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Abstract
Background: By studying genome-wide expression patterns in healthy and diseased tissues across a wide range of 
pathophysiological conditions, DNA microarrays have revealed unique insights into complex diseases. However, the 
high-dimensionality of microarray data makes interpretation of heterogeneous gene expression studies inherently 
difficult.

Results: Using a large-scale analysis of more than 40 microarray studies encompassing ~2400 mammalian tissue 
samples, we identified a common theme across heterogeneous microarray studies evident by a robust genome-wide 
inverse regulation of metabolic and cell signaling pathways: We found that upregulation of cell signaling pathways was 
invariably accompanied by downregulation of cell metabolic transcriptional activity (and vice versa). Several findings 
suggest that this characteristic gene expression pattern represents a new principle of mammalian transcriptional 
regulation. First, this coordinated transcriptional pattern occurred in a wide variety of physiological and 
pathophysiological conditions and was identified across all 20 human and animal tissue types examined. Second, the 
differences in metabolic gene expression predicted the magnitude of differences for signaling and all other pathways, 
i.e. tissue samples with similar expression levels of metabolic transcripts did not show any differences in gene 
expression for all other pathways. Third, this transcriptional pattern predicted a profound effect on the proteome, 
evident by differences in structure, stability and post-translational modifications of proteins belonging to signaling and 
metabolic pathways, respectively.

Conclusions: Our data suggest that in a wide range of physiological and pathophysiological conditions, gene 
expression changes exhibit a recurring pattern along a transcriptional axis, characterized by an inverse regulation of 
major metabolic and cell signaling pathways. Given its widespread occurrence and its predicted effects on protein 
structure, protein stability and post-translational modifications, we propose a new principle for transcriptional 
regulation in mammalian biology.

Background
Transcriptional profiling by DNA microarrays allows the
simultaneous quantitative analysis of tens of thousands of
transcripts in a single experiment. By applying transcrip-
tional profiling technology to healthy and diseased tissues
across a wide range of pathophysiological conditions, DNA
microarrays have revealed unique insights into complex
disease patterns. However, the high-dimensionality of
microarray data makes interpretation of heterogeneous gene
expression studies inherently difficult. One of the main

challenges in the analysis of microarray data is to identify
common underlying biological themes by integrating multi-
ple similar experiments. A frequent approach to this prob-
lem is to extract common genes from these gene lists and
then subject these genes to enrichment analysis by grouping
them into pathways.

In a previous study examining failing and non-diseased
dog hearts, we observed an intriguing reciprocal transcrip-
tional regulation of selected cell signaling and metabolic
processes [1]. To extend this initial observation beyond
myocardial tissue and selected pathways, we used a sys-
tems biology approach based on KEGG pathways (Kyoto
Encyclopedia of Genes and Genomes [2]) in a large collec-
tion of ~2400 mammalian tissue samples derived from
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more than 20 diseased and non-diseased tissues. As a result,
we identified a robust genome-wide reciprocal regulation of
metabolic and cell signaling pathways which was present
across all 20 different tissues examined.

Results
We examined gene expression patterns across 20 large
microarray datasets of different human tissues by compar-
ing, in each tissue type, the 10 samples with the highest vs.
the lowest gene expression of transcripts belonging to the
KEGG pathway of oxidative phosphorylation (OXPHOS)
using Significance Analysis of Microarrays [3]. The differ-
entially expressed genes were then grouped into KEGG
pathways and depicted as a heat map where KEGG path-
ways were sorted based on their similarity to OXPHOS
expression. A highly coordinated transcriptional response
pattern became apparent, as all major metabolic pathways
were positively correlated to OXPHOS expression, while
cell signaling pathways were inversely correlated to
OXPHOS (Figures 1A, B, and Additional Files 1A-1C;
detailed study and sample characteristics are listed in Addi-
tional Files 2 and 3). What is more, using serial compari-
sons of large microarray datasets of human colon,
myocardial, bladder, leukocytes and breast cancer samples,
we found that the total number of differentially expressed
genes declined monotonically when tissue samples with
decreasing differences in OXPHOS expression were com-
pared to each other (Figures 2A and 2B). Finally, tissue
samples with similar expression levels of metabolic tran-
scripts did not show any differences in gene expression
(Figure 2B, comparisons 8-10), that is, the differences in
metabolic gene expression predict the magnitude of differ-
ences for signaling and all other pathways. Thus, the highly
coordinated genome-wide transcriptional response which
was observed in gene expression datasets of both malignant
and non-malignant tissue impacts on the pattern (Figures
1A and 1B) and magnitude (Figure 2B) of the observed
gene expression changes.

