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Typically, biological models fitted to experimental data suffer from signifi-

cant parameter uncertainty, which can lead to inaccurate or uncertain

predictions. One school of thought holds that accurate estimation of the

true parameters of a biological system is inherently problematic. Recent

work, however, suggests that optimal experimental design techniques can

select sets of experiments whose members probe complementary aspects

of a biochemical network that together can account for its full behaviour.

Here, we implemented an experimental design approach for selecting sets

of experiments that constrain parameter uncertainty. We demonstrated

with a model of the epidermal growth factor–nerve growth factor pathway

that, after synthetically performing a handful of optimal experiments, the

uncertainty in all 48 parameters converged below 10 per cent. Furthermore,

the fitted parameters converged to their true values with a small error

consistent with the residual uncertainty. When untested experimental

conditions were simulated with the fitted models, the predicted species con-

centrations converged to their true values with errors that were consistent

with the residual uncertainty. This paper suggests that accurate parameter

estimation is achievable with complementary experiments specifically

designed for the task, and that the resulting parametrized models are

capable of accurate predictions.
1. Introduction
A goal of systems biology is to construct models that incorporate known mech-

anisms and reflect existing data under laboratory conditions. The notion is that

mechanistic mathematical models not only recapitulate existing measurements

but can also ultimately predict the behaviour of modelled systems under novel

conditions not previously tested and be the basis of design work as is done in

more mature fields of engineering [1–6]. In addition, high-quality, mechanisti-

cally accurate models can also lead to novel insights into systems operations.

Biological systems are sufficiently complex that mechanistic models will contain

large numbers of parameters and thus will require correspondingly large quan-

tities of data for training. Recent and future advances in the development of

high-throughput measurement techniques (e.g. mass spectrometry [7] and

flow cytometry [8]) continue to increase the quantity and quality of data col-

lected, and bring nearer the promise of meeting the needs of true mechanistic

understanding of biological complexity, as reflected in the ability to determine

the topology and parameters of corresponding models. Important research

areas include the development of experimental design strategies to efficiently

deploy experiments to probe new aspects of their operation, computational

framing of the space of relevant models and probabilistic treatments of model

uncertainty. Here, we focus on the first of these areas.

Recent work by Gutenkunst et al. [9] has suggested that it is difficult, if

not impossible, to accurately estimate the parameters of a typical biological
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model, regardless of how accurately the data are collected,

how many species of the model are simultaneously measu-

red or how finely the species are measured in time. It was

found that, for typical biological models under typical

experimental conditions, there were some directions in

parameter space that had so little effect on the measured

quantities that the resulting uncertainty in many of the par-

ameters was too vast to be overcome by higher quality

measurements. In later work [10–12], however, our group

showed that the seemingly vast parameter uncertainty

could be dramatically reduced with a relatively small

number of carefully selected perturbation experiments. We

demonstrated that sets of experiments could be found that

together exercised the epidermal growth factor (EGF) and

nerve growth factor (NGF) pathways in sufficiently comp-

lementary ways so as to allow all parameters to be

determined within 10 per cent uncertainty. This proof-of-

concept study highlighted a potential role for computational

design of experimental conditions to efficiently reduce

parameter uncertainty.

Our previous work effectively demonstrated the existence

in principle of a sequence of experiments that progressively

reduce parameter uncertainty to manageable levels; it did

not, however, investigate whether the sequence of exper-

iments might be discoverable in a practical setting. In an

effort to address the challenge of parameter error reduction

issued by Gutenkunst et al. [9], most aspects of our study

paralleled theirs, and these choices precluded drawing

conclusions regarding the practicality of parameter error

reduction through our scheme. These limitations included

(i) the actual model parameters were known and used at

each stage of the experimental design progression to select

the next experiment in the sequence, but, in any real appli-

cation, the actual model parameters would be unknown;

(ii) the data measurements in each experiment provided the

average information that could be obtained from any species

at any time, but, in practical situations, each data point pro-

vides information from a single species at a discrete time;

and (iii) the model was assumed to be linear in the sense

that the Fisher information matrix was assumed to accurately

represent the parameter uncertainty, whereas, in practice, the

Fisher information matrix is just the first (linear) term in

an expansion of that error (figure 1). The current report

addresses the practicality of setting up and solving as an

optimization problem the task of selecting experiments to

progressively reduce parameter uncertainty in biological

models by removing these limitations and seeking conver-

gence to the true, unknown parameters. In particular, the

performance of the approach could degrade significantly

because best-fit parameters with their inherent errors, rather

than perfect parameters, are used in the experimental

design phase. A major result of the work presented here is

that fitted parameters do, indeed, perform well in this role.

