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Abstract
Transboundary industrial pollution requires international actions to control its formation and

effects. In this paper, we present a stochastic differential game to model the transboundary

industrial pollution problems with emission permits trading. More generally, the process of

emission permits price is assumed to be stochastic and to follow a geometric Brownian

motion (GBM). We make use of stochastic optimal control theory to derive the system of

Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the coopera-

tive and the noncooperative games, respectively, and then propose a so-called fitted finite

volume method to solve it. The efficiency and the usefulness of this method are illustrated

by the numerical experiments. The two regions’ cooperative and noncooperative optimal

emission paths, which maximize the regions’ discounted streams of the net revenues,

together with the value functions, are obtained. Additionally, we can also obtain the thresh-

old conditions for the two regions to decide whether they cooperate or not in different cases.

The effects of parameters in the established model on the results have been also examined.

All the results demonstrate that the stochastic emission permits prices can motivate the

players to make more flexible strategic decisions in the games.

Introduction
In 1991, the United States and Canada concluded a bargain to deal with the transboundary air
pollution, which originated at one location and damaged another region’s air quality after a
travelling of the pollution. The transboundary pollution, which is defined as “pollution whose
physical origin is situated wholly or in part within the area under the jurisdiction of one state
and which has adverse effects in the area under the jurisdiction of another state” in the above
United States-Canada agreement, is a particularly serious problem now as it gets the people liv-
ing in regional borders into facing disproportionate pollution problems. It is the transboundary
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pollution that originates in one region, but it is able to lead the living organisms in other coun-
tries to be disordered or discomfortable by its crossing the border through the pathways of
water or air.

The differential game can be regarded as an effective instrument to deal with pollution con-
trol problems and to examine the reciprocal actions between the dynamic processes of pollu-
tion and participants’ behaviors. Differential games are often used to model and analyze the
actions in the case of dynamic systems. There are many players with their own goals in the sys-
tem and the dynamics of players’ states are modeled by a series of differential equations. In a
transboundary pollution control problem, the neighboring countries or regions can be seen as
the players and they aim at maximizing the joint or their own net present profits under the
cooperative and noncooperative games, respectively. In recent years, many researches have
been done on how people make decisions to adapt climate change from the viewpoint of game
theory. See, for example, [1–9].

Some researchers have paid their attention to the transboundary industrial pollution prob-
lems in recent years. For example, [10] first derived the time consistent solutions in a cooperative
differential game and first studied the pollution management in a stochastic differential game
framework. In [11], a cooperative stochastic differential game of transboundary industrial pollu-
tion is presented, and a payment distribution mechanism is derived to maintain the subgame
consistency. Additionally, there are several published studies of transboundary pollution prob-
lems from other views, such as renewable resource, clean technologies, harmonization of inter-
national and domestic law, abatement cost, R&D spillovers and so on (for instance, [12–15]).

As we all know, most types of pollution are caused by the over emissions of industrial waste.
For the purpose of improving global environment, some emission permits trading markets
have emerged and are developing prosperously in recent years. However, to our best knowl-
edge, there are very few published articles about differential game of transboundary industrial
pollution to take the emission permits trading into consideration. In fact, up to now we have
only found the paper [16], in which Li extended Yeung’s model in [11] by taking emission per-
mits trading into account, and the paper [17], in which Bernard et al. examined the impact of
the strategic interactions between Russia and China in international carbon emission permits
market on the pricing of emission permits by proposing a computable economic model. These
two models all regard the emission permits price as a constant or a deterministic function.

Our main work in this paper is that we generalize the emission permits price to follow a geo-
metric Brownian motion (GBM), which commonly depicts the path of underlying assets in
financial markets. Market data from the most important emission permits trading systems,
such as European Union Emissions Trading Scheme (EU ETS), European Climate Exchange
(ECX) and Chicago Climate Exchange (CCX), show that the emission permits price is highly
volatile. In the cap-and-trade scheme, the total amount of emission is limited for each emitter,
and the difference in the efficiency of using energy and emitting CO2 for different emitters
makes the emission permits become a scarce resource like a commodity in a capital market.
The scarcity of emission permits makes their price affected by the supply and demand. Then,
the uncertain relationship between supply and demand for emission permits leads to the vola-
tility in price. Some researchers have studied the emission permits price theoretically and
empirically, and most of them believe that there should be a stochastic element in the emission
permits prices. See [18–22], for example.

The interaction between the natural environment and the pollutants emitted often effects
the accumulation process of pollution stock, hence stochastic elements should appear in the
process inevitably. Taking this into account, we present a differential game model to describe
transboundary industrial pollution problems, in which both the pollution stock and the emis-
sion permits price are all stochastic. By applying the classical tools of stochastic optimal
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control, we derive a system of Hamilton-Jacobi-Bellman (HJB) partial differential equations
satisfied by the value functions from the initial stochastic optimal control problems under the
cooperative and the noncooperative games. Note that in a differential game model, the open-
loop Nash equilibrium is more tractable than a feedback Nash equilibrium because the controls
in open-loop equilibrium only depend on time, however, it is not robust when there is a singu-
lar perturbation in the states of the system. Furthermore, the open-loop model only allows the
players to choose the strategies at the beginning of games, and the players can not receive or
utilize new information during the whole time span (see [23] and [24]). Therefore, here we
consider a feedback Nash equilibrium in which controls depend on both time and states, so
that the players can adjust their strategies to the new information. That is, before making deci-
sions the players should consider the past choices of the other players at any time.

In many differential game models, usually it is assumed that the game horizon is infinite,
which can reduce the complexity of the problem, such that the problem can be solved analytically.
In addition, [25] listed some tools for obtaining analytical results. However, in the present paper,
we ignore the above simplified assumption (that is, now the time variable t is finite), and derive a
system of time-dependent HJB equations. Moreover, the volatility exists in both pollution and
emission permits price dynamics, such that the system of HJB equations become a degenerate
parabolic problem which is different from the common one. In this case, we cannot find out the
analytical solution to our model. So, we try to solve it numerically. Some discussions about the
numerical algorithms of the HJB equations have been made for the past few years. For example,
[26] numerically solved a two-persons zero-sum deterministic differential games governed by a
HJB equation, and [27] studied the convergence of monotone P1 finite element methods for
Hamilton-Jacobi-Bellman equations governing optimal control problems. Also, [28] presented an
upwind finite-difference method, which is based on an explicit finite-difference scheme and is sta-
ble under certain constraints on the step sizes of the discretization, for the numerical approxima-
tion of Hamilton-Jacobi-Bellman equations arising from optimal feedback control problems.

In this paper, we propose a so-called fitted finite volume method to solve the HJB equations
established by ourselves. The innovation of this method is that it couples a finite volume for-
mulation with a fitted local approximation to the solution. On one hand, we implement the
local approximation through solving a sequence of two-point boundary value problems defined
on each element. On the other hand, the finite volume method possesses a special feature of
the local conservativity of the numerical flux, and is becoming more and more popular. The
main advantage of this discrete method is that the system matrix of the resulted discrete equa-
tion is anM-matrix, which guarantees that the discretization is monotonic and the discrete
maximum principle is satisfied. See, for instance, [29] for degenerate parabolic problems, [30]
for hyperbolic problems, and [31] for elliptic problems. We hope to make a few theoretical and
practical contributions to applying the fitted finite volume method to management problems.

The paper is organized as follows. Section 2 provides the cooperative and the noncoopera-
tive game formulations, from which the HJB equations are derived. Then, a so-called fitted
finite volume method is proposed for the discretization of the HJB equations in Section 3. In
Section 4, some numerical experiments are performed to illustrate the efficiency and usefulness
of the numerical method, and the results of economic and managerial meanings are also pro-
vided in this section. Finally, concluding remarks are given in Section 5.

The differential game framework and HJB equations

The basic differential game framework
For the purpose of illustrating the dynamics of pollution and the interactions among the play-
ers in a commitment period, we propose a finite-horizon differential game framework. Also,
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we assume that the game involves two players (countries or regions), which we do believe can
be expanded in the future works.