To test the hypothesis that the majority of gene expres-
sion changes invariably occur along the metabolic - signal
transduction axis, we examined gene expression patterns of
diverse pathophysiological processes, such as malignant
growth, heart failure of ischemic and non-ischemic origin,
atrial fibrillation, ageing, liver cirrhosis, psoriasis, diabetes,
malaria and inflammatory bowel disease (a complete list of
the datasets is given in Additional File 2). When the net
direction of regulation between the MAPK and OXPHOS
pathways was compared across all human and animal
microarray studies, defined as the number of up- minus
down-regulated genes of these KEGG pathways expressed
as percentage of the total number of regulated genes within
a study, a negative correlation was found (Figure 3C),
whereas TCA-cycle and OXPHOS pathways as well as
JAK-STAT and MAPK pathways showed a positive corre-

lation (Figure 3A and 3D, respectively). Remarkably, the
tight regulation extended beyond KEGG pathways impor-
tant for metabolic and signaling functions, as evident by the
positive correlation between OXPHOS and proteasomal
transcripts (Figure 3B), as well as KEGG pathways of "pro-
tein export", "cell cycle" and ubiquitin-mediated proteoly-
sis" (Figure 4B). In contrast, "calcium-mediated signaling",
and structural components important for cell-cell contact
(e.g. "cell adhesion molecules", "tight junctions", "gap
junctions", "adherens junctions") were negatively corre-
lated with OXPHOS (Figure 4B; the complete list is given
in Additional Files 1A-1C;). Taken together, these data sug-
gest that in a wide range of physiological and pathophysio-
logical conditions, gene expression changes are not
random, but instead exhibit a recurring pattern along a tran-
scriptional axis which is characterized by an inverse regula-
tion of major metabolic and cell signaling pathways (Figure
4A). Importantly, transcriptional changes along this axis
accounted for >80% of the transcriptional alterations across
all datasets (as defined by the number of KEGG pathways
that show a statistically significant Pearson correlation
coefficient to the OXPHOS pathway, p < 0.05).

The significance of this transcriptional pattern is high-
lighted by its predicted impact on the proteome: First, sig-
nificant differences in protein structure were noted between
proteins of metabolic vs. signaling pathways. Intrinsically
unstructured proteins (IUPs) lack a rigid 3D structure and
possess an increased exposed surface area, facilitating inter-
action with multiple targets [4,5]. These and other proper-
ties are ideal for proteins that mediate signaling,
transcription and coordinate regulatory events, where bind-
ing to multiple partners in high-specificity/low-affinity
interactions are paramount [5]. In line with this finding,
intrinsic disorder is found in disproportionately higher fre-
quency in proteins belonging to cell signaling compared
with metabolic pathways (Figure 5). Second, posttransla-
tional modifications such as phosphorylation can affect the
abundance or half-life of certain IUPs [6,7]. Computational
studies using phosphorylation site-prediction methods have
suggested that unstructured regions are enriched for sites
that can be post-translationally modified [8]. We analyzed
the predicted occurrence of mucin-type O-glycosylation
(O-GalNAc), N-glycosylation, SUMOylation (Small Ubiq-
uitin-like Modifier) and 212 kinase phosphorylation sites
and found that these post-translational modification sites
were significantly enriched in signaling compared to meta-
bolic pathways (Figures 6A-F). Of note, differences in
tyrosine phosphorylation sites between metabolic and sig-
naling pathways were not as pronounced as differences in
serine/threonine phosphorylation sites, with the latter being
significantly enriched in signaling pathways (Figure 6F).
Overall, this indicates that proteins of the signaling path-
ways are not only the source but also a preferred target of
post-translational modification, which may be an important
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mechanism for fine-tuning their function and possibly also
controlling their availability.

