subsequently, all cells were stained 
using PBS method for counting cell colonies. Colonies of more 
than 50 cells under a microscope were counted. Triplicate ex-
periments were used to ensure accuracy. We determined cell 
proliferation using the Cell Counting Kit-8 (CCK-8) (Dojindo, 
Kumamoto, Japan) at days 1, 2, 6, and 12 after seeding, as 
previously described [15].

Quantitative real-time PCR (qRT-PCR)

Total RNA extraction from hTSCs was conducted using Trizol 
reagent (Invitrogen, Carlsbad, CA). We reverse-transcribed 1 
µg RNA to synthesize first-strand cDNA with the RevertAid RT-
PCR system (Fermentas, Pittsburgh, PA). qRT-PCR was carried 
out using the Maxima SYBR Green qPCR Master Mix (Applied 
Biosystems, Carlsbad, CA) in a Chromo 4 Detector (MJ Research) 
following the manufacturer’s instructions. We synthesized gene-
specific primers for nucleostemin (NS), Nanog, Oct-4, SSEA-4, 
Runx-2, PPAR-g, and Sox-9 based on previously published se-
quences (16). Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as an internal control. At least 3 replicates 
were performed for each experiment in the study.
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Multi-differentiation assays

The adipogenic, osteogenic, and chondrogenic differentiation 
capabilities of hTSCs in hypoxic and normoxic culture condi-
tions were evaluated as previously described [13,14,17]. To 
perform differentiation potential assay, cells were cultured for 
up to 14 days in 3 different mediums – adipogenic induction 
medium (DMEM, 20% FBS, 100 mM indomethacin, and 0.5 
mM isobutylmethylxanthine), osteogenic induction medium 
(DMEM-low glucose, 20% FBS, 50mg/ml ascorbic 2-phosphate, 
100 mg/ml sodium pyruvate, and 50 mg/ml insulin-transfer-
rin-selenious acid mix), and chondrogenic induction medium 
(DMEM, 20% FBS, 0.2 mM ascorbic 2-phosphate, 10 mM glyc-
erol 2-phosphate) – according to the manufacturer’s instruc-
tions. Oil Red O (Millipore) staining was used to assess adipo-
genesis. Alizarin Red solution (Millipore) was used to examine 
calcium deposition for osteogenesis. Alcian Blue (Millipore) 
staining was used to measure chondrogenesis.

Western blot analysis

Western blotting was performed to examine Nanog, NS, Oct-4, 
and SSEA-4 protein. After being cultured under hypoxic or nor-
moxic conditions for 3 days, hTSCs were collected and protein 
was obtained. The protein was separated by 12% SDS-PAGE, 
transferred to PVDF membranes, and subsequently blocked in 
5% fat-free milk for 2 h, following by incubation with primary 
antibodies at 4°C overnight. All primary antibodies were from 
Novus Biologicals, Inc. (Littleton, CO). Secondary antibody (Dako, 
Carpentaria, CA) conjugated with horseradish peroxidase was 
then applied. Finally, protein bands were detected with che-
miluminescence (Beyotime, Shanghai, China). The expression 
levels of proteins assessed in this study were normalized to 
GAPDH. All experiments were repeated 3 times.

Statistical analysis

Statistical analysis, including one-way analysis of variance 
(ANOVA), t test, and Tukey’s HSD post hoc test, was conduct-
ed using GraphPad Prism 5 software (GraphPad Software Inc., 
La Jolla, CA). All data are presented as the mean ±SEM. P<0.05 
was considered to be statistically significant.

Results

We first assessed the effects of hypoxia treatment on self-re-
newal capacity of hTSCs. Similar numbers of hTSCs were cul-
tured in 0.5%, 5%, 10%, and 20% O2 cultures. We found that 
5% O2 culture is more beneficial for the self-renewal of hTSCs 
than the other 3 cultures, with larger colony sizes and num-
bers (Figure 1A–1C). In addition, proliferation of hTSCs in 5%, 
10%, and 20% O2 cultures increased after seeding (Figure 1D). 

The number of cells in the concentration of 5% of O2 was high-
er than that in other culture; however, self-renewal capacity 
of hTSCs in 0.5% O2 was inhibited.

Then, we examined the stemness of hTSCs using qRT-PCR and 
Western blot analysis. We found that the expression levels of 
stem cell markers, including NS, Nanog, Oct-4, and SSEA-4, were 
highest in 0.5% O2 culture. Furthermore, the environment with 
0.5% O2 or 20% O2 inhibited the stemness of hTSCs (Figure 2).