Let Qi(t) (i = 1,2) denote the production of region i during the period [0,T], where T is the
maturity of the game. This production leads to a quantity of by-products, namely emissions
Ei(t). Region i’s net revenue arising from the production can be represented by an increasing
concave function Ri(Qi(t)). Following [16] and [32], we assume that the relationship between
the production and emissions is linear, and the production revenue function can be expressed
by the following quadratic functional form in terms of emissions:

RiðEiðtÞÞ ¼ AiEiðtÞ �
1

2
E2
i ðtÞ; ð1Þ

where Ai is a positive constant. Here we relax the restriction of Ei(t) 2 [0,Ai] proposed in [16]
and [32] for the two reasons: (a) we believe that a negative emission means that the greenhouse
gases are removed from the earth’s atmosphere permanently, and an alkali works can realize it;
(b) the losses of region i caused by an excessive emission (Ei> Ai) can be offset by the gains
from the emission permits market or from the game.

In an emission permits trading scheme, the initial quota Ei0, which is a positive constant, is
often allocated by the grandfather principle or auction principle. Then, the trading volume of
emission permits of region i is given by

YiðtÞ ¼ EiðtÞ � Ei0; ð2Þ

where Yi > 0 means that the region i purchases the emission permits from the market, and Yi

< 0 means that the region i sells the unused emission permits to others, respectively. Further-
more, we assume that the emission permits price S(t) is stochastic and follows a geometric
Brownian motion (GBM):

dSðtÞ ¼ mSSðtÞdt þ sSSðtÞdWS; ð3Þ

where μS and σS are two constants and denote the drift rate and the volatility of emission per-
mits price respectively, and dWS denotes the increment to standard Brownian process.

It is our main work in this paper to extend the emission permits price from a constant or a
deterministic function to a stochastic process. With the Kyoto Protocol entering into force in
2005, emission permits have become a scarce resource for most of regions in the world. The
scarcity of emission permits makes their prices affected by the supply and demand. Then, the
uncertain relationship between supply and demand for emission permits leads to the volatility
in price. Just as mentioned in [18], the emission permits market is of great promise and is
becoming more and more liquid, such that it may turn into one of the largest commodities
markets in the near future. In a more prosperous market, emission permits prices should be
determined by the market, which is similar to the situation in a capital market.

The emissions of several kinds of greenhouse gases have been regarded as permits, and the
relationships between supply and demand for different kinds of emission permits should be
diverse each other, so the price dynamics for each kind of greenhouse gases should be different.
Additionally, the emission permits price dynamics of the same gas in different markets should
be also distinct due to the difference in trading form, market participants, and so on.

The GBM is the most widely used model of asset price process in capital markets, and it has
been used in the Black-Scholes model, too. To depict the problem from a general viewpoint, we
assume in this paper that the emission permits price follows the GBM, which can ensure that
the emission permits price is positive. Note that this assumption can be modified when some
other specific cases are dealt with.
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Consequently, the region i’s industrial net revenue involves emission permits trading with a
stochastic dynamic price process at time t can be represented as

PiðEiðtÞÞ ¼ AiEiðtÞ �
1

2
E2
i ðtÞ � SðtÞðEiðtÞ � Ei0Þ

¼ ðAi � SðtÞÞEiðtÞ �
1

2
E2
i ðtÞ þ SðtÞEi0:

ð4Þ

Moreover, let P(t) denote the stock of pollution in the environment at time t. Then, the
dynamic process of pollution stock is governed by the following stochastic differential equation:

dPðtÞ ¼ ðE1ðtÞ þ E2ðtÞ � yPPðtÞÞdt þ sPPðtÞdWP; ð5Þ
where E1(t) and E2(t) denote the emission levels of regions 1 and 2 respectively, θP> 0 repre-
sents the exponential decay rate of pollution, and the term σP P(t)dWP stands for the stochastic
disturbance of the pollution. The constant σP is a noise parameter and denotes the volatility of
pollution stock, and dWP is the increment to the standard Brownian process. As we have
known, the accumulation process of pollution stock is complex. For example, weather fluctua-
tions, nature’s capability to refresh the environment and other natural factors may all contribute
to the stochastic dynamic evolution of pollution stock, so it is necessary to add the volatility
term into Eq (5). Without loss of generality, we assume that the two Brownian processesWS

andWP are correlative with a correlation coefficient ρ> 0, while ρ = 0 means they are indepen-
dent of each other.

According to [33], we suppose that the pollution damage suffered by region i at time t is given
by Di P(t), where Di is a strictly positive parameter. In addition, we also regard the salvage cost at
time T for the pollution stock as a linear function gið�Pi � PðTÞÞ; where gi> 0 and �Pi > 0.

In particular, we set A2 = αA1 and D2 = βD1 in the process of solving our problem. By means
of [34], it is the parameters α and β that characterize the differences in the two regions’ capaci-
ties in generating revenue from production and in bearing the damages from the stock of pollu-
tion or from abatement costs. In addition, these differences can be also resulted from the
population difference. How the differences effect the regions’ behaviors will be illustrated in
Discussions.

Hence, the current objective of region i is to find an optimal plan which maximizes the
expected present of the flow of instantaneous net revenue. That is, the objective functional and
constraint conditions of region i are as follows:

max
EiðtÞ

E
Z T

0

e�rt ðAi � SðtÞÞEiðtÞ �
1

2
E2
i ðtÞ þ SðtÞEi0 � DiPðtÞ

� �
dt

� �
� giðPðTÞ � �PiÞe�rT ;

subject to
dSðtÞ ¼ mSSðtÞdt þ sSSðtÞdWS; Sð0Þ ¼ S0;

dPðtÞ ¼ ðE1ðtÞ þ E2ðtÞ � yPPðtÞÞdt þ sPPðtÞdWP; Pð0Þ ¼ P0;

(

where r is the social risk-free discount rate, and t = 0 is the initial time.
Next we will take advantage of the stochastic optimal control theory to derive the two

regions’ value functions under the cooperative and noncooperative games respectively, by vir-
tue of which we can find out the optimal emission paths, such that the regions’ discounted
streams of net revenues are maximized.

The cooperative game
The game theory can be split into two branches, namely the cooperative game and the nonco-
operative game. In a cooperative game, the players are restricted by legal agreements to adhere
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to their promises, and their common goal is to achieve the joint optimum. Under a cooperative
framework, the two regions seek the optimal emission path to maximize the joint net revenue.
Their joint objective functional and constraint conditions can be written as follows:

max
EC1ðtÞ;EC2ðtÞ

E
Z T

0

e�rt½ðA1 � SðtÞÞEC1ðtÞ þ ðA2 � SðtÞÞEC2ðtÞ �
E2
C1ðtÞ þ E2

C2ðtÞ
2

�

þðE10 þ E20ÞSðtÞ ðD1 þ D2ÞPðtÞ�dt
o
�
X
i¼1;2

giðPðTÞ � �PiÞe�rT ;

subject to
dSðtÞ ¼ mSSðtÞdt þ sSSðtÞdWS; Sð0Þ ¼ S0;

dPðtÞ ¼ ðEC1ðtÞ þ EC2ðtÞ � yPPðtÞÞdt þ sPPðtÞdWP; Pð0Þ ¼ P0;

( ð6Þ

where EC1(t) and EC2(t) denote the emission levels of regions 1 and 2 in the cooperative game,
respectively.