Discussion
Cells react to changes in their environment by a coordinated
transcriptional response. Using a meta-analysis of more
than 40 diverse microarray studies which included different
microarray platforms (long and short oligonucleotide
arrays, cDNA and bead microarrays) and different methods
of normalizations (MAS5, RMA, GC-RMA, VSN, LOW-
ESS), we demonstrate a robust interaction between gene
expression in signaling and metabolic pathways. While
metabolic pathways were positively correlated to each
other, they were negatively correlated to signal transduction
pathways. Several findings suggest that this characteristic
gene expression pattern represents a novel paradigm for
mammalian transcriptional regulation. First, this coordi-

nated transcriptional pattern occurred in a wide variety of
physiological and pathophysiological conditions and was
identified in all 20 different tissue types examined. Impor-
tantly, it occurred independently of the proliferative poten-
tial of the underlying tissue, as the inverse regulation of
metabolism and signal transduction was observed in termi-
nally differentiated organs like brain and heart, but also in
more rapidly dividing malignant tumors. Second, and most
strikingly, these changes in steady-state mRNA levels pre-
dict a profound effect on the proteome, as KEGG cell sig-
naling pathways are characterized by an increased
magnitude of IUPs as compared to metabolic and biosyn-
thetic pathways. The lack of a rigid 3D structure in IUPs is
thought to provide several functional advantages, including
conformational flexibility to interact with multiple targets,
increased interaction surface area, and accessible post-
translational modification sites [4,5]. These and other prop-

Figure 1 (A) and (B). Inverse regulation of major metabolic and cell signaling KEGG pathways. For 20 different human tissues, KEGG pathways 
were compared between the ten samples displaying the highest and the lowest values of OXPHOS gene expression (study and sample characteristics 
are listed in Additional Files 2 and 3). The directional regulation of 200 major KEGG pathways (number of up- minus down-regulated genes in a given 
KEGG pathway normalized to the total number of regulated genes within a study) was color-coded with yellow and blue representing low and high 
expression of the pathways, respectively. KEGG pathways were then sorted according to their similarity to "oxidative phosphorylation" which is rep-
resented by the first row (labeled OXPHOS). Metabolic pathways were consistently positively correlated with each other and negatively correlated 
with the expression of cell signaling pathways. ALA+ASP metabolism = alanine and aspartate metabolism.
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erties are ideal for proteins that mediate signaling, tran-
scription and coordinate regulatory events, where binding
to multiple partners and high-specificity/low-affinity inter-
actions play a crucial role [5]. The critical role of IUPs in
signaling is further supported by the finding that eukaryotic
proteomes, characterized by their rich interaction networks,
are highly enriched in IUPs compared to prokaryotes [9].
An increase of IUPs has been associated with perturbed cel-
lular signaling in a wide range of pathological conditions
such as cancer, diabetes, and neurodegenerative diseases;
thus, intracellular levels of IUPs need to be tightly con-
trolled [10]. Gsponer et al. demonstrated that IUPs as a
class had a significantly shorter half-life and lower abun-
dance compared to highly structured proteins in both uni-
cellular and multicellular organisms, suggesting an
evolutionarily conserved pattern [10]. Consistent with its
role as an ATP-consuming proteolytic system [11], gene
expression of proteasomal degradation pathways was posi-
tively correlated with metabolic pathways (Figures 3B and
4B). In addition to D- and KEN-boxes, ubiquitin protea-
some-dependent degradation is mediated by the N-end-rule
and PEST-mediated degradation pathways. Consistent with
the shorter protein half-life of IUPs compared to structured

