Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Furan-2-yl)-1,3-bis(furan-2-ylmethyl)-1*H*-benzimidazol-3-ium chloride monohydrate

David K. Geiger,* H. Cristina Geiger and Jared M. Deck

Department of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA Correspondence e-mail: geiger@geneseo.edu

Received 22 August 2012; accepted 21 September 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.045; wR factor = 0.129; data-to-parameter ratio = 12.6.

The title hydrated salt, $C_{21}H_{17}N_2O_3^+\cdot Cl^-\cdot H_2O$, exhibits disorder in one of the furan rings. The major and minor components have a refined occupancy ratio of 0.844 (19):0.156 (19). The structure displays intermolecular hydrogen bonding involving the water molecule and the chloride anion. Close intermolecular $C-H\cdot\cdot\cdot Cl$ and C- $H\cdot\cdot\cdot$ (furan ring) interactions complete the hydrogen bonding.

Related literature

For examples of the synthesis of substituted benzimidazolium salts, see: Wang & Chang (2006); Hoesl *et al.* (2004); Rivas *et al.* (2001, 2002). For examples of structures of other trisubstituted benzimidazolium salts, see: Ennajih *et al.* (2009, 2010); Akkurt *et al.* (2008, 2004); Smith & Luss (1975). For the structure of 1,3-bis(furan-2-ylmethyl)-1*H*-benzo[*d*]imidazol-3-ium chloride, see: Akkurt *et al.* (2009). For other related literature, see: Costache *et al.* (2007); Elmali *et al.* (2005); Hayakawa *et al.* (1996); Horton *et al.* (2003); Nahlé *et al.* (2012); Welton (1999).

Experimental

Crystal data

 $C_{21}H_{17}N_2O_3^+ \cdot Cl^- \cdot H_2O$ $\gamma = 93.547 (4)^{\circ}$
 $M_r = 398.83$ $V = 976.3 (2) Å^3$

 Triclinic, $P\overline{1}$ Z = 2

 a = 9.4723 (12) Å Mo K α radiation

 b = 9.9129 (14) Å $\mu = 0.23 \text{ mm}^{-1}$

 c = 11.2779 (16) Å T = 200 K

 $\alpha = 97.980 (5)^{\circ}$ $0.30 \times 0.07 \times 0.07 \text{ mm}$

Data collection

Bruker SMART X2S benchtop diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.91, T_{\max} = 0.98$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.129$ S = 1.053419 reflections 272 parameters 10 restraints $R_{int} = 0.036$ H atoms treated by a mixture

2732 reflections with $I > 2\sigma(I)$

9477 measured reflections 3419 independent reflections

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
OW−HO2···Cl1	0.85 (1)	2.35 (1)	3.189 (2)	174 (5)
$OW - HO1 \cdots Cl1^{i}$	0.84(1)	2.34 (1)	3.183 (2)	176 (4)
С9−Н9…О3	0.95	2.49	3.278 (7)	141
C12−H12A···Cl1 ⁱⁱ	0.99	2.77	3.694 (2)	155
$C12 - H12B \cdots O1$	0.99	2.39	3.098 (6)	127
$C17 - H17B \cdots Cl1$	0.99	2.61	3.594 (2)	176
$C21 - H21 \cdots OW^{iii}$	0.95	2.29	3.168 (4)	153
$C15-H15\cdots O3^{iv}$	0.95	2.62	3.436 (3)	143
$C15-H15\cdots C18^{iv}$	0.95	2.85	3.788 (4)	170
$C15-H15\cdots C21^{iv}$	0.95	2.87	3.498 (4)	124

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) x, y, z + 1; (iv) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XSHELL* (Bruker, 2004) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2097).

References

- Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, 0809.
- Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, 0219–0221.

- Akkurt, M., Şireci, N., Deniz, S., Küçükbay, H. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2037–o2038.
- Bruker (2004). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Costache, M., Heidecker, M., Manias, E., Gupta, R. K. & Wilkie, C. (2007). Polym. Degrad. Stabil. 92, 1753–1762.
- Elmali, A., Elerman, Y., Eren, G., Gümüş, R. & Svoboda, I. (2005). Z. Naturforsch. Teil B, 60, 164-168.
- Ennajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, 02321.
- Ennajih, H., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, 0455.
- Hayakawa, Y., Kataoka, M. & Noyori, R. (1996). J. Org. Chem. 61, 7996–7997.