Assume that the joint value function VC(P,S,t) is a twice continuously differentiable function
of P and S. By applying the dynamic programming approach and Itô 's lemma to solve the
above stochastic optimal control problem, we can obtain the following Hamilton-Jacobi-Bell-
man equation satisfied by the value function VC(P,S,t):

max
EC1 ;EC2

@VC

@t
þ ðEC1 þ EC2 � yPPÞ

@VC

@P
þ 1

2
s2
PP

2 @
2VC

@P2
þ mSS

@VC

@S
þ 1

2
s2
SS

2 @
2VC

@S2

�

þrsPsSPS
@2VC

@P@S
� rVC þ FCðP; S; EC1; EC2; tÞ

�
¼ 0;

ð7Þ

with the terminal condition

VCðP; S;TÞ ¼ �
X
i¼1;2

giðPðTÞ � �PiÞ; ð8Þ

where

FCðP; S; EC1; EC2; tÞ ¼ ðA1 � SÞEC1 þ ðA2 � SÞEC2 � E2
C1

þE2
C2

2
þ ðE10 þ E20ÞS� ðD1 þ D2ÞP

We now present the derivation process of the above HJB equation in the following discus-
sions. First of all, the problem at t = T needs not to be discussed because it is not a decision
problem. In fact, the objective functional (6) becomes�Pi¼1;2giðPðTÞ � �PiÞ if t = T. Therefore,

if we choose the emission paths EC1 and EC2 optimally, the value function VC can be written as
the following recursive form (dynamical programming principle):

VCðPðtÞ; SðtÞ; tÞ ¼ max
EC1ðtÞ;EC2ðtÞ

Z tþDt

t

e�rðo�tÞFCðPðoÞ; SðoÞ; EC1ðoÞ; EC2ðoÞ;oÞdo
�

þe�rDtVCðPðt þ DtÞ; Sðt þ DtÞ; t þ DtÞg: ð9Þ

It follows from moving VC(P(t),S(t),t) to the right hand side of the above equation and
dividing the resulting equation by Δt that

0 ¼ max
EC1ðtÞ;EC2ðtÞ

1

Dt

Z tþDt

t

e�roFCðPðoÞ; SðoÞ; EC1ðoÞ; EC2ðoÞ;oÞdo
�

þ e�rDtVCðPðt þ DtÞ; Sðt þ DtÞ; t þ DtÞ � VCðPðtÞ; SðtÞ; tÞ
Dt

�
:

ð10Þ
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Now, we are in the position to find out what happens if Δt approaches to 0. Obviously, we
can see from the Mean Value Theorem that

lim
Dt!0

Z tþDt

t

e�roFCðPðoÞ; SðoÞ; EC1ðoÞ; EC2ðoÞ;oÞdo ¼ FCðPðtÞ; SðtÞ; EC1ðtÞ; EC2ðtÞ; tÞ:

To examine the limit of the second term in the right hand side of Eq (10), we make use of
Itô 's lemma to expand e−rΔt VC(P(t+Δt),S(t+Δt),t+Δt) at Δt = 0 and obtain

lim
Dt!0

e�rDtVCðPðt þ DtÞ; Sðt þ DtÞ; t þ DtÞ � VCðPðtÞ; SðtÞ; tÞ
Dt

¼�rVC þ
@VC

@t
þ ðEC1ðtÞ þ EC2ðtÞ � yPPÞ

@VC

@P
þ 1

2
s2
PP

2 @
2VC

@P2
þ mSS

@VC

@S

þ 1

2
s2
SS

2 @
2VC

@S2
þ rsPsSPS

@2VC

@P@S
;

in which we assume that VC is twice continuously differentiable. Then, by means of the above
two expressions, we can know that as Δt! 0 Eq (10) becomes Eq (7).

Remark 1 In our model, the constraint conditions, the terminal condition and FC(P(t), S(t),
EC1(t), EC2(t), t) are infinitely differentiable functions and bounded for a given domain O =
(Pmin,Pmax) × (Smin,Smax) × (0,T). According to [35], the dynamical programming principle (9)
should hold.

Remark 2However, the above conditions can not ensure that the optimal value function VC

is twice continuously differentiable. In the future work, we will try to present a sufficiency theo-
rem to overcome this obstacle.

The noncooperative game
A noncooperative game means that each player makes his or her own decisions which may be
conflicting with others’ ones to some extent. In our model, if the two regions do not cooperate,
they should choose the optimal emission levels to maximize their own net revenues. That is,
for region 1:

max
EN1ðtÞ

E
Z T

0

e�rt½ðA1 � SðtÞÞEN1ðtÞ �
E2
N1ðtÞ
2

þ E10SðtÞ � D1PðtÞ�dt
� �

� g1ðPðTÞ � �P1Þe�rT ;

subject to
dSðtÞ ¼ mSSðtÞdt þ sSSðtÞdWS; Sð0Þ ¼ S0;

dPðtÞ ¼ ðEN1ðtÞ þ EN2ðtÞ � yPPðtÞÞdt þ sPPðtÞdWP; Pð0Þ ¼ P0;

(

and for region 2:

max
EN2ðtÞ

E
Z T

0

e�rt½ðA2 � SðtÞÞEN2ðtÞ �
E2
N2ðtÞ
2

þ E20SðtÞ � D2PðtÞ�dt
� �

� g2ðPðTÞ � �P2Þe�rT ;

subject to
dSðtÞ ¼ mSSðtÞdt þ sSSðtÞdWS; Sð0Þ ¼ S0;

dPðtÞ ¼ ðEN1ðtÞ þ EN2ðtÞ � yPPðtÞÞdt þ sPPðtÞdWP; Pð0Þ ¼ P0;

(

where EN1(t) and EN2(t) denote the emission levels of regions 1 and 2 in the noncooperative
game, respectively.

Similarly, in the noncooperative game, the value function VN1 and VN2 for two regions 1
and 2 are assumed to be twice continuously differentiable. Through the same discussion as the
cooperative case, we can obtain the system of HJB equations satisfied by VN1 and VN2 under
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the noncooperative game as follows:

max
EN1ðtÞ

@VN1

@t
þ ðEN1ðtÞ þ EN2ðtÞ � yPPÞ

@VN1

@P
þ 1

2
s2
PP

2 @
2VN1

@P2
þ mSS

@VN1

@S
þ 1

2
s2
SS

2 @
2VN1

@S2

�

þrsPsSPS
@2VN1

@P@S
� rVN1 þ FN1ðP; S; EN1ðtÞ; EN2ðtÞ; tÞ

�
¼ 0;

max
EN2ðtÞ

@VN2

@t
þ ðEN1ðtÞ þ EN2ðtÞ � yPPÞ

@VN2

@P
þ 1

2
s2
PP

2 @
2VN2

@P2
þ mSS

@VN2

@S
þ 1

2
s2
SS

2 @
2VN2

@S2

�

þrsPsSPS
@2VN2

@P@S
� rVN2 þ FN2ðP; S; EN1ðtÞ; EN2ðtÞ; tÞ

�
¼ 0

ð11Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
with the terminal conditions

V1ðP; S;TÞ ¼ �g1ðP � �P1Þ and V2ðP; S;TÞ ¼ �g2ðP � �P2Þ;

where

FN1ðP; S; EN1ðtÞ; EN2ðtÞ; tÞ ¼ ðA1 � SðtÞÞEN1ðtÞ �
E2
N1ðtÞ
2

þ E10SðtÞ � D1PðtÞ;

and

FN2ðP; S; EN1ðtÞ; EN2ðtÞ; tÞ ¼ ðA2 � SðtÞÞEN2ðtÞ �
E2
N2ðtÞ
2

þ E20SðtÞ � D2PðtÞ:

Numerical methods
In this section, we will present a numerical method to discretize the above HJB equations estab-
lished by us for the reason that these equations cannot be solved analytically. In fact, here a fit-
ted finite volume method will be employed. Also, it will be shown that the system matrix of the
resulting discrete equations is anM-matrix, which guarantees that the discretization is mono-
tonic and the discrete maximum principle is satisfied, such that the scheme has a unique solu-
tion. Besides, a two-level implicit time-stepping method is used to implement the time-
discretization. Since the structure of HJB equations arising from the noncooperative case is
similar to the cooperative one, here we only discuss the latter to save the space.