For comparison with previous work from our group and

that of Sethna, we carried out this study with the same model

of the EGF and NGF receptor kinase cascades, which are an

important pair of interlaced signalling networks in mamma-

lian cells [13]. The EGF receptor pathway, in particular, has

become one of the best-studied signalling pathways in

biology [14–17]. Constitutive activation of this pathway

is associated with cancers of the breast, bladder, cervix,

kidney, ovary, lung and other tissues. Despite nearly half a

century of investigation, much remains unknown about this
pathway [18,19]. A number of models have been developed,

differing in the species included, the connections among

them and the data with which they were parametrized. The

diversity of the available models of this system reflects the

underlying uncertainty concerning the true nature of these

pathways, in terms of both topology and parameters

[13,20–32]. The EGF–NGF model used in this work is an

ordinary differential equation (ODE) model developed by

Brown et al. [13] in which the enzymatic reactions of the

network are modelled with Michaelis–Menten kinetics.

We used synthetic datasets generated according to the

published model and showed that the uncertainty in all 48

parameters can be effectively reduced below 10 per cent

using the discrete data generated from a small set of

complementary experiments chosen according to a greedy

optimization algorithm. The parameters estimated by fitting

to the data of these chosen experiments converged to their

true values with a residual error consistent with 10 per cent

uncertainty. Furthermore, the error in the predictions made

according to these parameters was consistent with 10 per

cent parameter uncertainty.
2. Methods
2.1. Scenario overview
In our scenario, we treated the published model as the true

system. To perform a synthetic experiment, this model was simu-

lated according to the defined experimental conditions, and

noisy data were generated according to the measurement

scheme of that experiment by adding Gaussian random noise

corresponding to 10 per cent measurement error. As explained

in more detail below, simulated data were fitted to the topology

of the model but without access to the true parameters, which

resulted in trial parameters and uncertainty represented by the

Fisher information matrix. Experiments were designed to

reduce uncertainty, and the process was continued with these

experiments implemented in the model.

A nominal experiment was performed, and a starting model

was fitted to the resulting data. A nominal Fisher information

matrix was computed. Using the fitted model, the expected infor-

mation matrices for a large set of candidate experiments were

computed. The nominal information matrix was added to each

of the expected information matrices to predict the combined

information matrix after doing each of the candidate exper-

iments. The utility of each sum was quantified using a goal

function, and the highest-ranked experiment was selected.

The selected experiment was performed, using the true model

to generate noisy measurements in accordance with the exper-

iment’s design. The model was fitted to the union of the

nominal dataset and the new dataset from the best experiment.

This fitting returned a new parameter set from which the expected

information matrices were recomputed, and the subsequent best

experiment was selected. This procedure of computing, selecting,

performing and fitting was repeated iteratively until all the

parameter directions had uncertainties below 10 per cent.

2.2. The model
The model describes signalling from the EGF and NGF receptors

in rat PC12 cells and was developed by Brown et al. [13]. It has 32

species and 48 parameters for 24 reactions in two compartments.