Finally, the multi-differentiation potential of hTSCs was de-
termined through the analysis of PPAR-g (adipogenic marker), 
Runx-2 (osteogenic marker), and Sox-9 (chondrogenic marker). 
Oil Red O (Millipore) staining for adipogenesis, Alizarin Red so-
lution (Millipore) for osteogenesis, and Alcian Blue (Millipore) 
staining for chondrogenesis were used. During the 14-day pe-
riod of differentiation, hTSCs cultured in 20% O2 exhibited sig-
nificantly higher expression of the 3 markers (PPAR-g, Sox-9, 
and Runx-2), suggesting that the 20% O2 environment pro-
moted the differentiation of hTSCs (Figure 3).

Discussion

Tendon disorders are a serious health problem involving over 
30% of musculoskeletal injury. Tendon injuries include chronic 
tendinopathy and acute tendon rupture. Surgical options for 
tendon injuries during clinical therapy are limited, with differ-
ent implantations, including autografts and allografts. However, 
instead of complete regeneration, tendon healing after sur-
gical treatment is accompanied by poor results, with scarring 
formation and adhesion, leading to partial tendon dysfunc-
tion [2]. Moreover, tendon injuries have a slow recovery pro-
cess and high healthcare costs. An increasing number of in-
vestigators are engaged in fundamental basic science studies 
aimed at understanding the exact mechanism of tendon in-
jury and healing [18]. The identification of TSC started a new 
epoch in understanding the pathology of and developing nov-
el strategies for tendon injury. Increasing animal studies have 
shown the outstanding effect of TSCs for the repair of tendon 
injuries [19]. However, effective measures to regulate the fate 
of TSCs remain limited. The present study is the first to inves-
tigate the effect of different hypoxic concentrations on hTSCs.

Our findings suggest that environmental oxygen is an impor-
tant factor for the growth and proliferation of hTSCs, and that 
a hypoxic environment is promotes TSCs to form effective en-
gineering tissue for injured tendon repair. Moreover, hypox-
ia should be kept within a certain range, because concentra-
tions of O2 that are too low influence the capacity of hTSCs. 
Our results also indicated that the hypoxic condition of 5% O2 

can improve TSCs self-renewal to achieve sufficient numbers 
of TSCs necessary for tissue engineering. Larger numbers of 
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Figure 1.  The self-renewal capacity of hTSCs under different concentrations of oxygen culture. (A) Colony formation; (B) Colony 
number; (C) Colony size; (D) proliferation of hTSCs.
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Figure 2.  The expression of stem cell markers by hTSCs under different concentrations of oxygen culture conditions by qRT-PCR (A) 
and Western blot (B).
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stem cells are more competitive for tissue repair or regenera-
tion when using stem cells to treat tendon injury [20].

Many studies have demonstrated the potent suppressing ef-
fect of hypoxia on mitochondrial oxidation [21] and promot-
ing stemness of several stem cell types [22–24]. The mitochon-
drial oxidative metabolism status has been indicated to play 
an important role in stem cells [25,26]. A recent study report-
ed that it was easier to induce mouse embryonic fibroblasts 
to transform into pluripotent stem cells (iPSCs) under hypox-
ic conditions [25]. Some undifferentiated stem cells with low-
er levels of mitochondrial mass, such as iPSCs, and bone mar-
row mesenchymal stem cells (BMSCs), were reported to utilize 
non-oxidative glycolysis for energy [27–29]. Accumulating stud-
ies have demonstrated the effects of different hypoxic con-
ditions on stem cells. Lavrentieva et al. reported that hypox-
ia promotes self-renewal of human mesenchymal stem cells 
(MSCs) compared with normoxic condition [30]. Lennon et al. 
indicated that rat MSCs cultured in a hypoxic condition of 5% 
O2 produced more bone formation than those cultured in a 
normoxic condition of 20% O2 [31]. Our results agree with the 
findings of these studies.

Some limitations associated with this study should be consid-
ered. First, the medium using plastic dishes for hTSCs might 
have a role in promoting differentiation cell. Second, we grew 
the hTSCs in 2D culture, which is not consistent with cells in 
vivo. Moreover, hTSCs lacked mechanical loading, which is an 
important factor for tendons due to muscle-bone force-trans-
mission function. Finally, the molecular mechanism was not 
investigated, and this needs to be determined in future work.

Conclusions

In summary, hypoxic culture encouraged self-renewal capac-
ity of hTSCs, but inhibited their multi-differentiation poten-
tial, compared to normoxic condition of culture. Moreover, 
oxygen concentrations that were too low impaired the capac-
ity of hTSCs. Future studies investigating the mechanism by 
which TSCs function under low-oxygen conditions are required.
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Figure 3.  The differentiation potential of hTSCs under different concentrations of oxygen culture conditions. (A) At day 14 after 
differentiation induction, lipid accumulation, cartilage matrix formation, and calcium deposition were assessed by Oil Red 
O, Alcian Blue, and Alizarin Red S staining, respectively. (B) mRNA levels of the adipogenic marker PPAR-g, the chondrogenic 
marker Sox-9, and the osteogenic marker Runx-2 were measured by qRT-PCR.
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