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Abstract

Scanning Electron Microscope (SEM) as one of the major research and industrial equipment

for imaging of micro-scale samples and surfaces has gained extensive attention from its

emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current

work a novel and highly accurate approach is proposed to recover the hidden third-dimension

by use of multi-view image acquisition of the microscopic samples combined with pre/post-

processing steps including sparse feature-based stereo rectification, nonlocal-based optical

flow estimation for dense matching and finally depth estimation. Employing the proposed

approach, three-dimensional (3D) reconstructions of highly complex microscopic samples

were achieved to facilitate the interpretation of topology and geometry of surface/shape attri-

butes of the samples. As a byproduct of the proposed approach, high-definition 3D printed

models of the samples can be generated as a tangible means of physical understanding.

Extensive comparisons with the state-of-the-art reveal the strength and superiority of the pro-

posed method in uncovering the details of the highly complex microscopic samples.

Introduction

Scanning electron microscope (SEM) is one of the principal research and industrial equipment

for imaging on the microscopic scale. SEM and its diverse applications have been a very active

research area over the recent decades, and scientific studies well covered the use of SEM in

broad domains ranging from biomedical applications to materials sciences and nano technolo-

gies [1–7]. SEM as an advanced microscopy device produces high quality images of micro-

scopic specimen using a focused beam of electrons which can be then captured by two types of

detectors, secondary electron (SE) and back-scattered electron (BSE) detectors, to provide
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both compositional and/or geometrical information about the microscopic surface [8]. How-

ever, SEM micrographs remain 2D while the need for having a more quantitative knowledge

of the 3D surface of the microscopic samples is of high importance. Serial section transmission

electron microscopy (ssTEM) [9], serial blockface SEM (SBF-SEM) [10, 11] and focused ion

beam SEM (FIB-SEM) [12, 13] are among the widely-used volume electron microscopy

devices. While many initially developed as means of imaging of the brain tissues, examples of

usage for other biological tissues have been reported in the literature [14]. The procedure of

imaging using such devices generally involves sectioning of ultra-thin layers of the tissue and

then imaging in order to be able to build a full volume model of the tissue. Sectioning is per-

formed manually in ssTEM while the procedure is done automatically in SBF-SEM (using a

diamond knife) and FIB-SEM (using focused gallium ion beam). Using such devices it is possi-

ble to acquire high-resolution volume scans of the biological samples. However, due the

destructive nature of such imaging procedures, the samples cannot be revisited. Image align-

ment, rotational errors and charging artifacts may compromise interpretation of volume EM

data. The remedies can be sough in specific procedures for specimen preparation or pre-pro-

cessing steps of image registration. Moreover, segmentation of the features of interest for 3D

model reconstruction imposes additional challenges for proper interpretation of such data,

especially for the problem of surface assessment since very fine details can be eliminated due

to various sources of error mentioned above. These limitations make volume EM imaging not

suitable for accurate surface reconstruction of microscopic samples.

The vast literature of used techniques for the problem of surface reconstruction can be cate-

gorized into three major classes: a) single-view, b) multi-view, and c) hybrid strategies [15]. In

single-view approaches, using varying lighting (electron beam) directions on a single perspec-

tive, a group of 2D SEM micrographs are captured and utilized for 3D SEM surface modeling.

In multi-view strategies, on the other hand, a set of 2D SEM images from different perspectives

assists the 3D SEM surface reconstruction process. The hybrid mechanisms try to combine

single-view and multi-view algorithms to restore a 3D shape model from 2D SEM images.

The use of single-view algorithms and the applications to 3D SEM surface reconstruction

have been well studied in the literature. The Photometric Stereo (PS) [16] as the major strat-

egy in this class tries to estimate the surface normals of the microscopic sample by observing

the object being illuminated from different directions. Paluszynski and Slowko [17] designed

a single-view 3D surface modeling approach based on the PS algorithm which also incorpo-

rates advanced signal processing algorithms along with both SE and BSE detectors to restore

the 3D shape model of SEM images. Pintus et al. [18] developed an automatic alignment

strategy for a four-source PS technique for reconstructing the depth map of SEM specimen.

Kodama et al. [19] designed a genetic algorithm to tackle the topographical surface recon-

struction problem of SEM based on PS method. The proposed genetic algorithm has been

applied to the line profile reconstruction from the signals captured by both SE and BSE

detectors. Vynnyk et al. [20] proposed a PS based algorithm to 3D SEM surface reconstruc-

tion and studied the efficiency of SEM detector system towards a 3D modeling. Slowko and

Krysztof [21] designed a PS-based algorithm to reconstruct the 3D surface model of SEM

micrographs with the use of angular distribution of back-scattered electron emission to

achieve a digital map of surface elevations. This contribution examined different SEM envi-

ronmental conditions as a high vacuum SEM which was equipped with the BSE detector sys-

tem utilized for 3D surface reconstruction.

One of the most promising class of methods for 3D surface modeling of SEM images has

been the multi-view class which is based on acquisition of multiple images from different per-

spectives. The Structure from Motion (SfM) [22, 23] and Stereo Vision [24–26] algorithms are

advanced visual computational methods which take into account pixels/feature-points
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matching to assist for accurate 3D SEM surface reconstruction. The class of multi-view 3D

reconstruction approaches can be categorized into two major classes: a) sparse feature-based

approaches and b) dense pixel based approaches. While methods from the first class are

employed to establish a set of robust matches between an image pair or a set of images based on

sparsely distributed distinct feature-points, dense multi-view techniques try to discover matches

for all points in the images. These matches along with other computational methods will then

be used to accurately estimate the projective geometry and 3D surface models [27]. Raspanti

et al. [28] presented a high resolution dense multi-view method for 3D reconstructions of bio-

logical samples obtained by a SEM. The work implemented novel solutions including a neural

adaptive points matching technique to tackle the problem of dense 3D reconstruction. Samak

et al. [29] developed a SfM-based algorithm to restore 3D surface model of SEM micrographs.