We obtained a version encoded in the systems biology mark-up

language from the BioModels database [33]. The model includes

two extracellular species, EGF and NGF, which each bind to the

corresponding receptor to form two complexes. The remaining
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Figure 1. Nonlinearity. (a) In a linear model, the Fisher information matrix
exactly describes the likelihood of the parameter sets in the neighbourhood of
the most likely parameters. This likelihood is Gaussian, which has contours
that are ellipsoids in parameter space. (b) The likelihood of the parameters
of biological models is not exactly Gaussian. For two parameters of the EGF –
NGF model fitted to a nominal experiment, it can be seen that the true con-
tours for the likelihood of the association and dissociation parameters (green
line) are only approximated by the linearization (orange line). All contours in
both plots represent parameter sets of equal likelihood.
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species are divided between 11 enzymes that can exist as either an

active or inactive species and four enzymes that are constitutively

active. The parameters are divided into three classes: (i) four rate

constants for ligand–receptor association and dissociation, (ii) 22

kcat values, and (iii) 22 Km values of the Michaelis–Menten enzy-

matic reactions. The species, reactions and rate parameters were

retained from the original model. An illustration of the model

topology is provided in the electronic supplementary material,

figure S1, and a list of parameters and their values is available

in the electronic supplementary material, table S1. The extracellu-

lar compartment was given a volume of 1000 times that of the

intracellular compartment to reflect the modification made by

Apgar et al. [10]. The starting model had the topology of the

true model, but each parameter was set to the geometrical mean

of the class of parameters to which it belonged.

2.3. The experiments
We defined a battery of candidate experiments that served as a

collection of different conditions and perturbations to the

system, a selection of which could potentially drive a sufficiently

wide variety of system behaviour to allow definition of most or

all of the parameters with small uncertainty. Each experiment

included stimulation with one of five discrete values of EGF
(1 � 107, 1 � 105, 1 � 103, 1 � 101 and 0 molecules per cell) and

five discrete values of NGF (4.56 � 107, 4.56 � 105, 4.56 � 103,

4.56 � 107 and 0 molecules per cell). In this model, 1 ng ml21 is

equal to 1000 molecules per cell of EGF and 4560 molecules

per cell of NGF. In addition, up to three proteins, in the network,

could have their concentrations changed through knock-down or

over-expression. The species that could be changed were the two

receptors, the 11 inactive enzymes and the four constitutively

active enzymes, all of which started with non-zero concen-

trations as their initial condition. To represent knock-down or

over-expression, each of these species had its initial concentra-

tion decreased or increased by a 100-fold of its nominal value,

respectively. Considering all combinations of EGF and NGF

concentrations and knock-downs and over-expressions, there

were 150 475 possible experiments. The nominal experiment

was the one with an initial EGF concentration equal to 1000 mol-

ecules per cell (1 ng ml21) and an initial NGF concentration equal

to 4560 molecules per cell (1 ng ml21) and no knock-downs

or over-expressions.

All experiments were performed synthetically by simulation

of the system for 120 min using the numerical ODE solver

ode15s, with analytical Jacobian supplied, in Matlab (2008b,

The MathWorks, Natick, MA, USA). Each experiment called for

measuring all 32 species at 100 evenly spaced time points, and

all data points were subjected to random Gaussian noise with a

standard deviation of 10 per cent or one molecule, whichever

was larger. The experimental conditions and measurement

scheme are comparable to those used by Apgar et al. [10].
2.4. Data fitting
The fit of the model to data for any particular parametrization

was quantified using generalized least squares,

x2ðuÞ ¼ eTðuÞV�1
�y eðuÞ ð2:1Þ

and

eðuÞ ¼ �yðuÞ � ŷ; ð2:2Þ

where V�1
�y is the variance–covariance matrix of the measure-

ments, u is the vector of parameters of length nu and e(u) is the

difference between the model predictions �yðuÞ and the data

points ŷ. V�1
�y is a square symmetric positive semi-definite

matrix with a size equal to the number of measurements n,

and e(u), y(u) and ŷ are all vectors of length n. Our procedure

assumed that V�1
�y was a constant for the dataset. For the example

in this paper, there was no covariance proper, so V�1
�y was diag-

onal, and we estimated the uncertainty as 10 per cent of the value

of each data point or one molecule, whichever was larger.