proteins [10], recent studies have found IUPs to contain a
significantly greater fraction of PEST motifs (regions rich
in proline, glutamic acid, serine, and threonine), while no
differences were noted for the N-end-rule pathway [10,12].
Importantly, the 20S proteasome can distinguish between
intrinsically unstructured and other proteins, as it can digest
IUPs under conditions in which native, and even molten
globule states, are resistant to degradation [13]. In line with
this finding, it has been suggested that the 20S proteasome
degradation assay provides a powerful system for opera-
tional definition of IUPs [13]. While protein degradation is
not determined by a single characteristic, but is a multi-fac-
torial process that shows large protein-to-protein variations
[14], it is tempting to speculate that an increased abundance
of proteins belonging to metabolic pathways contributes to
the down-regulation of signaling pathways via concurrent
up-regulation of proteasomal degradation pathways.

Conclusions
In summary, proteins in signaling and metabolic pathways
have fundamentally different properties ranging from
inversely regulated transcriptional patterns (Figures 1 and
3), abundance and stability of respective mRNAs to under-

Figure 2 (A) and (B). Sequential comparisons of tissue samples with highest vs. lowest OXPHOS expression. In five large microarray datasets 
(≥ 180 samples each; GSE5406 myocardium, GSE10780 breast tissue, GSE11223 colon, GSE11375 blood mononuclear cells, GEO13507 bladder tissue, 
Additional File 2), samples were first ranked according to the average expression of all genes belonging to the KEGG pathways of oxidative phospho-
rylation (OXPHOS). Then, gene expression was compared between group of samples containing between 10 and 13 tissue samples (depending on 
the size of the dataset) with the highest and lowest OXPHOS expression, the second-highest and second-lowest OXPHOS expression, and so on, using 
Significance Analysis of Microarrays (SAM) with a false discovery rate (FDR) of 5%. The largest differences were observed for the samples with the high-
est and lowest OXPHOS gene expression (comparison "1"). For the remaining comparisons (numbered "2"-"10"), the number of differentially expressed 
transcripts declined rapidly and was zero for samples showing only minor differences in OXPHOS expression levels (comparisons "8"-"10"). Panel B 
shows the mean ± SEM of all five datasets.
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lying differences in the translational rate, protein abundance
and stability [10]. Additionally, profound differences in
post-translational modifications exist between signaling
and metabolic pathways, as evident by differences in
SUMOylation, mucin-type O-glycosylation, N-glycosyla-
tion and serine/threonine phosphorylation sites (Figure 6).
Ultimately, this novel transcriptional pattern provides a uni-
fying concept for the interpretation of heterogeneous and
multi-dimensional microarray datasets, as the dynamic
interaction between cellular signaling and metabolic path-
ways impacts on the quantity (Figure 2B) and pattern (Fig-
ures 1, 3 and 4) of the observed gene expression changes.
Given the widespread occurrence of this transcriptional pat-
tern and the predicted differences in IUPs, protein stability

and post-translational modifications, we propose the recip-
rocal relationship between metabolic and signaling path-
ways as a new canonical principle for transcriptional
regulation in mammalian biology.