Let us denote the optimal emission paths by E�
C1 and E

�
C2. From the first-order optimality

condition, we know that Eq (7) can be split into the following coupled equations:

@VC

@t
þ ðE�

C1ðtÞ þ E�
C2ðtÞ � yPPÞ

@VC

@P
þ 1

2
s2
PP

2 @
2VC

@P2
þ mSS

@VC

@S
þ 1

2
s2
SS

2 @
2VC

@S2

þrsPsSPS
@2VC

@P@S
� rVC þ FCðP; S; E�

C1ðtÞ; E�
C2ðtÞ; tÞ ¼ 0;

ð12aÞ

E�
C1ðP; S; tÞ ¼ A1 � Sþ @VC

@P
; E�

C2ðP; S; tÞ ¼ A2 � Sþ @VC

@P
: ð12bÞ
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The fitted finite volume method for spatial discretization
A defined mesh for (Pmin,Pmax) × (Smin,Smax) is significant in the process of discretization. So,
we first divide the intervals IP and IS into NP and NS sub-intervals, respectively:

IPi :¼ ðPi; Piþ1Þ; ISj :¼ ðSj; Sjþ1Þ; i ¼ 0; 1; � � � ;NP � 1; j ¼ 0; 1; � � � ;NS � 1;

in which

Pmin ¼ P0 < P1 < � � � < PNP
¼ Pmax and Smin ¼ S0 < S1 < � � � < SNS

¼ Smax :

Thus, a mesh on IP × IS, whose all mesh lines are perpendicular to the axes, is defined. Next
we define another partition of IP × IS by letting

Pi�1
2
¼ Pi�1 þ Pi

2
; Piþ1

2
¼ Pi þ Piþ1

2
; Sj�1

2
¼ Sj�1 þ Sj

2
; Sjþ1

2
¼ Sj þ Sjþ1

2

for any i = 1,2,� � �,NP−1 and j = 1,2,� � �,NS−1. To keep completeness, we also define P�1
2
¼ Pmin;

PNPþ1
2
¼ Pmax; S�1

2
¼ Smin; and SNSþ1

2
¼ Smax. The step sizes are defined by hPi

¼ Piþ1
2
� Pi�1

2
and

hSj
¼ Sjþ1

2
� Sj�1

2
for each i = 0,1,� � �,NP and j = 0,1,� � �,NS.

Then, for the purpose of formulating finite volume scheme, we write Eq (12a) in the follow-
ing divergence form:

� @VC

@t
�r � ðArVC þ bVCÞ þ cVC ¼ FC; ð13Þ

where

A ¼
a11 a12

a21 a22

 !
¼

1

2
s2
PP

2 1

2
rsPsSPS

1

2
rsPsSPS

1

2
s2
SS

2

0
BBB@

1
CCCA;

ḇ ¼
b1

b2

 !
¼

E�
C1 þ E�

C2 � yPP � s2
PP � 1

2
rsPsSP

mSS� s2
SS�

1

2
rsPsSS

0
BBB@

1
CCCA;

c ¼ r þ mS þ 2
@2Vc

@P2
� yP � s2

P � s2
S � rsPsS:

ð14Þ

It follows from integrating Eq (13) overRi;j ¼ ½Si�1
2
; Siþ1

2
� � ½dj�1

2
; djþ1

2
� and applying the mid-

point quadrature rule to the resulting equation that

�
@VCi;j

@t
Ri;j �

Z
Ri;j

r � ðArVC þ bVCÞdPdSþ ci;jVCi;j
Ri;j ¼ FCi;j

Ri;j ð15Þ

for i = 1,2,� � �,NP−1, j = 1,2,� � �,NS−1, where Ri;j ¼ ðPiþ1
2
� Pi�1

2
Þ � ðSjþ1

2
� Sj�1

2
Þ, ci,j = c(Pi,Sj,

t), VCi,j
= VC(Pi,Sj,t), and FCi;j

¼ FCðPi; Sj; E
�C1 ; E�

C2; tÞ.
The approximation of the second term in Eq (15) is the key and difficult point of this

numerical method. According to the definition of flux ArVC þ b VC and integrating by parts,
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we have

Z
Ri;j

r � ðArVC þ bVCÞdSd� ¼
Z
@Ri;j

ðArVC þ bVCÞ � lds

¼
Z ðP

iþ1
2
;S
jþ1

2
Þ

ðP
iþ1

2
;S
j�1

2
Þ

a11
@VC

@P
þ a12

@VC

@S
þ b1VC

� �
dS

�
Z ðP

i�1
2
;S
jþ1

2
Þ

ðP
i�1

2
;S
j�1

2
Þ

a11
@VC

@P
þ a12

@VC

@S
þ b1VC

� �
dS

þ
Z ðP

iþ1
2
;S
jþ1

2
Þ

ðP
i�1

2
;S
jþ1

2
Þ

a21
@VC

@P
þ a22

@VC

@S
þ b2VC

� �
dP

�
Z ðP

i�1
2
;S
j�1

2
Þ

ðP
iþ1

2
;S
j�1

2
Þ

a21
@VC

@P
þ a22

@VC

@S
þ b2VC

� �
dP;

ð16Þ

where l denotes the unit vector outward-normal to @Ri,j. We approximate the first integral of
Eq (16) by a constant:

Z ðP
iþ1

2
;S
jþ1

2
Þ

ðP
iþ1

2
;S
j�1

2
Þ

a11
@VC

@P
þ a12

@VC

@S
þ b1VC

� �
dS � a11

@VC

@P
þ a12

@VC

@S
þ b1VC

� �jðP
iþ1

2
;SjÞ � hSj

:

Now, we are in the position to derive the approximations to ða11 @VC
@P

þ a12
@VC
@S

þ b1VCÞ at the
mid-point, ðPiþ1

2
; SjÞ, of the interval IPi

for any i = 0,1,� � �,NP−1. To begin with, the term

a11
@VC
@P

þ b1VC can be approximated by a constant, which means that its derivative equals zero,

that is,

1

2
s2
PP

2 @Vc

@P
þ ðE�

C1
þ E�

C2
� yPP � s2

PP � 1

2
rsPsSPÞVC

� �0
� aP2 @VC

@P
þ b

iþ1
2;j

1 VC

� �0
¼ 0; ð17aÞ

VCðPi; SjÞ ¼ VCi;j
; VCðPiþ1; SjÞ ¼ VCiþ1 ;j

; ð17bÞ

where a ¼ 1
2
s2
P and b

iþ1
2;j

1 ¼ b1ðPiþ1
2
; SjÞ, VCi,j

and VCi+1,j
denote the values of VC at (Pi,Sj) and (Pi

+1,Cj), respectively. A first-order ordinary differential equation can be obtained by integrating
both sides of Eq (17a):

aP2 @VC

@P
þ b

iþ1
2;j

1 VC ¼ C1;

where C1 is an arbitrary constant and can be determined by the boundary conditions Eq (17b)
as follows ([29]):

C1 ¼ b
iþ1

2;j
1

VCiþ1;j
e�

ai;j
Piþ1 � VCi;j

e�
ai;j
Pi

e�
ai;j
Piþ1 � e�

ai;j
Pi

;
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where ai;j ¼ b
iþ1

2
;j

1

a
. Additionally, the derivative @VC

@S
can be approximated by a forward difference

VCi;jþ1
� VCi;j

hSj

:

As a result, we have

ða11
@VC

@P
þ a12

@VC

@S
þ b1VCÞjðP

iþ1
2
;SjÞ � hSj

� b
iþ1

2;j
1

VCiþ1;j
e�

ai;j
Piþ1 � VCi;j

e�
ai;j
Pi

e�
ai;j
Piþ1 � e�

ai;j
Pi

þ di;j
VCi;jþ1

� VCi;j

hSj

0
@

1
A � hSj

;ð18Þ

where d ¼ 1
2
rsPsSPS and di,j = d(Pi,Sj). Applying the similar method to the other three terms

of Eq (16), we get following results:

ða11
@VC

@P
þ a12

@VC

@S
þ b1VCÞjðP

i�1
2
;SjÞ � hSj

� b
i�1

2;j
1

VCi;j
e�

ai�1;j
Pi � VCi�1;j

e�
ai�1;j
Pi�1

e�
ai�1;j
Pi � e�

ai�1;j
Pi�1

þ di;j
VCi;jþ1

� VCi;j

hSj

0
@

1
A � hSj

; ð19Þ

ða21
@VC

@P
þ a22

@VC

@S
þ b2VCÞjðPi ;Sjþ1

2
Þ � hPi

� Sjþ1
2

�bi;jþ1
2

S
�a i;j
jþ1VCiþ1;j

� S
�a i;j
j VCi;j

S
�a i;j
jþ1 � S

�a i;j
j

þ �di;j

VCi;jþ1
� VCi;j

hPi

 !
� hPi

; ð20Þ

and

ða21
@VC

@P
þ a22

@VC

@S
þ b2VCÞjðPi;Sj�1

2
Þ � hPi

� Sj�1
2

�bi;j�1
2

S
�a i;j�1

j VCi;j
� S

�a i;j�1

j�1 VCi;j�1

S
�a i;j�1

j � S
�a i;j�1

j�1

þ �di;j

VCi;jþ1
� VCi;j

hPi

 !
� hPi

; ð21Þ

where �a i;j ¼
�b
i;jþ1

2

�aj
, �a ¼ 1

2
s2
S ,
�b ¼ m� s2

S � 1
2
rsPsS, and �di;j ¼ 1

2
rsPsSPi. Hence, we obtain the

following equations by combining Eqs (15), (16), and (18)-(21) together:

�
@VCi;j

@t
Ri;j þ ei;ji�1;jVCi�1;j

þ ei;ji;j�1VCi;j�1
þ ei;ji;jVCi;j

þ ei;ji;jþ1VCi;jþ1
þ ei;jiþ1;jVCiþ1;j

¼ FCi;j
Ri;j; ð22Þ

where

ei;ji�1;j ¼ �b
i�1

2;j
1

e�
ai�1;j
Pi�1 hSj

e�
ai�1;j
Pi � e�

ai�1;j
Pi�1

; ei;ji;j�1 ¼ �Sj�1
2

�bi;j�1
2

S
�a i;j�1

j�1 hPi

S
�a i;j�1

j � S
�a i;j�1

j�1

; ð23Þ

ei;ji;j ¼ hSj

b
iþ1

2;j
1 e�

ai;j
Pi

e�
ai;j
Piþ1 � e�

ai;j
Pi

þ b
i�1

2;j
1 e�

ai�1;j
Pi

e�
ai�1;j
Pi � e�

ai�1;j
Pi�1

þ �di;j

 !

þhPi
Sjþ1

2

�bi;jþ1
2
S
�a i;j
j

S
�a i;j
jþ1 � S

�a i;j
j

þ Sj�1
2

�bi;j�1
2
S
�a i;j�1

j

S
ai;j�1

j � S
�a i;j�1

j�1

 !
þ ci;jRi;j;

ð24Þ

ei;ji;jþ1 ¼ �Sjþ1
2

�bi;jþ1
2

S
�a i;j
jþ1hPi

S
�a i;j
jþ1 � S

�a i;j
j

; ei;jiþ1;j ¼ �b
iþ1

2;j
1

e�
ai;j
Piþ1hSj

e�
ai;j
Piþ1 � e�

ai;j
Pi

� hSj
�di;j; ð25Þ

for i = 1,2,� � �,NP − 1, j = 1,2,� � �,NS − 1. The other elements ei;jm;n equal zeros whenm 6¼ i−1, i,

i+1 and n 6¼ j−1, j, j+1. We can see that system (22) is an (NP−1)
2 × (NS−1)

2 linear system of
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equations for

VC ¼ ðVC1;1
; � � � ;VC1;NS�1

;VC2;1
; � � � ;VC2;NS�1

; � � � ;VCNP�1;1
;VCNP�1;2

; � � � ;VCNP�1;NS�1
Þ>:

Note that VC0,j
(t),VCi,0

(t),VC0,NS
(t), and VCNP,0

(t) for i = 1,2,� � �,NP and j = 1,2,� � �,NS equal to
the given boundary conditions. Obviously, the coefficient matrix of system (22) is penta-
diagonal.

Remark 3 In the case of P = 0 or S = 0, the method for the approximation to the flux is invalid
since the Eq (17a) is degenerate. So, we need to re-consider the problem (17a) with an extra
degree of freedom in the following form:

1

2
s2
PP

2 @VC

@P
þ ðE�

C1 þ E�
C2 � yPP � s2

PP � 1

2
rsPsSPÞVC

� �0
¼ C2: ð26Þ

Also, the previous discussions should be changed. To keep things simple, we omit the discus-
sions about this case. For more details, see [29].

The implicit difference method for time discretization
Next we embark on the time-discretization of the system (22). To this purpose, we first rewrite
Eq (22) as

�
@VCi;j

@t
Ri;j þ Di;jVC ¼ FCi;j

Ri;j; ð27Þ

where

Di;j ¼ ð0; � � � ; 0; ei;ji�1;j; 0; � � � ; 0; ei;ji;j�1; e
i;j
i;j; e

i;j
i;jþ1; 0; � � � ; 0; ei;jiþ1;j; 0; � � � ; 0Þ

for i = 1,2,� � �,NP − 1 and j = 1,2,� � �,NS − 1. We selectM − 1 points numbered from t1 to tM−1

between 0 and T, and let T = t0, tM = 0 to form a partition of time T = t0 > t1 > � � �> tM = 0.
Then, the full discrete form of Eq (27) can be obtained by applying the two-level implicit time-
stepping method with a splitting parameter y 2 ½1

2
; 1� to it:

ðyDðP; S; E�
C1ðtmþ1Þ; E�

C2ðtmþ1Þ; tmþ1Þ þ GmÞVmþ1
C

¼ yFCðP; S; E�
C1ðtmþ1Þ; E�

C2ðtmþ1Þ; tmþ1Þ þ ð1� yÞFCðP; S; E�
C1ðtmÞ; E�

C2ðtmÞ; tmÞ

þðGm � ð1� yÞDðP; S; E�
C1ðtmÞ; E�

C2ðtmÞ; tmÞÞVm
C ;

ð28Þ

where

Vm
C ¼ ðVm

C1;1
; � � � ;Vm

C1;NS�1
;Vm

C2;1
; � � � ;Vm

C2;NS�1
; � � � ;Vm

CNP�1;1
; � � � ;Vm

CNP�1;NS�1
Þ>;

Gm ¼ diag ð�R1;1=Dtm; � � � ;�RNP�1;NS�1=DtmÞ>;
ð29Þ

form = 0,1,� � �,M−1. Note that Δtm = tm+1−tm < 0, and Vm
C denotes the approximation of VC at

t = tm. Particularly, when we set y ¼ 1
2
, the scheme (28) becomes the famous Crank-Nicolson

scheme and is second-order accuracy; when we set θ = 1, the scheme (28) becomes the back-
ward Euler scheme and is first-order accuracy.

The following theorem declares that the system matrix of system (28) is anM-matrix.
Theorem 1 For any given m = 1,2,� � �,M−1, if jΔtmj is sufficiently small and c	 0, then the

system matrix of Eq (28) is an M-matrix.
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Proof. First, we note that ei;jm;n 
 0 for allm 6¼ i, n 6¼ j, since

b
iþ1

2;j
1

e�
ai;j
Piþ1 � e�

ai;j
Pi

> 0;
�biþ1

2;j

S
�a i;j
iþ1 � S

�a i;j
i

> 0 ð30Þ

for any i and j, and for any α = b1/a and any �a ¼ �b=�a. This is because the function e�
a
P is

increasing when b1 > 0 and decreasing when b1 < 0, and the function S�a is increasing when

�b > 0 and decreasing when �b < 0. Moreover, Eq (30) also holds when b
iþ1

2;j
1 ! 0, �bi;jþ1

2
! 0.

Furthermore, from Eq (23) to Eq (25) we know that when ci,j 	 0, for all i = 1,� � �,NP−1,
j = 1,� � �,NS−1, there holds

ðei;ji;jÞmþ1 	 jðei;ji�1;jÞmþ1j þ jðei;ji;j�1Þmþ1j þ jðei;ji;jþ1Þmþ1j þ jðei;jiþ1;jÞmþ1j þ cmþ1
i;j Ri;j

¼
XNS�1

p¼1

XNd�1

q¼1

jðei;jp;qÞmþ1j þ cmþ1
i;j Ri;j:

Therefore, DðP; S; E�
C1ðtmþ1Þ; E�

C2ðtmþ1Þ; tmþ1Þ is a diagonally dominant with respect
to its columns. Hence, from the above analysis, we see that for all admissible i, j,
DðP; S; E�

C1ðtmþ1Þ; E�
C2ðtmþ1Þ; tmþ1Þ is a diagonally dominant matrix with positive

diagonal elements and non-positive off-diagonal elements. This implies that
DðP; S; E�

C1ðtmþ1Þ; E�
C2ðtmþ1Þ; tmþ1Þ is anM-matrix.