- Hoesl, C., Nefzi, A. & Houghten, R. (2004). J. Combin. Chem. 6, 220-223.
- Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nahlé, A., Abu-Abdoun, I. & Abdel-Rahman, I. (2012). Int. J. Corros. Article ID 246013.
- Rivas, F., Giessert, A. & Diver, S. (2002). J. Org. Chem. 67, 1708-1711.
- Rivas, F., Riaz, U., Giessert, A., Smulik, J. & Diver, S. (2001). Org. Lett. 3, 2673–2676.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, D. L. & Luss, H. R. (1975). Acta Cryst. B31, 402-408.
- Wang, S. & Chang, Y.-T. J. (2006). J. Am. Chem. Soc. 128, 10380–10381.
- Welton, T. (1999). Chem. Rev. 99, 2071-2083.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o3006-o3007 [doi:10.1107/S1600536812040135]

2-(Furan-2-yl)-1,3-bis(furan-2-ylmethyl)-1*H*-benzimidazol-3-ium chloride monohydrate

David K. Geiger, H. Cristina Geiger and Jared M. Deck

Comment

Benzimidazolium salts have uses as room-temperature ionic liquids (Welton, 1999), surfactants (Costache *et al.*, 2007), inhibitors of corrosion (Nahlé *et al.*, 2012), anti-tumor (Elmali *et al.*, 2005) and other pharmacological agents (Horton *et al.*, 2003) and in nucleotide synthesis (Hayakawa *et al.*, 1996).

A perspective view of the benzimidazolium cation of the title compound is shown in Figure 1. The benzimidazole moiety is planar with the largest deviation being 0.011 (1) Å (N1). The furan rings are also planar with the largest deviations being 0.004 (3) Å (C11, major contributor to the disorder structure), 0.034 (13) Å (O1', minor contributor to the disordered structure), 0.011 (1) Å (C16), and 0.003 (2) Å(C20). The major component of the disordered 2-furan substituent is canted 45.1 (2)° from the mean plane of the benzimidazole ring system and the two components of the disordered furan form an angle of 22.0 (2)°. The two 2-furanylmethyl rings are on the same side of the benzimidazole with an angle of 82.79 (10)° between them.

Figure 2 shows the unit cell of the title compound. The hydrogen-bonding network involving the chloride anion and water are displayed. In addition to the O—H···Cl hydrogen bonding network, weak C—H···Cl interactions are observed. The H12A···Cl1 distance is 2.77 Å with C12···Cl1 = 3.627 (2) Å. Also, there is a weak C—H···aromatic interaction involving H15 and the furan ring containing O3. The closest approach is with O3 with H15···O3 = 2.63 Å. H15 is 2.602 (3) Å from the furan mean plane. These interactions result in chains of molecules parallel to the (0 0 1) plane as shown in Figure 3.

Experimental

A single-crystal of the title compound was obtained during the attempted crystallization of 2-(2-furanyl)-1-(furanylmethyl)-1*H*-benzimidazole prepared *via* the aluminium trichloride catalyzed reaction of 1,2-diaminobenzene and furan-2-carbaldehyde in refluxing dichloromethane. The product was isolated by column chromatography on silica gel using an eluant that varied from 1:2 ethylacetate:hexanes to pure ethyl acetate.

The crystal used for the diffraction study was obtained by vapor diffusion of heptane into a methanol solution of the chromatographed product. Based on ¹H NMR spectroscopy, the title compound makes up less than 5% of the bulk product.

Refinement

All hydrogen atoms were observed in difference fourier maps. The H atoms were refined using a riding model with a C— H distance of 0.99 Å for the methylene carbon atoms and 0.95 Å for the phenyl and furan carbon atoms. All C—H hydrogen atom thermal parameters were set using the approximation $U_{iso} = 1.2U_{eq}$. The water oxygen atom was refined anisotropically. During the course of the refinement, *SHELXL* suggested that the oxygen atom of the water could be split into two atoms. However, attempts to refine the water assuming disorder result in no improvement in the GOF or the *R* values. The O—H distances were contrained to ~0.84 Å using *DFIX* and the H—O —H angles were restrained to ~104° using a DANG value of 1.34 Å between corresponding H atoms. The O—H hydrogen atom thermal parameters were set using the approximation $U_{iso} = 1.2U_{eq}$.

During the later stages of refinement, elongated thermal ellipsoids were noted for one of the furan rings. A disorder model was developed in which the minor component of the furan ring was modeled using the metrics of the major components as a guide. The pivot atom (C8) was assumed to have full occupancy and so was not included in the disorder model. The minor four-atom components (O1', C9', C10' and C11') were constrained to planarity using FLAT. Corresponding bond distances of the minor component and major component were set equal using SADI and corresponding thermal parameters were held the same using EADP. All atoms were refined anisotropically with hydrogen atoms in calculated positions using a riding model. With these constraints, the site occupancy of the major component refined to 0.84 (2). Based on this model, the angle between the mean planes of the major and minor components of the disordered furan ring is 22.(2)°.