The proposed method initialized a set of 3D points from 2D corresponding points and then tri-

angulated the obtained 3D points into the 3D surface mesh with a mapped texture on the shape

model. Carli et al. [30] evaluated the uncertainty of stereo vision algorithm for the problem of

3D SEM surface modeling. Uncertainty for different cases of tilt and rotation were discussed in

the work and relative uncertainties of 5% and 4% were achieved for the cases of rotation and

tilt, respectively. Zolotukhin et al. [31] studied the pros and cons of SfM algorithm focusing on

two-view 3D SEM surface reconstruction problem. Tafti et al. [15] reviewed the state-of-the-art

3D SEM surface reconstruction solutions, addressing several enhancements for the research

study, and developed a sparse multi-view algorithm to tackle 3D SEM surface modeling prob-

lem. Using machine learning solutions and adaptive strategies, Tafti et al. [32] proposed an

improved sparse feature-based multi-view method which outperforms their earlier work in

terms of accuracy and computation demands. SEM as an advanced imaging equipment requires

careful modification/configuration of internal parameters for 3D reconstruction solutions.

Marinello et al. [33] analyzed and studied the 3D reconstruction of SEM images based on differ-

ent instrumental configurations including calibration, tilt-angle, magnification and etc. Appli-

cations of such sparse/dense matching based techniques can also be found in [7, 34], [35] and

[36]. Inspired by the above-mentioned approaches, attempts in devising hybrid approaches to

combine single-view and multi-view algorithms for restoring the 3D shape model of a micro-

scopic sample have been made too [37].

In single-view 3D surface reconstruction, creating a full model of the microscopic sample is

not possible since the images are limited to only one view-point. Moreover, recreating the SEM

micrographs of the sample under different illumination conditions is difficult. On the other

hand, multi-view approaches offer a more general and achievable framework for the task. How-

ever, use of sparse-feature based approach results in blurred edges and smoothed surfaces. This

is especially problematic for the very complex microscopic samples, similar to the ones consid-

ered here. This requires more advanced matching techniques to capture the very fine details

which are missed otherwise, when using sparse feature-based approaches. With the advent of

new computer vision-based matching techniques, more accurate and robust approaches can be

developed for the problem of 3D surface reconstruction of microscopic samples. In this work, a

novel methodology is introduced for high quality 3D reconstruction of microscopic samples

using multi-view SEM images. This is to address the growing demand for more accurate recon-

struction techniques in fields like biology where the level of complexity of samples is very high.

Using the proposed approach, high quality surface meshes of highly complex microscopic sam-

ples can be generated which can be used for further quantitative analysis of the surface/shape

attributes. The contributions of the current work can be summarized as follows:

1. The current work introduces and investigates a new optimized and robust approach for

dense matching and high quality reconstruction of highly complex microscopic samples

3D reconstruction of highly complex microscopic samples
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from sets of multi-view SEM micrographs. Here, a complete framework is proposed in a

step-by-step fashion; from image acquisition to pre-processing to dense matching to depth

estimation and finally mesh processing and 3D printing.

2. Taking advantage of non-local nature of median filtering, higher accuracy in finding dense

matching points are achieved which results in a more truthful reconstruction of 3D surface.

Moreover, additional step of weighted median filtering by use of the corresponding micro-

graphs as guidance is proven to reduce the blurring effects near edges and boundaries of

the objects.

3. Having a physical model can be beneficial in order to achieve a more realistic representa-

tion of the microscopic samples. Therefore, 3D printing of the reconstructed 3D models are

considered here. This is to showcase the superior performance of the proposed method in

recovering very fine details as well as to provide the means for better understanding of the

morphology of the samples.

The rest of the paper is organized as follows. SectionMaterials and Methods contains

detailed explanations of the techniques proposed in this work. It covers the SEM imaging pro-

tocol used here. After discussing the pre-processing steps of sparse scale invariant feature

transform (SIFT) and epipolar stereo rectification, the method of optical flow estimation with

non-local regularization is introduced. As for post-processing of the dense matching results,

image guided weighted median filtering is introduced next. The section is concluded by true

depth estimation using the filtered dense matching results. In Section Results and Discussions,
the results generated by the proposed framework are presented with detailed comparisons

with the state-of-the-art. Section Conclusion concludes the paper.

Materials and methods

SEM imaging protocol

In this work, a Hitachi S-4800 field emission scanning electron microscope (FE-SEM) has been

utilized to generate the micrographs. This SEM is equipped with a computer controlled 5 axis

motorized specimen stage which enables movements in x, y and z directions as well as tilt (-5 to

70˚) and rotation (0 to 360˚). Specimen manipulations, such as tilt, z-positioning and rotation

of the specimen stage, as well as image pre-processing and capture functions were operated

through the Hitachi PC-SEM software. The working distance which gives the required depth of

focus was determined at the maximum tilt for every single sample at the magnification chosen

for image capture. As the specimen was tilted in successive 1˚ increments until reaching the

final value through the software application, the SEM image was centered by moving the stage

in the x- and/or y-axes manually. The micrographs were acquired with an accelerating voltage

of 3 or 5 kV, utilizing the signals from both the upper and lower SE detectors in a mixed man-

ner, as shown in Fig 1. The magnification and working distance were held fixed in each cap-

tured image of the tilt series. Contrast and brightness were adjusted manually to keep

consistency between SEM micrographs. Fig 2 summarizes the data that used in this work.