Second, Gm of the system matrix (28) is a diagonal matrix with positive diagonal entries. In
fact, when jΔtmj is sufficiently small, we have

yci;jRi;j þ
Ri;j

�Dtm
> 0;

which demonstrates that yDðP; S; Emþ1
C1 ; Emþ1

C2 ; tmþ1Þ þ Gm is anM-matrix.

Decoupling of the system
In the above discussion, we have assumed that the control variables E�

C1 and E
�
C2 are known.

However, we can see from Eq (28) that E�
C1 and E

�
C2 are coupled with VC when θ 6¼ 0. To deal

with this dilemma, we replace E�
C1ðtmþ1Þ and E�

C2ðtmþ1Þ by E�
C1ðtmÞ and E�

C2ðtmÞ, respectively.
This method is proposed by [36], and should be reasonable because the control variables are
just replaced by their values in the previous time step. The error is small if Δtm is sufficiently
small. The resulting system corresponding to Eq (28) is as follows:

ðyDðP; S; E�
C1ðtmÞ; E�

C2ðtmÞ; tmþ1Þ þ GmÞVmþ1
C

¼ yFðP; S; E�
C1ðtmÞ; E�

C2ðtmÞ; tmþ1Þ þ ð1� yÞFðP; S; E�
C1ðtmÞ; E�

C2ðtmÞ; tmÞ

þðGm � ð1� yÞDðP; S; E�
C1ðtmÞ; E�

C2ðtmÞ; tmÞÞVm
C :

ð31Þ

Numerical results
Up to now, we have been able to show the results of our differential game model numerically.
We use the following parameter values to solve the HJB equations under the cooperative and
noncooperative games, respectively, and utilize the results as a benchmark case in the following
discussions. Parameters: T = 10, A1 = 5, α = 0.95, E10 = 5, E20 = 6, θ = 0.06, Pmin = 100, Pmax =
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1000, Smin = 0, Smax = 2, σP = 0.3, σS = 0.3, μS = 0.2, ρ = 0.5, D1 = 0.1, β = 1.2, r = 0.08, g1 = 3, g2
= 2, �P1 ¼ 1100, �P2 ¼ 1200.

The efficiency of the numerical method
First of all, we consider the convergence rate of our discretization method to show its accuracy
and efficiency. Owing to the limitation of space, we only test region 1’s value function VN1

under the noncooperative game. Additionally, since the closed-form solution of the HJB equa-
tion cannot be found, we regard the solution of the NP = 256 = NS andM = 256 mesh in both
space and time, respectively, as the “exact” solution VN1. We compute the errors in the discrete
L1-norm at the computational final time step t = 0 on a sequence of meshes with NP = NS =
M = 2n for a positive integer n from n = 2 to a maximum n = 7. The discrete L1-norm is
defined as:

k Vh
N1ðP; S; 0Þ � VN1ðP; S; 0Þ k1 ¼ max

1<i<NP ;1<j<NS

jVh
N1ðPi; Sj; 0Þ � VN1ðPi; Sj; 0Þj;

where Vh
N1 denotes the numerical solution. The log-log plots of the computed maximum

errors, along with the linear fitting, are depicted in Fig 1. From the figure we see that
the rate of convergence of Vh

N1 in the discrete L1 norm is of the orderO(h0.6353), where
h ¼ max

1<i<NP ;1<j<NS

ðhPi
; hSj

Þ. Note that this result is reasonable because of the coupling in the HJB

equations. Moreover, it numerically demonstrates that our numerical methods for the HJB
equations governing the differential game in transboundary industrial pollution is useful and
efficient. Some theoretical analysis about convergence rates should be discussed in the future
works.

The solution of the model
In this and next parts, we will illustrate the results by presenting some tables and figures. In
Tables 1–4, the values of value functions, emission levels and trading volumes about pollution
stock, and permit prices at time t = 0 and t = 5 are presented. Tables 1 and 2 are for the

Fig 1. Computed errors in the L1-norm at t = 0.

doi:10.1371/journal.pone.0138641.g001
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noncooperative game, and Tables 3 and 4 for the cooperative game, respectively. Note that the
trading volumes Y for each table are computed by using the Eq (2).

To begin with, we can see from each table that a higher permit price results in a more reve-
nue, a lower emission level as well as a larger selling volumes of emission permits for regions 1
and 2 under the noncooperative and the cooperative framework, respectively. In this example,
the initial quotas E10 and E20 are both set to be very large, and the emission levels do not exceed
them, so the two regions can sell their unused emission permits and the net revenues VCi and
VNi will increase with the increasing permits price S. To illustrate the problem entirely, we will
examine the effects of the initial quotas on the results in the next part. Besides, the first-order
conditions of Eqs (7) and (11) show that the optimal emission levels of the two regions can be
expressed as

E�
Ci ¼ Ai � Sþ @VCi

@P
and E�

Ni ¼ Ai � Sþ @VNi

@P
ð32Þ

for i = 1,2 under the cooperative and noncooperative games, respectively. From the above
equations, we can clearly see that the emission levels should decrease monotonically with
increasing the permit prices. This implies that the existence of emission permits trading scheme
does influence the players’ decisions in the games.

Table 1. The noncooperative game at t = 0.

pollution stock permits price value functions emission levels trading volumes

P S VN1 VN2 EN1 EN2 YN1 YN2

325 0.5 1080 745 3.211 2.909 -1.788 -3.091

1 1093 760 2.729 2.427 -2.271 -3.573

1.5 1102 769 2.237 1.937 -2.763 -4.063

550 0.5 777 508 3.108 3.009 -1.892 -2.991

1 792 524 2.599 2.498 -2.401 -3.502

1.5 800 533 2.095 1.994 -2.905 -4.006

775 0.5 457 309 3.059 3.246 -1.941 -2.754

1 467 320 2.528 2.710 -2.472 -3.289

1.5 473 326 2.009 2.190 -2.990 -3.810

doi:10.1371/journal.pone.0138641.t001

Table 2. The noncooperative game at t = 5.

pollution stock permits price value functions emission levels trading volumes

P S VN1 VN2 EN1 EN2 YN1 YN2

325 0.5 1612 1159 2.641 2.582 -2.359 -3.418

1 1625 1173 2.151 2.093 -2.848 -3.907

1.5 1635 1184 1.657 1.600 -3.343 -4.400

550 0.5 1181 841 2.513 2.608 -2.487 -3.392

1 1194 856 2.005 2.098 -2.995 -3.902

1.5 1203 866 1.501 1.594 -3.499 -4.407

775 0.5 713 538 2.327 2.709 -2.673 -3.291

1 723 548 1.798 2.177 -3.202 -3.823

105 729 556 1.279 1.656 -3.721 -4.344

doi:10.1371/journal.pone.0138641.t002
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Then, through comparing the results at the different time points, we can know that the
value functions are smaller at the initial time point t = 0 than at the middle time point t = 5 for
both the cooperative and the noncooperative games. This demonstrates that the evolution of
net revenues is a general accumulated process. In addition, the higher emission levels at early
stage can be also seen as an initial investment, which is necessary for both players’ stable devel-
opments in the games.

Moreover, there is a complex relationship between the emission level and the pollution
stock. In the noncooperative game, the emission level is a decreasing function about the pollu-
tion stock for region 1, while it is a increasing function for region 2. This is mainly caused by
the differences in abilities between the two regions, which are characterized by α and β. The
parameters α< 1 and β> 1 mean that region 1 has an advantage over region 2. The advan-
taged region 1 can reduce the scale of production and lower the emission level when facing to a
high concentration of pollution stock, while the disadvantaged region 2 has to enlarge the scale
of production to make up the losses caused by the pollution stock, which leads to the vicious
spiral. In the cooperative game, the relationship between the emission level and the pollution
stock can be described by U-shaped curve at the initial time. This is the result of the interaction
between the two regions. While at the latter time, both the regions choose to abate the emis-
sions for a high concentration of pollution stock, which is like region 1’s action in the noncoop-
erative game and is a rational response.