The best-fit parameters were defined as the vector u that

minimized x2. This nonlinear optimization was accomplished

using the active-set algorithm implemented within fmincon in

Matlab. The lower bound of the search space was 1000-fold

less than the smallest value in each class of parameters in

the published model; the upper bound was 1000-fold greater

than the largest value in each class.
2.5. Information
The Fisher information matrix was used to quantify the knowl-

edge of the parameters. The Fisher information matrix F(u) for

a set of normalized parameters that affect the means of a multi-

variate normal distribution is given by

FðuÞ ¼ @�yðuÞ
@ log u

� �T

V�1
�y

@�yðuÞ
@ log u

; ð2:3Þ

where @�yðuÞ=@ log u is the sensitivity of the values of the data

points to the normalized parameters (an n � nu matrix calculated

by integrating the forward sensitivities together with the system
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during simulation using the numerical ODE solver ode15s

in Matlab).

To compute the information matrix for candidate exper-

iments, the model was simulated for each candidate experiment

using the fitted parameters. The uncertainty of each measure-

ment was computed according to the measurement scheme of

the candidate experiment. The sensitivity of each concentration

to the parameters was also integrated. Using equation (2.3), the

measurement uncertainty and sensitivity were used to compute

the information matrix from the expected results of a candidate

experiment. When the information matrix was computed in this

way, it was called an expected information matrix.

2.6. Parameter goal
Three different goal functions were used to evaluate the effi-

ciency of candidate experiments. Each of the goal functions

was based on the eigenvalues resulting from an eigendecompo-

sition of the information matrix. The inverse square roots of

these eigenvalues correspond to the uncertainties in the eigendir-

ections of parameter space [34,35]. The first goal function

maximized the number of eigendirections whose uncertainties

were less than 10 per cent and used the remaining directions to

break ties,

G1 ¼ �
Xnu

i¼1

gi ð2:4Þ

and

gi ¼
1; li �

1

s2
cut

;

li

ð1=s2
cutÞnu

; otherwise;

8>><
>>:

ð2:5Þ

where li is the ith eigenvalue of the information matrix and scut

is 0.1, the uncertainty cut-off value. This goal function is

equivalent to that used by Apgar et al. [10].

The second goal function minimized the sum of the natural

logarithm of the ellipsoid axes. It is equivalent to minimizing

the volume of the uncertainty ellipsoid, as well as minimizing

the entropy of the parameter probability distribution, as well as

maximizing the determinant of the Fisher information matrix,

G2 ¼
Xnu

i¼1

log l
�1=2
i : ð2:6Þ

The third goal function was identical to the second except

that no additional advantage was given to directions that were

tighter than 10 per cent. In other words, directions that had

errors lower than 10 per cent contributed to the goal function

the same as if they were exactly 10 per cent,

G3 ¼
Xnu

i¼1

maxðlog l
�1=2
i ; logscutÞ: ð2:7Þ
3. Results and discussion
We began our parameter estimation experiments with no

knowledge of the actual model parameters. Instead, the pro-

cess was begun with simulated experimental data with 10 per

cent added noise from a nominal experiment (intact network

stimulated with 1000 molecules (1 ng ml21) of EGF and 4560

molecules (1 ng ml21) of NGF per cell). Initial parameters

were estimated by fitting to the data according to weighted

least squares, and the corresponding Fisher information

matrix was computed. The spectra of inverse-square-root

eigenvalues l
�1=2
i , also referred to as the uncertainties in
parameter eigendirections, is given on the far left column of

figure 2 (marked nominal). The three panels of figure 2 corre-

spond to the three goal functions used. The nominal spectra

show some parameter directions to be well determined

(uncertainties below 10%) but others to be poorly determi-

ned (uncertainties greater than 1000-fold). The actual errors

in each parameter are shown on the left in figure 3 (marked

nominal) and are consistent with the uncertainties.

A large collection of 150 475 candidate experiments that

included a variety of levels of stimulation with EGF and

NGF acting on versions of the network modified with up

to three expression changes (100-fold over-expression or

under-expression each) was evaluated to determine which

would lead to the largest reduction in parameter uncertainty.

The selected experiment was simulated and 10 per cent

noise was added to the resulting concentrations to produce

simulated experimental data. New parameters were fitted

using cumulative data from the simulated experiments, the

corresponding updated Fisher information matrices were

computed, and the process was repeated iteratively. The

resulting uncertainties and parameter errors are given in

figures 2 and 3. The selection and implementation of exper-

iments proceeded until all parameter uncertainties were

below 10 per cent. The entire procedure was carried out

three times in parallel for the three different goal functions

used, with similar results.