Micrographs from Arabidopsis Anther 1, Arabidopsis Anther 2, Graphene, Pseudoscorpion and

Fly Ash are considered for evaluating the performance and accuracy of the proposed approach.

SIFT feature detection/matching and epipolar rectification

Briefly speaking, four stages of feature detection/description involved in SIFT method can be

summarized as [38]: 1) scale-space extrema detection, 2) keypoint localization, 3) orientation

assignment and 4) keypoint descriptors. For the first step, a Gaussian function is considered as

3D reconstruction of highly complex microscopic samples
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the scale-space kernel. The local extrema of the response of the image to the difference-of-

Gaussian (DoG) masks of different scales is found in a 3 × 3 × 3 neighborhood of the interest

point. After several stages of processing for removing the poorly defined keypoints in low con-

trast regions and near edges using quadratic function fitting and thresholding, the correspond-

ing orientations can be assigned to the keypoints. This is followed by creating a 36-bin

histogram for orientations in the keypoint’s neighborhood by considering contributions from

each neighbor, weighted based on their gradient magnitude and also by a Gaussian-weighted

circular window around the keypoint. Using the location, scale and orientation determined for

each keypoint up until now, the keypoint’s descriptor is computed by combining the gradients

at keypoint locations, as computed in the previous steps, weighted by a Gaussian function over

each 4 × 4 sub-region in a 16 × 16 neighborhood around the keypoint into 8-bin histograms.

This results in a 4 × 4 × 8 = 128 element vector for each keypoint.

Given a set of two SEM images of a microscopic sample captured by tilting the specimen

stage, the epipolar rectification step aims to transform the images to only have horizontal

Fig 1. SEM imaging procedure used for this study.

https://doi.org/10.1371/journal.pone.0175078.g001
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displacements (disparity) between the corresponding pixels within the images. Assuming a set

of sparse naively-matched (using nearest neighbors (NN) algorithm) SIFT feature points fol-

lowed by a contrario RANSAC (ORSA) outlier removal algorithm [39] and represented as

3-vectors of homogeneous coordinates for the left (Xl) and right (Xr) images, the epipolar con-

straint can be written as [27]:

XT
l FXr ¼ 0 ð1Þ

where F is the fundamental matrix that captures the rigidity constraint of the scene. Having a

rectified pair, the fundamental matrix takes the especial form of:

F ¼ ½e1�� ¼

0 0 0

0 0 � 1

0 1 0

2

6
6
6
4

3

7
7
7
5

ð2Þ

which means that the epipoles are at infinity in horizontal direction. Therefore, the process of

rectification involves finding homographies to be applied to the left and right images to satisfy

the epipolar constraint equation when F = [e1]×:

XT
l FXr ¼ 0 � ðHlXlÞ

T
½e1��ðHrXrÞ ¼ 0 ð3Þ

Having a rotation matrix R for the camera around the focus point, a homography matrix

can be formulated asH = KRK−1 where K is the camera parameters matrix with (xc, yc) as the

image center (principal point) and f as the unknown focal length: K = [f 0 xc;0 f yc;0 0 1]. Fol-

lowing the formulation proposed in [40, 41] we look for rotation matrices Rl and Rr and focal

length which satisfy:

Eðxl; yl; xr; yrÞ ¼ XT
l K

� TRTl K
T ½e1��KRrK

� 1Xr ¼ 0 ð4Þ

where Rr = Rz(θrz)Ry(θry)Rx(θrx), Rl = Rz(θlz)Ry(θly) and K = K(f = 3g(w+h)), with w and h as the

width and height of the input images respectively and g in the range [−1,1]. It should also be

noted that due to the specific form of [e1]× all of the rotations around the x direction are

Fig 2. Dataset acquired using a Hitachi S-4800 Field Emission Scanning Electron Microscope (FE-SEM) by tilting the specimen

stage by 7˚. The samples are (a) Arabidopsis Anther 1 (1280 × 960), (b) Arabidopsis Anther 2 (1280 × 960), (c) Graphene (1280 × 960), (d)

Pseudoscorpion (960 × 1280) and (e) Fly Ash (926 × 924). The micrographs for the Pseudoscorpion set are rotated by 90˚ for visualization

purposes.

https://doi.org/10.1371/journal.pone.0175078.g002
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eliminated since Rtx½e1��Rx ¼ ½e1��. Assuming the Sampson’s error as:

E2
s ¼ E

TðJJTÞ� 1E ð5Þ

where J is the matrix of partial derivatives of E with respect to the 4 variables:

J ¼ ððFXrÞ1 ðFXrÞ2 ðF
TXlÞ1 ðF

TXlÞ2Þ ð6Þ

we have

EsðXl;XrÞ
2
¼

EðXl;XrÞ
2

jj½e3��FTXljj
2
þ jj½e3��FXrjj

2
ð7Þ

Utilizing Levenberg-Marquardt [42], the method seeks the parameters (θly, θlz, θrx, θry, θrz, g)
which minimize the sum of Sampson errors over the matching pairs. The optimized parameters

are then used for building the two homographies to be applied to the left and right view images.