Table 4. The cooperative game at t = 5.

pollution stock permits price value functions emission levels trading volumes

P S VC EC1 EC2 YC1 YC2

325 0.5 2788 1.243 0.742 -3.757 -5.257

1 2815 0.764 0.264 -4.236 -5.736

1.5 2833 0.277 -0.224 -4.724 -6.224

550 0.5 2041 1.115 0.615 -3.885 -5.385

1 2067 0.599 0.099 -4.401 -5.902

1.5 2086 0.089 -0.411 -4.911 -6.411

775 0.5 1265 0.997 0.497 -4.003 -5.503

1 1284 0.439 -0.060 -4.560 -6.060

1.5 1297 -0.099 -0.599 -5.099 -6.599

doi:10.1371/journal.pone.0138641.t004

Table 3. The cooperative game at t = 0.

pollution stock permits price value functions emission levels trading volumes

P S VC EC1 EC2 YC1 YC2

325 0.5 1835 2.149 1.649 -2.851 -4.351

1 1865 1.684 1.183 -3.316 -4.816

1.5 1882 1.200 0.700 -3.799 -5.299

550 0.5 1299 2.117 1.616 -2.883 -4.383

1 1329 1.596 1.096 -3.403 -4.904

1.5 1347 1.086 0.586 -3.914 -5.414

775 0.5 777 2.276 1.776 -2.724 -4.224

1 797 1.709 1.290 -3.290 -4.790

1.5 810 1.171 0.671 -3.829 -5.329

doi:10.1371/journal.pone.0138641.t003
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We can also know from the tables that the net revenues are undoubtedly decreasing func-
tions of the pollution stock P, which is a common view in the most published literature, such as
[11] and [16], and so on.

Note that the topic on how to distribute the joint net revenues to each player in the coopera-
tive game has been paid more attentions. One reasonable distribution mechanism is to share
the joint net revenues in accordance with the proportion of noncooperative payoffs. This can
be expressed mathematically as:

VCi ¼
VNi

VN1 þ VN2

VC ð33Þ

for i = 1,2, where VCi denotes region i’s value function in the cooperative game. The two
regions will be cooperative when VC> VN1+VN2, and the revenue VCi in the cooperative game
should be higher than the revenue VNi in the noncooperative game.

Coincidentally, the joint net revenue in the cooperative game is always higher than the sum
of each net revenue in the noncooperative game in the benchmark case, which means that the
players would like to cooperate during the entire game horizon. However, we believe that the
players have the potential not to cooperate in the game for the following two reasons.

On the one hand, due to the randomness in emission permits prices, which results from all
permits market participants’ behaviors, the players cannot have clear understanding about
their optimal net revenues in the process of game. Therefore, it is not only the emission levels
but also the decisions on whether to cooperate need to be adjusted based on the states to get
the maximum benefits for the two players. On the other hand, there should be some differences
between the two regions in practical capabilities to generate revenue from production and to
bear the damages from the stock of pollution or from the abatement costs, which is character-
ized by parameters α and β, and then the advantaged one may prefer to suspend the coopera-
tion when there exists a free-riding.

In [16], the permits price is a constant, and the cooperation is always a better decision no
matter how α and β vary. In fact, the same results as those in [16] can be obtained when we
solve a simple version of our differential game model, in which the permits price is not stochas-
tic, by using our numerical method. However, we will show in the next section that the nonco-
operation can be also a better decision for the two regions when the permits price is stochastic,
and the differences between them, characterized by α and β, become bigger and bigger. Thus,
we have the reason to believe that our stochastic emission permits price can be a better tool to
model the emission permits trading part of the differential game, as it can motivate the players
to make more flexible decisions such as the noncooperation in the game. Some detailed discus-
sions will be presented in the following section to show the effects of some parameters.

Discussions
In this subsection, we will examine the effects of parameters on the results. The parameters are
divided into three groups: (a) the differences between the two players characterized by α and β;
(b) the emission permits price parameters μS and σS; and (c) the initial quotas of the two regions
E10 and E20. Besides of the value functions and optimal emission pathes in the noncooperative
and the cooperative cases, we also focus on the threshold states, in which the two players should
change their decisions from the cooperation to the noncooperation, or vice versa in different
cases. Some results will be showed in the following figures, in which t = 0 and P = 550.

the effects of parameters α and β. As mentioned above, the parameters α and β represent
the differences in abilities between the two regions. We believe that these differences should
influence their optimal decisions.
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We first illustrate the effects of α on the noncooperative and the cooperative games by Figs
2 and 3, respectively. It is set to be 0.6, 0.7 and 0.8 in each figure. In our model, the parameters
A1 and A2 measure the increased revenues by adding one unit of emission, and α< 1 means
that region 1 is more productive than region 2.

In the noncooperative game, increasing α implies that region 2’s ability in production is
enhanced, and then it increases the emission level to receive more production revenues. At the
same time, more pollution stocks are also produced, which leads to more pollution damages.
So, region 2’s net revenue is not sensitive to parameter α. For region 1, though there is no
change in its optimal emission path, it has also suffered from the more pollution damages
caused by region 2’s more emissions. Therefore, region 1’s net revenue decreases with the
increasing α, which is illustrated in Fig 2(a).

In the cooperative game, the two regions stand together to make their net revenues maxi-
mum, and region 2 should make use of its enhanced productive ability to improve the joint
value function. However, these added net revenues are not so many, as they should be

Fig 2. The effects of α on the noncooperative game.

doi:10.1371/journal.pone.0138641.g002

Fig 3. The effects of α on the cooperative game.

doi:10.1371/journal.pone.0138641.g003
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neutralized by more pollution stocks. Similar to the noncooperative case, region 1’s optimal
emission path does not change, either. These are presented in Fig 3.

Although the increasing α results in more joint net revenues, it is not always true for any pol-
lution stock P in the case that the joint value function VC is larger than the sum of the net reve-
nues VN1 and VN2 in the noncooperative game. Fig 4 shows the boundaries at which the two
players should change their decisions from the cooperation to the noncooperation for different
α at time t = 0. Similar to the optimal exercise boundaries in American options, the curve, which
can be called “optimal decision boundary”, divides the domain O = (Pmin,Pmax) × (Smin,Smax)
into the cooperative region and the noncooperative region. In the cooperative region, the opti-
mal cooperative net revenue is always higher than the sum of the noncooperative net revenues,
and in the noncooperative region, the sum of the noncooperative net revenues is larger than the
cooperative one, and on the optimal decision boundary, they are the same.

Fig 4 demonstrates that the two regions should cooperate when the state pollution stock P
and the emission permits price S are larger, and should not cooperate when the states pollution
stock P and the emission permits price S are smaller. This can be illustrated from the following
two aspects. On the one hand, for the given higher pollution stock and the emission permits
price, the players hope to stand together to lower their emission levels, which is a reasonable
action. This can be demonstrated by comparing the noncooperative emission levels with the
cooperative ones. We can see from Tables 1–4 that the emission levels in the cooperative game
are always lower than the ones in the noncooperative game. On the other hand, the players
should try to seek their own optimal net revenues in the case that the emission permits price is
at such a lower level that the added revenues in the emission market are not enough to make
up the reduced productive revenues resulting from the lower emission level in the cooperative
game. Besides, the small amount of pollution stock cannot make the two regions recognize the
necessity and urgency of emission reduction. This is the feature of the noncooperative region
in Fig 4.

It is clear that the cooperative region expands with α increasing. From the above analysis,
we can know that the closer α approximates to 1, the less the difference between the two
regions is in the productive ability, and the greater the willingness for the advantaged region 1
to cooperate with region 2 is.

Fig 4. The effects of α on the optimal decision boundary.

doi:10.1371/journal.pone.0138641.g004
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Analogously, the effects of β are illustrated in Figs 5, 6, and 7. In each figure, it is set to be 2,
2.5 and 3, respectively. The parameter D in our model measures the suffered pollution damage,
and similarly β>1 implies that region 2 is more vulnerable than region 1.