Study Limitations
In the present study, we noted a striking and robust recipro-
cal correlation of transcriptional changes between meta-
bolic and signaling pathways. Importantly, correlations do
not prove cause and effect. Therefore, we can not determine
whether transcriptional changes in metabolic activity antici-
pate changes in signaling pathways or vice versa. While
this study was centered on pathway analysis, future studies
will need to identify individual genes or hub nodes that con-

Figure 3 Correlation of KEGG pathway gene expression. There is a positive correlation between OXPHOS and TCA ('citrate') cycle (A) and between 
the KEGG pathways of OXPHOS and proteasome (B). OXPHOS and MAPK signaling pathways are negatively correlated (C), while signaling pathways 
(e.g. JAK-STAT and MAPK) are positively correlated to each other (D). Plots represent net direction of regulation of a KEGG pathway, i.e. number of up- 
minus down-regulated genes in relation to the total number of regulated genes within a study. Correlation plots include all 64 animal and human 
myocardial microarray studies listed in Additional File 2.
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nect metabolic and signaling pathways. In addition, the role
of up- and down-stream regulatory events, e.g. transcription
factors, miRNAs, splicing, 3' end termination and/or stabil-
ity of mRNAs need to be examined.

Future studies will need to address the role of this tran-
scriptional pattern in various disease processes. While the
association of IUPs with various disease processes might
suggest that down-regulation of metabolism and up-regula-
tion of signaling pathways is a common theme in a wide
range of disease processes, we found this generalization is
not universal. This could be related to a different baseline
level of OXPHOS activity in various tissues and cancer
specimens and/or differences in tissue handling. Clearly,
future studies need to address whether this transcriptional
pattern will help in refining the distinction between dis-
eased and non-diseased tissue samples.

Methods
Gene Expression Data
Public datasets were obtained from the GEO database [15].
A detailed summary of all datasets used in the present meta-
analysis is given in Additional File 2. The criteria for the
selection of the dataset were as follows: (1) whole-genome
coverage of microarray platforms (covering ≥ 20,000 tran-
scripts; the only exception was the comparison between
human adult and fetal hearts, for which whole-genome
microarray datasets were not publicly available), (2) quality
of normalization procedure: comparable levels of mean sig-
nal intensity and variance of signal intensity across experi-
mental groups, (3) non-myocardial tissue datasets had to
include at least 50 samples and (4) human myocardial data-
sets had to have more than ten non-failing samples.

Statistical Analysis
To determine differentially expressed genes, unpaired two-
class Significance Analysis of Microarrays (SAM) was
used [3]. Differences in gene expression were regarded as

Figure 4 Patterns of pathway regulation. (A) A schematic of reciprocal correlation of metabolic and signaling pathways in mammalian transcrip-
tion. (B) Relation of major KEGG pathways to OXPHOS. The directional regulation of 14 major KEGG pathways (number of up- minus down-regulated 
genes in a given KEGG pathway normalized to the total number of regulated genes within a study) was color-coded with yellow and blue representing 
low and high expression of the pathways, respectively. The cellular pathways of "protein export", "cell cycle" and ubiquitin-mediated proteolysis" were 
positively correlated with OXPHOS, while "calcium-mediated signaling", and structural components important for cell-cell contact (e.g. "cell adhesion 
molecules", "tight junctions", "gap junctions", "adherens junctions") were negatively correlated with OXPHOS.
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statistically significant if a false discovery rate (FDR) of
q<0.05 was achieved. Functional annotation of differen-
tially expressed genes was based on the KEGG pathways
database. Overrepresentation of specific KEGG pathways
in a gene set was statistically analyzed by the Database for
Annotation, Visualization and Integrated Discovery
(DAVID) [16]. The net regulation of a pathway was defined
as number of up- minus down-regulated transcripts of a
KEGG pathway expressed as percentage of the total num-
ber of regulated genes within a study. Clustering of the
expression of KEGG pathways and phosphorylation sites
was done using Genesis [17].

Batch prediction of long disordered regions was carried
out using the IUPforest-L software, based on the Moreau-

Broto autocorrelation function of amino acid indices
(AAIs) and other physicochemical features of the primary
sequences [18]. Non-parametrical rank tests (Kolmogorov-
Smirnoff and Wilcoxon) incorporated into StatView (SAS
Institute Inc., NC, USA) were used to determine statistical
significance for the distribution of IUP across metabolic
and signaling pathways. Batch prediction of N-glycosyla-
tion, mucin-type O-glycosylation, SUMOylation and pro-
tein kinase phosphorylation sites were carried out using
NetNGlyc 1.0 http://www.cbs.dtu.dk/services/NetNGlyc,
NetOGlyc 3.1 [19], SUMOsp 2.0 [20], and GPS 2.1 [21],
respectively.