More elaboration regarding the theory and implementation aspects of the rectification method

can be found in [40, 41].

Dense matching by optical flow estimation

Finding a dense matching map between individual pixels of the input SEM micrographs is of

high importance for high quality depth estimation and point cloud generation. One should

note that the images are captured of rigid objects, with the only change being in the viewpoint

angle. The rigidity of the microscopic samples, then, should be preserved in the found dense

correspondence maps. This is generally satisfied since the imaged objects are well-textured

which makes the process of matching more robust. On the other hand, edges/discontinuities

contained in the micrographs should be preserved. This is mainly necessary for distinguishing

different regions of more complex microscopic samples, similar to that of considered here

(refer to Fig 2). Being able to preserve the discontinuities benefits the depth estimation greatly.

However, the found correspondence maps should be piece-wise smooth which is usually satis-

fied in the formulation of energy functional required for matching. For the current work,

dense matching is achieved using high quality optical flow estimation.

Optical flow estimation introduced by [43] refers to the estimation of displacements of

intensity patterns in image sequences [44], [45]. Generally speaking, the problem can be for-

mulated as a global energy optimization problem of the form EGlobal = EData+λEPrior where the

data term, EData, measures the consistency of the optical flow for the input images and the

prior term, EPrior, applies additional constraints for having a specific property for the flow

field, for example smoothly varying flow fields. The choice of each term in the global energy

functional and also the optimization algorithms varies in different methods for optical flow

estimation. Assuming a two-frame (I1 and I2) formulation, the objective function can be writ-

ten as:

Eðu; vÞ ¼
X

i;j

fpDðI1ði; jÞ � I2ðiþ ui;j; jþ vi;jÞÞ

þl½pSðui;j � uiþ1;jÞ þ pSðui;j � ui;jþ1Þ

þpSðvi;j � viþ1;jÞ þ pSðvi;j � vi;jþ1Þ�g

ð8Þ

with u and v as the horizontal and vertical components of the flow field, i, j as the pixel indexes,

λ as the regularization parameter and finally, pD and pS as the data and spatial prior penalty

functions, respectively. In the original work of Horn and Schunck [43] quadratic functions are
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used for both the data and spatial penalty functions. But in the literature examples of using

Charbonnier ðpðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ∊2
p

ÞÞ in [46] and Lorentzian pðxÞ ¼ log 1þ x2

2s2

� �� �
in [47] pen-

alty functions and their variants can be found which provide a more robust estimation of the

underlying flow fields. To account for large displacements between frames, the above formula-

tion is usually minimized in a multi-resolution manner using incremental pyramid schemes,

with steps of Gaussian anti-aliasing and flow outlier removal filters between iterations. This

helps the process of linearization of the objective function manageable and ensures lower

chances of being trapped in local optima. As thoroughly discussed in [48], however, median

filtering of the optical flow estimates after each pyramid level has a big impact in the final out-

come of the minimization process: while the final energy is higher than what is achieved with-

out median filtering, the optical flow error is minimized. This is due to the non-local nature of

median filtering which is different from the local pairwise smoothness term. Incorporating the

non-local median filtering heuristic as a weighted term in the energy functional can be consid-

ered as a means for ensuring minimal over-smoothing across boundaries. This is empirically

useful for the problem of dense matching in SEM stereo pairs, especially since very fine details

has to be preserved to obtain a more accurate 3D reconstruction.

Explicit formulation of the median filtering in Eq 8 can be approximated by

Eðu; vÞ ¼
X

i;j

fpDðI1ði; jÞ � I2ðiþ ui;j; jþ vi;jÞÞ

þl½pSðui;j � uiþ1;jÞ þ pSðui;j � ui;jþ1Þ

þpSðvi;j � viþ1;jÞ þ pSðvi;j � vi;jþ1Þ�g

þlN

X

i;j

X

ði0 ;j0Þ2N i;j

ðjui;j � ui0;j0 j þ jvi;j � vi0 ;j0 jÞ

ð9Þ

in which N i;j is the neighborhood centered at (i, j) and λN is the weight determining the contri-

bution of the non-local weighted median term. Due to difficulty of optimization of Eq 9 when

having large spatial terms, the objective function can be relaxed using a set of auxiliary hori-

zontal (û) and vertical (v̂) flow field components:

Eðu; v; û; v̂Þ ¼
X

i;j

fpDðI1ði; jÞ � I2ðiþ ui;j; jþ vi;jÞÞ

þl½pSðui;j � uiþ1;jÞ þ pSðui;j � ui;jþ1Þ

þpSðvi;j � viþ1;jÞ þ pSðvi;j � vi;jþ1Þ�g

þlCðjju � ûjj2 þ jjv � v̂jj2Þ

þlN

X

i;j

X

ði0;j0Þ2N i;j

ðjûi;j � ûi0 ;j0 j þ jv̂ i;j � v̂i0 ;j0 jÞ

ð10Þ

where λC is a scalar weight which penalizes the contribution of differences between the auxil-

iary and main flow fields. The current formulation with L1 minimization is in close accordance

with median filtering [49]. Assuming the above explicit representation of median filtering as

part of the energy minimization functional, more improvement can be achieved by employing

a weighted approach based on the approximate classification of the pixels in the neighborhood.