In the noncooperative game, a larger βmeans that region 2’s ability in bearing the pollution
damage is weaker. Although region 2 reduces its emission level to avoid suffering more pollu-
tion damages, its net revenue should also decrease by a wide margin with the increasing β due
to the reduction in productive revenues. Additionally, region 1 should benefit from the reduced
emission, as it can lower the pollution stock without any other change.

In the cooperative game, the two regions make an alliance and should suffer the pollution
damage together, so both of them lower their emission levels when β increases. However, like
the noncooperative case, the joint net revenue should also decrease substantially because of the
reduced productive revenues.

Note that we do not use α = 0.95 to examine the effects of β and the other following parame-
ters on the optimal decision boundary, as in this case the cooperation is always a better deci-
sion, and thus there is no optimal decision boundary when α = 0.95. For the purpose of

Fig 5. The effects of β on the noncooperative game.

doi:10.1371/journal.pone.0138641.g005

Fig 6. The effects of β on the cooperative game.

doi:10.1371/journal.pone.0138641.g006

Modeling and Computation of Transboundary Industrial Pollution

PLOS ONE | DOI:10.1371/journal.pone.0138641 September 24, 2015 20 / 29



illustrating the results clearly, we let α equal to other numbers when examining the effects of
parameters on the optimal decision boundary in the following discussions.

Fig 7 shows the optimal decision boundaries for different β. We can see that the noncooper-
ative region expands with the increasing β. Similar to α, the farther β is from 1, the bigger the
difference between the two regions is in the ability of suffering damages, and the smaller the
willingness for the advantaged region 1 to cooperate with region 2 is.

Generalizing the emission permits price to be stochastic is our main contribution in this
work, so we will examine the effects of the emission permits price parameters: the drift rate μS
and the volatility σS on the value function, the emission level as well as the optimal decision
boundary for the two regions.

The effects of μS are shown in Figs 8, 9, and 10. Note that μS is set to be 0.2, 0.3, and 0.4 in
each figure. We can clearly see that for both the noncooperative and the cooperative games,

Fig 7. The effects of β on the optimal decision boundary.

doi:10.1371/journal.pone.0138641.g007

Fig 8. The effects of μS on the noncooperative game.

doi:10.1371/journal.pone.0138641.g008
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there is no change in the optimal emission pathes for the two regions. However, the net reve-
nues increase with the increasing μS. This can be explained as follows.

In Eq (3), the drift rate μS is used to model the deterministic trend of the emission permits
price, and a larger μSmeans that the price should be also higher. That is to say, with other con-
ditions unchanged both of the two regions can receive more revenues from the emission per-
mits market. So, their net revenues increase with the increasing μS, while the emission levels do
not change in both the noncooperative and the cooperative games.

Obviously, from Fig 10 we can see that the cooperative region expands with the increasing
drift rate μS, in which we fix α = 0.6. For the two regions, the emission levels in the cooperative
game are lower than the ones in the noncooperative game. As mentioned above, in the cooper-
ation case their emissions are always lower than the initial quota and the unused permits
should be sold in the emission permits markets. So, they will prefer to cooperate to save more
emission permits and sell them at a higher price to obtain more revenues from the permits
markets when the drift rate μS is larger.

Fig 9. The effects of μS on the cooperative game.

doi:10.1371/journal.pone.0138641.g009

Fig 10. The effects of μS on the optimal decision boundary.

doi:10.1371/journal.pone.0138641.g010
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Figs 11, 12, and 13 show the effects of σS on the noncooperative and the cooperative games,
and the optimal decision boundary, respectively. In each figure, σS is set to be 0.1, 0.3, and 0.5.
Similar to μS, for both of the noncooperative and the cooperative games, the two regions’ opti-
mal emission paths are not sensitive to σS. However, the optimal net revenues decrease with the
increasing σS. The reason is that the volatility σSmeasures the uncertainty and the risk of the
emission permits price process, and a higher volatility implies that the two players will take on
bigger risk on the price. To manage this risk, more efforts, such as investments on strategic
portfolios, should be paid. So, a larger volatility of permits price will cut the players’ revenues
in the game.

Moreover, the cooperative region in Fig 13 becomes smaller as the volatility σS increases.
This can be illustrated as follows. The two players want to sell the emission permits saved
through their cooperation to earn revenues, however, these revenues may not be realized suc-
cessfully due to the volatility, and the risk goes up with the increasing volatility. So, the two
regions prefer not to cooperate to receive more productive revenues rather than cooperate to
seek the risky revenues in permits markets.

Fig 11. The effects of σS on the noncooperative game.

doi:10.1371/journal.pone.0138641.g011

Fig 12. The effects of σS on the cooperative game.

doi:10.1371/journal.pone.0138641.g012
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the effects of parameters E10 and E20. The two regions’ initial quotas E10 and E20 have
also played an important role in this differential game of transboundary industrial pollution
with emission permits trading, and they can be regarded as the inherent revenues. The rule of
initial quotas’ allocation should be based in part on historical data and emitters’ current actual
capabilities. How the initial quotas effect the results are illustrated in Figs 14–19, where E10 and
E20 are set to be 2, 5, 8 and 4, 6, 8, respectively.

From Figs 14 and 17, we know that the two regions’ initial quotas only influence their own
net revenues, respectively, in the noncooperative game and without any changes in emission
levels. Moreover, the more the initial quotas are, the greater the net revenues are, which is simi-
lar to the cooperative cases presented in Figs 15 and 18. In the cooperative game, the addition
in either region’s initial quota can all increase the joint net revenue. Similarly, this is due to the
sharing of two regions’ information and resources in the cooperative game.

Fig 13. The effects of σS on the optimal decision boundary.

doi:10.1371/journal.pone.0138641.g013

Fig 14. The effects of E10 on the noncooperative game.

doi:10.1371/journal.pone.0138641.g014
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Figs 16 and 19, where we fix α = 0.6 as above, show the effects of two regions’ initial quotas
on the optimal decision boundary. We can see from the two figures that the initial quotas, espe-
cially the disadvantaged region 2’s, have limited influence on the optimal decision boundary.
The reason for the little influence of E10 is that region 1 may do not want to share the more ini-
tial quotas with region 2, and prefers not to cooperate, which is the feature of Fig 16.

Conclusions and Future Works
In this paper, we present a stochastic differential game of transboundary industrial pollution
with the emission permits trading under a finite horizon. More generally, the process of emis-
sion permits price is assumed to be stochastic and to follow a GBM. The stochastic optimal
control theory has been used by us to derive the HJB equations satisfied by the value functions
for the cooperative and the noncooperative games. Then, we propose a so-called fitted finite
volume method to solve them. The efficiency and the usefulness of this method are illustrated

Fig 15. The effects of E10 on the cooperative game.

doi:10.1371/journal.pone.0138641.g015

Fig 16. The effects of E10 on the optimal decision boundary.

doi:10.1371/journal.pone.0138641.g016
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by the numerical experiments. The two players’ cooperative and noncooperative optimal emis-
sion paths, which maximize the regions’ discounted streams of the net revenues, together with
the value functions, are obtained. In addition, we can also obtain the threshold conditions for
the two regions to decide whether they cooperate or not in different cases. The effects of some
parameters on the results have been also examined.

We find that the noncooperation has the potential to be a better decision in the game due to
the differences in abilities between the players, and a stochastic emission permits price can real-
ize it. So, we believe that the stochastic price is a more practical and useful tool to be used to
model the emission permits trading part of the differential games.

Future works can be performed from two aspects. Mathematically, the convergence rate and
the superconvergence of the numerical method can be analysed. The derivation process of the
HJB equations should be also improved. From the viewpoint of economics and management,
our differential game can be extented to the multi-country or multi-region case for the reason
that in practice a region usually has more neighbors than one. Besides, the influence of popula-
tion growth and technology change on the optimal net revenue and the optimal emission path
can be considered.

Fig 17. The effects of E20 on the noncooperative game.

doi:10.1371/journal.pone.0138641.g017

Fig 18. The effects of E20 on the cooperative game.

doi:10.1371/journal.pone.0138641.g018
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We anticipate that our methodology from the perspective of partial differential equations
combined with numerical methods can make a few contributions to the solving of complex
problems in management science.
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