The sequential addition of experiments selected in the

greedy optimization progressively reduced parameter uncer-

tainty. Uncertainty was very low after just three experiments

beyond the nominal experiment, and all parameters were

determined to within 10 per cent with six experiments

beyond the nominal.

An important aspect of the work is that the approximate

parameters fitted after each new experiment were used to

compute the Fisher information matrices leading to the

selection of the following experiment. Figure 3 shows that,

early in the procedure, many of the estimated parameters

were significantly in error, yet they still led to the selection

of experiments that efficiently reduced parameter uncer-

tainty. This is significant in light of the fact that the theory

strictly applies only to linear models. Even though there are

substantial nonlinearities in the EGF–NGF model, the behav-

iour of the parameter uncertainties is similar to that expected

from the linear theory. After the final experiment, nearly all

48 parameters were correct to within 10 per cent error. On

average, two parameters were outside 10 per cent, roughly

one was outside 20 per cent and none were outside 30 per

cent. This is consistent with the linearized uncertainties

from which it is expected that no more than 33 per cent

and 5 per cent of parameters should be outside 1 and 2

s.d., respectively (keeping in mind that many of the par-

ameters had less than 10% uncertainty by the end of the

procedure). Taken together, the results show that the esti-

mated parameters converged to the true parameters, and

the residual parameter errors were consistent with the calcu-

lated uncertainties. This correspondence lends confidence to

the usefulness of the method for cases where the actual

parameters will be unknown.

The experiments selected are shown in table 1. Three gen-

etic perturbations were used for each experiment except for

the final experiment for goal functions 1 and 3. When com-

paring the species knocked-down and over-expressed with

the parameters subsequently determined, there appears to
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be a relationship where determining the parameters of reac-

tion is helped by changing the concentration of the enzyme

or especially the substrate of that reaction (see the electronic

supplementary material, figures S2–S4). Because the average

information provided by one experiment alone is the same for

zero, one, two or three perturbations (see the electronic

supplementary material, figure S5), the apparent preference

for three perturbations is probably due not to an inherently

greater sensitivity to the parameters but instead to the greater

diversity (and thus, perhaps complementarity) that three

perturbations allow as well as the fact that three-perturbation

experiments make up 90 per cent of the candidate experiment

pool. One anonymous reviewer noted that, for the first goal

function, there was never chosen an EGF-dominated stimu-

lation, suggesting that reasonable parameter estimation may

be achievable without broad exploration of the input concen-

tration space. It remains to be seen how much of the input

space could be removed while still retaining the ability to

determine the parameters well within a small number of

experiments. Table 1 also shows that different sets of exper-

iments were used in the three parallel runs using different

goal functions. Based on our previous work, we hypothesize
that what is important about the sets of experiments is their

internal complementarity [10]. Multiple sets of experiments

can efficiently inform about all 48 parameters, but a set

must still be self-complementary to be informative about all

parameters. For example, sets of six experiments constructed

by mixing two experiments from each of the three comp-

lementary sets in table 1 were significantly less informative

about the parameters than the optimized sets in table 1 (see

the electronic supplementary material, figure S6).

In a linear system, the outputs change linearly in response

to a change in the parameters. Therefore, when a system has

non-negative outputs for any non-negative parameters, the

per cent error in any output is bounded by the worst per

cent error in the parameters. With a nonlinear system, this

guarantee disappears. To examine the effect that the optimal

experiments had on the prediction error of the EGF–NGF

model, we compared the predictions of the three final fitted



Table 1. Optimal experiments. The experiments chosen according to each of the three goal functions are shown here. The scenarios began with fitting to a
nominal experiment. In each case, it required six additional experiments to constrain the parameter uncertainty below 10%. All optimal experiments knocked-
down or over-expressed the maximum of three proteins in the network, with the exception of the final experiments in the cases of goal functions 1 and 3.