In the non-local term, given a pixel and knowing which pixels in the neighborhood belong to

the same surface, higher weights can be assigned while for the other pixels weights are lower

3D reconstruction of highly complex microscopic samples
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[50]. In this manner, the non-local term in Eq 10 is replaced with:

X

i;j

X

ði0;j0Þ2N i;j

wi0;j0
i;j ðjûi;j � ûi0 ;j0 j þ jv̂i;j � v̂i0 ;j0 jÞ ð11Þ

The weights wi0 ;j0
i;j can be approximated by taking the spatial distance, color-value distance

and occlusion states into account [51–53]:

wi0;j0
i;j / expf�

ji � i0j2 þ jj � jj2

2s2
1

�
jIði; jÞ � Iði0; j0Þj2

2s2
2
nc

g
oði0; j0Þ
oði; jÞ

ð12Þ

where I is the color vector in the Lab color space, nc is the number of color channels, σ1 = 7

and σ2 = 7. The occlusion variable o(i, j) is defined as:

oði; jÞ ¼ expf�
d2ði; jÞ

2s2
d
�
ðIði; jÞ � Iðiþ ui;j; jþ vi;jÞÞ

2

2s2
e

g ð13Þ

where d(i, j) is the one-sided divergence function (only negative values, and positives consid-

ered as zero). This variable is near zero for occluded pixels while close to one in non-occluded

regions. The parameters σd and σe are set to 0.3 and 20, respectively according to [51]. Follow-

ing the work of Li and Osher [54], an approximate solution for the auxiliary flow filed compo-

nents, û and v̂ , can be found for all of the pixels.

Full implementation of the above requires high computational power. A simple modifica-

tion can reduce the computational need immensely. Since the weighted formulation is

designed to overcome the negative impacts of over-smoothing boundaries in the process of

optical flow estimation while the estimates in the uniform regions are very accurate, different

methodologies can be applied to ensure an accurate solution while demanding less computa-

tional power. Using a Sobel edge detector and having the current estimate of optical flow,

motion boundaries can be detected and then dilated to determine the flow boundary regions.

In these regions the weighted formulation with a 15 × 15 neighborhood is applied while in

non-boundary regions, a 5 × 5 un-weighted approach is taken. This will reduce the computa-

tional time drastically.

Optimizing Eq 10 will result in the flow field representing how the pixels moved between

the micrographs. Given that the input micrographs are rectified, the vertical components of

the flow fields are negligible in comparison to the horizontal components. In fact, the energy

of the vertical disparity map is less than 1% of that of horizontal disparity. Considering this,

the vertical disparity map is disregarded for the rest of the steps.

Disparity refinement by weighted median filter

As can be seen from the micrographs used in the current work, the level of detail can be very

high due to presence of many microscopic objects in the samples. This can be mainly problem-

atic since the variation of the size is also large. A great representative is the Fly Ash sample in

which objects of various sizes as well as regions with different textures are present. This cannot

be fully recovered by the previous steps and therefore, our goal of a more truthful 3D recon-

struction can be compromised. However, this can be greatly remedied by using the original

images for guiding towards a more accurate correspondence. Here, we propose to use weighted
median filtering as means for error correction. In this manner, the original images serve as

guidance for a more accurate filtering of the computed disparity map.

Weighted median filter, as is obvious from the name, aims to replace the image pixels with

weighted median of the neighborhood pixels within a local window [55, 56]. Assuming image
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I and the corresponding feature map f, and pixel p in image I located at the center of a local

window RðpÞ with radius r, for each pixel q 2 RðpÞ a weight wpq will be assigned which is a

representative of the affinity of the two pixels in the feature map f. This can be represented as

wpq ¼ gðfðpÞ; fðqÞÞ ð14Þ

where g is the influence function (Gaussian, reciprocal, cosine, etc.) [57]. Given n = (2r+1)2 as

the number of pixels in the local window RðpÞ, the value and weight element of all n pixels can

be expressed as {(I(q), wpq)}. After sorting values in an ascending order, the weighted median

operator returns the new pixel p� such as:

p� ¼ min k s:t:
Xk

q¼1

wpq �
1

2

Xn

q¼1

wpq: ð15Þ

which means that the sum of corresponding weights for all pixels before p� should be almost

half the sum of all weights. It should be noted that in this formulation, feature map f deter-

mines the weights.

For our work, use of weighted median filtering is considered for achieving a more accurate

correspondence. Given the computed disparity map from the previous step, and also having

the first micrograph from each image set that is used for optical flow estimation as the feature

map, the disparity map is filtered using the weighted median filter. Even though the straight-

forward implementation of the method is simple, it can be very time consuming due to spa-

tially varying wights and the median property. Zhang et al. [57] proposed the use of joint-

histogram with median tracking and necklace table data structure for fast implementation of

the weighted median filter. Employing this approach, a more detailed disparity map can be

achieved which results in a higher fidelity 3D reconstruction.

Depth estimation

Stereo rectification transforms the images in a manner in which the displacements will be

grossly concentrated in the horizontal direction. This greatly simplifies the process of depth

estimation. This is especially useful for the case of 3D reconstruction of SEM images since the

tilt angles are very small with high amount of overlap between stereo image pairs. For more

general problems like large scale multiple view stereo (MVS), the proposed technique is not

directly applicable and more sophisticated methods are needed [58–60].

The horizontal disparity computed from the previous step, can be utilized for estimating

the depth of the individual pixels contained in the images. This requires several parameters to

be known: tilt angle, magnification factor and size of each pixel in sample units. Fig 3 shows

the relationship between the computed horizontal disparity and the height for a few sample

points. This can be represented using a simple trigonometric equation [61–63]:

h ¼
d:p

2 sin
y

2

� �
ð16Þ

which uses the computed horizontal disparity d, pixel size in sample units (p) and the total tilt

angle (θ) to estimate the height (h).