Figure 5 Disorder Probability of Proteins of KEGG pathways. KEGG pathways for metabolic genes were more likely to consist of proteins with a 
higher degree of order, whereas signal transduction pathways include proteins with a higher degree of disorder (p < 0.01, Wilcoxon-test). For each 
KEGG pathway, boxplots delineate the median value as well as the 25th and 75th percentiles. Raw data, i.e. score representing protein disorder proba-
bility (0 and 1 representing low and high degree of disorder, respectively) are plotted as diamonds next to the boxplots. ALA+ASP metabolism = ala-
nine and aspartate metabolism.
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Figure 6 Post-translational modifications in 5 metabolic vs. 5 signaling pathways. (A) Predicted mucin-type O-glycosylation (O-GalNAc), (B) N-
glycosylation and (C) SUMOylation (Small Ubiquitin-like Modifier) sites are more frequent in signaling (blue bars) vs. metabolic pathways (orange bars). 
(D)-(F) Predicted frequency of 212 kinase phosphorylation sites (normalized to number and length of proteins within a given pathway to enable com-
parison across groups). Panel D represents a hierarchical clustering using all 212 kinases (Euclidean distance); the predicted frequency of a given kinase 
phosphorylation site is color-coded with yellow and red representing low and high expression, respectively. Panel E highlights 21 kinases from Panel 
D. Only two kinase phosphorylation sites were found to be enriched in metabolic pathways (NEK2 and MAPK2K6). (F) Signaling pathways showed a 
statistically significant overrepresentation of serine/threonine phosphorylation sites, and to a lesser degree tyrosine phosphorylation sites compared 
to metabolic pathways (p < 0.01, Wilcoxon-test). For each KEGG pathway, boxplots delineate the median value as well as the 25th and 75th percentiles. 
The raw data, i.e. individual values for local FDR for the comparison of 5 metabolic vs. 5 signaling pathways are plotted as diamonds next to the box-
plots.
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IUP: Intrinsically Unstructured Proteins; KEGG: Kyoto Encyclopedia of Genes
and Genomes; OXPHOS: Oxidative Phosphorylation; SAM: Significance Analysis
of Microarrays; DAVID: Database for Annotation, Visualization and Integrated
Discovery; GEO: Gene Expression Omnibus.

Additional file 1 Graphical representation of 200 KEGG pathways 
sorted based on their similarity to OXPHOS expression. For 20 different 
human tissues, KEGG pathways were compared between the ten samples 
displaying the highest and the lowest values of OXPHOS gene expression 
(each study-ID with sample characteristics are listed in the tables in Addi-
tional Files 2 and 3). The directional regulation of 200 major KEGG pathways 
(number of up- minus down-regulated genes in a given KEGG pathway nor-
malized to the total number of regulated genes within a study) was color-
coded with yellow and blue representing low and high expression of the 
pathways, respectively. KEGG pathways were then sorted according to their 
similarity to "oxidative phosphorylation" which is represented by the top 
row in Additional File 1A. Metabolic pathways were consistently positively 
correlated with each other and negatively correlated with the expression of 
cell signaling pathways.

Additional file 2 List of gene expression datasets used in the present 
study. The study-ID, tissue type, Gene Expression Omnibus (GEO) accession 
number, species, sample characteristics, comparison, microarray type and 
methods of normalization are given for each dataset.
Additional file 3 List of human tissues samples with high vs. low 
OXPHOS gene activity. The tissue type, study-ID (Gene Expression Omni-
bus (GEO) accession number), sample-ID and clinical characteristics are 
given for samples with high and low OXPHOS gene activity.
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