experiments EGF (molecules per cell) NGF (molecules per cell) knocked-down over-expressed

goal function 1; count of uncertainties above 10%

nom. 1000 4560

1 0 4560 RasGap, Erk Rap1

2 10 4.56 � 107 RapGap Erk, Akt

3 0 4560 Raf1PPtase Mek, C3G

4 1.00 � 105 4.56 � 107 Sos, Raf1, Braf

5 0 4.56 � 107 Braf, C3G, Rap1

6 1.00 � 107 4.56 � 107 Sos, Ras

goal function 2; sum of log of uncertainties

nom. 1000 4560

1 1.00 � 107 4560 EGFR, P90Rsk Rap1

2 10 4.56 � 105 RasGap, Raf1PPtase Erk

3 1.00 � 105 45.6 Sos, Mek, PI3K

4 0 4560 RapGap Braf, Rap1

5 1.00 � 107 4560 RasGap Ras, Raf1

6 1000 4.56 � 107 Rap1 PI3K, Akt

goal function 3; sum of log of uncertainties floored at 10%

nom. 1000 4560

1 0 4.56 � 107 RasGap Raf1, Rap1

2 1.00 � 105 45.6 Erk, RapGap Braf

3 10 4.56 � 105 RasGap Ras, Mek

4 1.00 � 107 4.56 � 107 Raf1PPtase Sos, Braf

5 10 4560 Braf, C3G, Rap1

6 10 4560 Erk, Akt
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models with the predictions of the true model. We simula-

ted the model under all 150 475 candidate experimental

conditions using both the true parameters and the final esti-

mated parameters and sampled the species according to the

standard scheme. No noise was added to the measurements,

so that we quantified only the component of the error that

came from incorrect parametrization. We computed the

relative error in each prediction,

relerr ¼ jlog �ypred � log �ytruej ¼ log
�ypred

�ytrue

����
����; ð3:1Þ

where �ypred is the predicted species concentration, and �ytrue is

the actual species concentration according to the true model.

Predicted or actual concentrations less than one molecule per

cell were not considered.

Because there were 3200 data points in each experiment

(32 species, 100 data points each), we summarized the predic-

tion error in each experiment in three ways: (i) the largest

prediction error of all the data points in a given experiment,

(ii) the largest of all ERK prediction errors, and (iii) the

median of all ERK prediction errors. The first summary is

the most conservative, but the second and third may be the

most informative, because it is often the prediction error of

a specified output, not of all intermediate species, that is

of greatest interest. A histogram of the prediction errors
according to these three summaries from the 150 475 candidate

experiments can be seen in figure 4. The worst prediction errors

cluster around 10 per cent, which is consistent with the par-

ameter uncertainties and parameter errors. Taken together,

the results show that the parameters converged to their

true values as data from optimal experiments were added

(figure 3), and the residual prediction error in yet-to-be-done

experiments was consistent with the calculated parameter

uncertainty (figure 4). While entirely expected for linear

models, it is gratifying to see similar results in this nonlinear

system representative of the types of signalling models

currently used in systems biology.

In addition to the prediction error after the final itera-

tion, we also examined the prediction error from the fitted

models at intermediate iterations. The predictions of many

experiments made by the models only fitted to three optimal

experiments were worse than 10 per cent (see the electro-

nic supplementary material, figure S7). For each of the

three error summary types at each iteration, we further

summarized the histograms in two ways: (i) the fraction of

experiments whose errors were below 10 per cent and

(ii) the median error over all experiments. Figure 5 shows

the summarized prediction errors of the models after each

experiment was added. As expected, the predictions by all

measures improved nearly monotonically with increasing
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data. The improvements in the predictions tended to taper off

with the last few experiments; that is, the experiments chosen

to determine the most difficult parameters did not as greatly

improve the global predictions. This is consistent with the

findings of Apgar et al. [10], who showed that the few final

parameters determined by the greedy search algorithm had

only a few experiments that were sensitive enough to these

parameters to determine them. The converse, that there are

only a few conditions whose outcome is strongly affected

by finally determined parameters, is shown here.
4. Conclusion
Our previous work demonstrated that optimal experimental