Results and discussions

Assessing the performance of the proposed method is done in several steps both qualitatively

and quantitatively. Using a Hitachi S-4800 field emission scanning electron microscope
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(FE-SEM), the micrographs of the five sample sets (Arabidopsis Anther 1, Arabidopsis Anther
2, Graphene, Pseudoscorpion and Fly Ash) are captured. The device is equipped with computer

controlled 5 axis specimen stage which enables movements along three coordinate axis as well

as tilting and rotation. The process of image acquisition is done in a controlled manner by an

expert with manual adjustments of focus and re-centering when needed. Between the two

views acquired for each sample, only the tilt angle is changed while the distance between the

specimen stage and the detectors as well as zooming factor are kept constant. In order to keep

the image acquisition sessions consistent, the tilt angle between micrographs of each set is set

to 7˚. However, similar tilt angles in close range would produce the same results as evidenced

by our previous experiments. One should note that the amount of overlap between images is a

key factor in a more accurate 3D reconstruction. Keeping the tilt angle small, as well as re-cen-

tering the sample after tilting the specimen stage will ensure a more accurate and robust

matching and therefore result in a more truthful reconstruction.

The first step of the proposed approach consists of finding distinctive feature points in the

two input micrographs from each set to be used for stereo rectification. Given the initial SIFT

feature points, SIFT descriptors are computed as described in Section SIFT Feature Detection/
Matching and Epipolar Rectification. This is followed by putative matching of the SIFT descrip-

tors considering naive nearest neighbor search. Since it is assumed that SIFT descriptors cap-

ture information about the neighborhood of each feature point, putative matching produces

Fig 3. Relationship between the estimated height (h) and the computed horizontal disparity (d) using the pixel size in sample units

(p) and the total tilt angle (θ).

https://doi.org/10.1371/journal.pone.0175078.g003
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reasonable number of correct matches. However, it cannot be expected to have a completely

accurate matching between feature points due to noise and also similarities in textures con-

tained in the input images. Therefore, one should find a reasonable transform between the

matching points that satisfies some error criteria for the majority of matched features. In our

work, without going into much detail as this subject is a very well-studied concept in computer

vision, a variant of random sample consensus (RANSAC), namely a contrario RANSAC

(ORSA), is used in order to find correct matches that satisfy a homography transform between

the two images. This is followed by formulating the Sampson’s error to be used for rectifying

the input pair in order to have horizontally concentrated matchings. This step is necessary for

the process of dense matching needed for high quality 3D reconstruction. In sparse feature-

based approaches used for 3D reconstruction of microscopic samples [32, 64], computation of

fundamental matrix and the subsequent projective transformation is computationally efficient.

This is due to small number of matching points in comparison to the total number of pixels in

the images. However, having the dense matching for all the pixels in the images requires spe-

cific configurations. Rectifying the input pair simplifies the problem of 3D point cloud genera-

tion. In this case, the need for computing the fundamental matrix and projective

transformation using all of the matching points is eliminated. Table 1 summarizes the result of

the rectification process used for this study for all of the sample sets. The first and second row

in the table represents the number of individual SIFT feature points found in the input images.

This is followed in the third row by the number of true matches after putative nearest neighbor

matching and ORSA outlier elimination. Even though this number consists of a small portion

of the initial matches, however, for the purpose of stereo rectification is enough. The number

of initial and final matches is lower for the Pseudoscorpion set due to lower amount of varia-

tions and texture in the images of the set. The table continues with the initial and final rectifi-

cations errors obtained using the quasi-Euclidean stereo rectification process. Having a more

horizontally-concentrated matching between image pixels will ensure more accurate and

robust 3D reconstruction.

The rectification step is followed by optical flow estimation to determine the dense match-

ing between individual image pixels in the image pair. Fig 4 shows the results of optical flow

estimation. For better visualization of the effects of dense matching, the difference maps are

displayed. The first row shows the initial difference map between the input images of the pair.

The second row shows the estimated optical flows for compensating the movements of indi-

vidual pixels in the two images. The computed flow is color-coded, with red representing posi-

tive values and blue representing negative values. Utilizing the computed optical flow

estimates, the first image of the pair can be warped to generate the second image. The differ-

ence maps between the warped first image and the second image of each pair are excellent rep-

resentatives of the performance of the matching procedure. These are shown in the third row

of Fig 4. Inspecting the computed optical flows reveals very important properties of the image

Table 1. Rectification results: number of SIFT points found in each input image (rows 1 and 2), number of matching points after a contrario RAN-

SAC (row 3), initial and final rectification errors from before and after the quasi-Euclidean rectification (rows 4 and 5). As can be seen, despite careful

image acquisition, the initial rectification errors are large.

Arabidopsis Anther 1 Arabidopsis Anther 2 Graphene Pseudoscorpion Fly Ash

im.1 # SIFT keypoints 783 981 2089 195 1633

im.2 # SIFT keypoints 658 893 2488 65 1652

ORSA # SIFT matches 214 268 487 18 418

initial rect. err. (pix) 2.393 6.910 14.055 1.223 2.766

final rect. err. (pix) 0.802 0.425 0.277 0.971 0.472

https://doi.org/10.1371/journal.pone.0175078.t001
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matching that is required here. Two dimensional deformable biomedical image registration as

an example of image matching tries to find the correspondence between pixels of two images

[65, 66]. However, the general formulation assumes that the matching points are all laid on the

same plane. This is not the case for many computer vision problems, optical flow estimation

included. In such cases the computed correspondence must be discontinuity preserving. In

other words, an image as a projective depiction of a scene may contain several objects which

are actually lay on the same plane and can move independently and therefore, the computed

flow patterns should account for that [67].