design could select experiments that sequentially reduced

parameter uncertainty, but it was a theoretical demonstration

that made use of the ideal model parameters, which, in prac-

tice, are unknown [10]. Here, we extend those findings by

demonstrating convergence to the correct parameters through

iterative estimation and experimental design cycles, without

knowledge of the actual parameters. The parameter uncer-

tainties converged to below 10 per cent for all parameter

directions, and the actual parameter errors of the final

models were consistent with this uncertainty level. Moreover,
the prediction errors on experiments not used in the parame-

trization were also small and consistent with the parameter

errors. This is an important demonstration because, at each

stage, the scenario essentially needs to identify measurements

that are sensitive to the poorly known parameters based on a

linearization about a set of parameters that could still have

large errors. If the model were purely linear, this would not

be a concern; for nonlinear models, the parameter error

means the linearization could frequently be taken about a

point significantly different from the true parameter set,

and so the linearization would be grossly inaccurate.

A major result of this work is that these inaccuracies do not

spoil the rapid convergence of the method. We note that

the increase from five experiments in our previous work to

the current six is due to the use of discrete data here rather

than due to continuous data as used previously; we

determined this from the observation that even using

perfect parameters with discretely drawn data requires six

experiments to provide all parameters with 10 per cent

uncertainty (data not shown). Using six randomly chosen

experiments or a single experiment with all the perturbations

of a set of optimal experiments did not reduce parameter

uncertainty as effectively as the set of experiments chosen by

our optimization scheme (see the electronic supplementary

material, figures S8–S10).
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Our method can be applied to any model defined as a

system of ODEs, including those that model multi-stable sys-

tems and oscillating systems, as well as those with multiple

minima when parameter fitting. In models with these pro-

perties, the nonlinearity is even more apparent than in the

EGF–NGF model. Linearization was an appropriate appro-

ximation for our test system, but further study will be

required to determine whether this continues to hold for

other biological systems with more complex behaviours.

As close as we tried to make our synthetic procedure

mirror a real example, there are a number of real system

traits that were neglected. Most obviously, a real system is

not a set of ODEs. Real biomolecular systems are confined

within cells and subject to stochastic effects. Because the

number of molecules in our test system was mostly in the

hundreds of thousands, stochasticity would be expected to

be only a small perturbation. But, many biological systems

operate with only a few molecules of some species per cell,

notably if DNA is involved, which usually exists as one or

two copies per cell. Stochasticity could mitigate our con-

clusions in three ways: (i) even a perfectly parameterized

ODE may not accurately recreate the behaviour of a stochastic

system, (ii) aggregate measurements over many cells may not
reflect the behaviour of any single cell and, thus, fitting to

such data could be meaningless or inappropriate, and

(iii) predicting the next best experiment requires integrating

the sensitivities of the species to the parameters, and it is

unclear how meaningful these calculations would be in sys-

tems where stochasticity was dominant. One way to deal

with systems in which stochasticity is important is to use a

deterministic approximation to the stochastic noise, such as

the linear noise approximation [36] or mass fluctuation kin-

etics [37]. The Fisher information matrix has been derived

for the linear noise approximation and has been used for

optimal experimental design [38].

We also did not consider any uncertainty in the inputs

to the model. For example, the knock-downs were assumed

to flawlessly reduce the initial concentrations to one-

hundredth of their prior value. This cannot be done in rea-

lity, but a straightforward extension of the method would

propagate the uncertainty in the inputs to the uncertainty

in the outputs. In lieu of propagating input uncertainty,

we repeated the procedure for the first goal function

where, instead of the knock-downs and over-expressions

being perfectly effective at making 100-fold changes, the

effect of the knock-down and over-expression in the true
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experiments was determined randomly between one- and

1000-fold on a logarithmic scale. Despite the fact that some

knock-downs and over-expressions could have nearly no

effect and that the optimal experimental design algorithm

had no knowledge of this possibility when selecting the next

best experiment to do, this only increased the number of exper-

iments needed to 10 (see the electronic supplementary

material, figures S11 and S12). The experiments chosen and

the actual perturbations used are available in the electronic

supplementary material, table S2.

Alternative methods for minimizing the uncertainty in

biological models through optimal experimental design

have been previously described. Some methods adopt a rig-

orous Bayesian approach [39,40]. Other methods adopt a

different control mechanism, such as time-point selection

[41] and dynamic input control [42,43]. The method investi-

gated here, which selects experiments from a discrete set, is

complementary to these alternative control mechanisms.

One could imagine combining methods to first select the opti-

mal general conditions from a discrete set and then using

time-point selection to remove non-informative measure-

ments and altering the dynamic input profile to further

enhance the information gained from a possible experiment.

Existing methods also vary in terms of their goal, such as

the various optimality functions of the covariance matrix

[44] and minimizing prediction uncertainty [45]. All three

of our goal functions operated on the parameter covariance

matrix and were designed to minimize uncertainty in par-

ameter eigendirections. In fact, goal function 2 is equivalent

to the popular D-optimal criterion of maximizing the

determinant of the Fisher information matrix. Seeking

to maximize the trace of the Fisher information matrix

(T-optimality) or minimize the trace of the covariance

matrix (A-optimality) are popular goals that we did not

test. Operating on prediction uncertainty instead may be pre-

ferable if knowledge of the system is a secondary goal to

using the model for a specialized task.

It should be noted that having a diverse set of candidate

experiments is critical to the successful outcome of this pro-

cedure. This method selects the best experiment but does

not design new experiments should the candidate set be

insufficient to find all the parameters. As indicated by the

computation of the Fisher information matrix, good exper-

iments are those that make measurements that are sensitive

to the yet unknown parameters. If there are portions of the

network that cannot be differentially perturbed with existing

techniques, it may not be possible to discover the values of

the parameters important there. If the number of time

points per experiment is reduced from 100 to 80, 40, 20, 10

or 5, the parameters can still be determined, though it takes
a few more experiments to do so (up to 12 experiments; elec-

tronic supplementary material, figure S13). Furthermore, if

the measurement uncertainty is increased from 10 per cent

to 20 per cent, it still takes only six additional experiments

to determine all parameters better than 10 per cent, reinfor-

cing the importance of complementarity. But when the

measurement uncertainty is increased to twofold, it now

takes 22 experiments, although the number of experiments

needed can be brought back down by reducing the desired

parameter uncertainty to twofold as well (see the electronic

supplementary material, table S3).

Finally, our method assumes that the topology is already

known. This can be far from true. Even with an incorrect

topology fitted to data, it is possible to use our approach

and predict the best experiment to minimize parameter

uncertainty. Yet it is unclear what the ultimate result of that

would be. Would the experiments actually be effective at

minimizing parameter uncertainty? Would it choose exper-

iments that eliminated it as a possible topology? Would the

experiments it chose still be best, or nearly best, once the

correct topology was found?

Akt is known to also downregulate B-Raf, a reaction that

is not described in this model. We added a reaction to the

original model in which Akt downregulated B-Raf with

Akt’s normal Km and a kcat of one-hundredth of the strength

by which Akt influences Raf-1. We used this modified model

as the true model to generate data, while using the published

model to actually fit to the data. This was intended to rep-

resent one case where the model topology does not match

the real system. The model was able to fit the data of the

nominal experiment, and two optimally chosen experiments

according to goal function 1. However, the model failed to

fit the data after the third experiment according to a x2 test

between the data and the best-fit model (data not shown).

This suggests that computational experimental design can

not only lead to well-determined parameters for appropriate

topologies but can also lead to indications that topologies are

insufficient to explain observed data.

We are currently working on methods to discover topology-

defining experiments that can be used together with the

method presented here to discover parameter-defining exper-

iments so that models can be improved progressively along

both directions.

The authors thank Joshua Apgar and Tim Curran for helpful discus-
sion, and Intel for a gift of computer hardware. The research was
partially funded by the U.S. National Science Foundation (grant
no. 0821391), the U.S. National Institutes of Health (grant no.
CA112967), the MIT Portugal Programme and the Singapore MIT
Alliance for Research and Technology.
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