Having a rectified stereo pair as input to the optical flow estimation approach results in a

horizontally-concentrated flow estimate, as expected. Our experiments show that the energy

contained in the vertical component of optical flow is less than 1% of the horizontal compo-

nent, which is ideal for an accurate reconstruction. Therefore, for 3D reconstruction, only the

horizontal component is used as the disparity map.

Even though the employed optical flow approach produces highly accurate results, due to

lack of color in the initial SEM images, the results may suffer from blurred edges. This is

mainly problematic in highly complex samples used here, Fly Ash for example. To ensure a

more accurate estimation, further post-processing is done using weighted median filtering as

described in Section Disparity Refinement by Weighted Median Filter. Using the first image as

guidance, because the optical flow is computed from the first to the second image in the pair,

the disparity map is filtered taking advantage of weighted median filtering. Fig 5 shows the

effects of the employed post-processing filtering on portions of the Pseudoscorpion and Fly
Ash disparity maps. While the initial disparity maps has blurred edges and bumpy appear-

ances, the result of weighted median filtering is more sharp and accurate near the edges.

Moreover, more detail is preserved in the resulted disparity map as can be seen from the pre-

sented images.

Fig 4. Optical flow estimation results for (a) Arabidopsis Anther 1, (b) Arabidopsis Anther 2, (c) Graphene, (d) Pseudoscorpion

and (e) Fly Ash sample sets. The first row shows the initial difference maps. The second row shows the computed optical flow estimate.

Using the optical flow estimate, the first image in each pair is warped and then used for generating the final difference maps as depicted in

the third row. It should be noted that the images for Pseudoscorpion set are rotated by 90˚ for visualization purposes.

https://doi.org/10.1371/journal.pone.0175078.g004
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For a more comprehensive analysis, the proposed dense matching approach is compared

with several other methods previously used in the literature for dense matching and subse-

quently 3D reconstruction. Sparse feature-based approaches track the movements of distinct

feature points in the input images in order to compute the fundamental matrix and projective

Fig 5. Effects of weighted median filtering on the horizontal disparity map: a) before and b) after. Despite inclusion of non-local term

in the optical flow energy functional, the outcome can be improved greatly by adding an additional weighted median filtering step.

https://doi.org/10.1371/journal.pone.0175078.g005

3D reconstruction of highly complex microscopic samples

PLOS ONE | https://doi.org/10.1371/journal.pone.0175078 April 6, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0175078.g005
https://doi.org/10.1371/journal.pone.0175078


transformation [32, 64]. To generate a dense disparity map, similar to that of created by our

approach for a better comparison of the performance, the sparse disparity values are interpo-

lated employing a Delaunay triangulation-based interpolation method. As for dense matching

schemes, the works of Horn and Schunck [43] and Liu et al. [68] are good examples. While the

first one works based on the pixels’ correspondence, the later extends a similar idea to match-

ing of dense SIFT descriptors. Figs 6 and 7 display the disparity maps computed using the

above-mentioned methods as well as the proposed approach for the Graphene and Fly Ash
sample sets, respectively. In each figure, the left column shows the overall disparity map while

the right column is a zoomed view for a better visual comparison of the various techniques.

Close inspection of the provided results displays the superiority of the proposed approach. As

expected, the outcome of the sparse feature-based approach is highly blurred near edges with

significant loss of details presented in the images. Even though such techniques are mainly

used with more than two input images, the performance is the same as evident from the

results. In contrast, dense matching approaches produce more accurate results. In the results

of the method of [43], more details are presented and discontinuities are better preserved.

However, in cases of having larger displacements near the margins of the input images (left

side of the Graphene results) the estimated optical flow is not as accurate as the sparse feature-

based approach. Using the dense descriptor matching scheme in the work of Liu et al. [68],

this is mostly resolved. In this technique, at first two 128-dimensional dense SIFT descriptor

images of both the first and second micrograph in the pair are created. To compute the match-

ing, a factor graph representation of the specifically defined energy functional is introduced

and the process of optimization is done using loopy belief propagation. By employing the

dense descriptor matching methodology more accurate results can be achieved. The last row

in Figs 6 and 7 is the disparity results using the proposed approach. Employing the proposed

approach, higher levels of details can be reached in the resulted disparity maps. With higher

accuracy in preserving the discontinuities, a more truthful reconstruction can be made. This is

more evident in the samples with higher complexity levels, Fly Ash sample set for example. As

shown in Fig 7, the proposed approach can recover disparity values even for smaller objects in

the images, while in contrast, the other methods presented here cannot, due to high amount of

blur around edges and boundaries.

Having the height estimate for each point, a dense 3D point cloud can be generated and fur-

ther used for 3D surface reconstruction. To eliminate the effects of smoothing introduced by

general purpose mesh generating toolsets, similar to that of used in MeshLab [69], Delaunay

triangulation is done by utilizing the image grid as the set of mesh nodes. The triangular mesh

nodes are then transformed from the two dimensions of the image plane to the three dimen-

sions of the model using the computed height estimates. This practically eliminates the

smoothing effects which generally happen near the edges of the objects and in areas that con-

tain sudden jumps due to sharp changes in the depth estimate. Using simple MATLAB scripts,

the generated 3D surface can be transformed and saved as standard STL files which can be

later used for further mesh modification and processing using more specialized software. Use

of edge aware mesh smoothing procedures can be considered in order to have a more pleasing

appearance without losing details of the edges and sudden changes of depth. Fig 8 shows 3D

red-cyan anaglyphs generated by combining the two rectified stereo views of the microscopic

samples as well as the solid 3D models created using Meshmixer [70]. The generated models

can also be sent out for 3D printing as the ultimate means for creating a tangible representa-

tion of the complex microscopic structure [34, 36, 71, 72]. Fig 9 (a) shows one image from Fly
Ash sample, while (b) shows another view of the 3D solid model created using the computed

disparity estimates and modified using MeshMixer. Finally, (c) is an image captured from the

3D printed model.
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Fig 6. Comparison of the results for Graphene: a) the overall as well as a zoomed region of the computed disparity map using the state-

of-the-art method of [32] which uses sparse feature-based matching approach and a contrario RANSAC for outlier removal. The dense

disparity map is created by scattered data interpolation of the sparse disparity values. b) the result of Horn/Schunck optical flow

estimation [43], which provides a better estimation of the disparity map than that of [32]. c) the result of dense feature matching proposed

in [68] which uses dense SIFT features as well as factor graph representation of the matching energy functional optimized by loopy belief

propagation. Even though relatively better than [43], the result still suffers from blurred edges. The result of the proposed method is

presented in (d). In comparison to the state-of-the-art, the proposed approach generates a sharper and more accurate disparity map.

https://doi.org/10.1371/journal.pone.0175078.g006
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Fig 7. Comparison of the results for Fly Ash: a) the overall as well as a zoomed region of the computed disparity map using the

state-of-the-art method of [32] which uses sparse feature-based matching approach and a contrario RANSAC for outlier

removal. The dense disparity map is created by scattered data interpolation of the sparse disparity values. b) the result of Horn/

Schunck optical flow estimation [43], which provides a better estimation of the disparity map than that of [32]. c) the result of

dense feature matching proposed in [68] which uses dense SIFT features as well as factor graph representation of the matching
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energy functional optimized by loopy belief propagation. Even though relatively better than [43], the result still suffers from

blurred edges. The result of the proposed method is presented in (d). In comparison to the state-of-the-art, the proposed

approach generates a sharper and more accurate disparity map.

https://doi.org/10.1371/journal.pone.0175078.g007

Fig 8. 3D red-cyan anaglyphs generated by combining the two rectified stereo views of the

microscopic samples as well as the solid 3D models created using Meshmixer [70] for (a) Arabidopsis

Anther 1, (b) Arabidopsis Anther 2, (c) Graphene, (d) Pseudoscorpion and (e) Fly Ash sample sets.

https://doi.org/10.1371/journal.pone.0175078.g008

Fig 9. From start to finish: (a) first image from the Fly Ash sample set, (b) 3D solid model generated using the computed disparity

estimates and modified using MeshMixer [70], (c) 3D printed model. Using the proposed approach, highly complex structure of the

sample was captured and reconstructed in the printed model.

https://doi.org/10.1371/journal.pone.0175078.g009
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Conclusion

In this work, a novel and accurate approach is introduced for high fidelity 3D reconstruction

of highly complex microscopic samples. In the proposed methodology, multi-view SEM

micrographs from two different view-points are captured using a Hitachi S-4800 field emission

scanning electron microscope (FE-SEM). The micrographs are acquired with 7˚ tilt angle dif-

ference, made possible by the provided computer controlled 5 axis specimen stage. The image

acquisition is then followed by one stage of pre-processing which consists of four steps: a)

sparse SIFT feature detection/description, b) nearest neighbor search for finding the putative

sparse matching, c) a contrario RANSAC for outlier removal and finally d) quasi-Euclidean

stereo rectification. This step is necessary due to the need for high quality dense correspon-

dence required for accurate 3D reconstruction of highly complex samples used here. The pre-

processing stage is followed by dense matching, employing non-local based optical flow esti-

mation. Using this technique, a highly accurate estimate of dense correspondence can be

achieved. To ensure a more accurate disparity map as well as eliminating blurred edges, a post-

processing filtering step using weighted median filtering is done which uses the first image in

each pair as the guidance. Finally, the disparity map is used to generate the 3D point cloud of

the microscopic sample. The 3D point cloud is later used for high quality surface mesh genera-

tion. Extensive comparisons reveal the superiority of the proposed method to the state-of-the-

art sparse feature-based techniques used for 3D surface reconstruction of SEM images. More-

over, the produced results are experimentally proven to be extremely accurate and suitable for

3D printing.

The provided results can serve as great qualitative measures for assessing the performance

of the proposed method. However, having a more quantitative measurement of the perfor-

mance is of high importance. The solution to the problem can be sought in direct/indirect

measurements of surface/volume properties in conjunction with 3D surface reconstruction.

Such properties may include, but not limited to, surface roughness, particle size/volume mea-

surement and coefficient of friction estimation. Imaging modalities such as Atomic Force

Microscopy (AFM) [73] can be considered as means of assessment. Moreover, depending on

the sample’s properties, volume electron microscopy imaging modalities mentioned before

(e.g. ssTEM, SBF-SEM or FIB-SEM) can also be used for generating accurate 3D volume mod-

els of the samples. However, it should be noted that the destructive nature of the volume

microscopy modalities prevents us from revisiting the samples. Moreover, errors in accurately

delineating the features of interest (here, surfaces) may compromise the analysis. More investi-

gations on the subject is left for future research.
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