Improvement in the usual indicators occurred with the introduction of the disorder model. The *S* improved from 1.06 to 1.04. The *R* decreased from 0.046 to 0.045 and *wR* decreased from 0.132 to 0.129. However, an unusually large residual peak (0.61 e⁻/Å³) that is 1.00 Å from a hydrogen atom exists. The hydrogen atom in question (H12A) is involved in a close interaction with the chloride ion (2.78 Å). The next largest residual peak is 0.37 e⁻/Å³ and it is located 1.29 Å from H15, which is involved in a weak C—H^{···} aromatic ring hydrogen bonding interaction (the closest approach is to O3 at 2.63 Å).

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2004) and Mercury (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Perspective view of the benzimidazolium ion showing the atom labeling scheme. Displacement ellipsoids of nonhydrogen atoms are drawn at the 25% probability level. Only the major contributor to the disordered furan ring is shown.

Figure 2

View of the unit cell showing the hydrogen bonding network. Only the major component of the disordered furan is shown. Ellipsoids are drawn at the 25% probability level.

Figure 3

Close intermolecular C—H···Cl and C—H···O(furan) interactions resulting in a chain structure.

2-(Furan-2-yl)-1,3-bis(furan-2-ylmethyl)-1H-benzimidazol-3-ium chloride monohydrate

Crystal data	
$C_{21}H_{17}N_2O_3^+ \cdot Cl^- \cdot H_2O$	$\beta = 110.359 \ (4)^{\circ}$
$M_r = 398.83$	$\gamma = 93.547 \ (4)^{\circ}$
Triclinic, $P\overline{1}$	$V = 976.3 (2) \text{ Å}^3$
a = 9.4723 (12) Å	Z = 2
b = 9.9129 (14) Å	F(000) = 416
c = 11.2779 (16) Å	$D_{\rm x} = 1.357 { m Mg} { m m}^{-3}$
$\alpha = 97.980 \ (5)^{\circ}$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3551 reflections	T = 200 K
$\theta = 2.4 - 24.8^{\circ}$	Needle, clear colourless
$\mu = 0.23 \text{ mm}^{-1}$	$0.30 \times 0.07 \times 0.07 \text{ mm}$
Data collection	
Bruker SMART X2S benchtop	$T_{\min} = 0.91, \ T_{\max} = 0.98$
diffractometer	9477 measured reflections
Radiation source: XOS X-beam microfocus	3419 independent reflections
source, Bruker SMART X2S benchtop	2732 reflections with $I > 2\sigma(I)$
Doubly curved silicon crystal monochromator	$R_{\rm int} = 0.036$
Detector resolution: 8.3330 pixels mm ⁻¹	$\theta_{\rm max} = 25.2^\circ, \ \theta_{\rm min} = 2.0^\circ$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Bruker, 2009)	$l = -13 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
<i>S</i> = 1.05	H atoms treated by a mixture of independent
3419 reflections	and constrained refinement
272 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 0.4042P]$
10 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.44526 (6)	0.74517 (6)	0.50520 (6)	0.0460 (2)	
OW	0.6147 (4)	0.9554 (2)	0.3947 (2)	0.0967 (9)	
HO1	0.597 (5)	1.033 (2)	0.423 (4)	0.145*	
HO2	0.575 (5)	0.902 (3)	0.429 (4)	0.145*	
C1	0.1566 (2)	0.5684 (2)	0.68521 (18)	0.0318 (5)	
C2	0.0112 (2)	0.5062 (2)	0.66052 (18)	0.0311 (5)	
C3	-0.0290 (3)	0.3649 (2)	0.62089 (19)	0.0365 (5)	
H3	-0.1283	0.3225	0.6042	0.044*	
C4	0.0851 (3)	0.2905 (2)	0.6075 (2)	0.0435 (6)	
H4	0.0638	0.1938	0.5817	0.052*	
C5	0.2319 (3)	0.3538 (3)	0.6310(2)	0.0449 (6)	
Н5	0.3062	0.2986	0.6197	0.054*	

C6	0.2706 (3)	0.4929 (2)	0.6698 (2)	0.0398 (5)	
H6	0.3695	0.5354	0.6853	0.048*	
N1	-0.07374 (18)	0.61074 (18)	0.68249 (15)	0.0303 (4)	
C7	0.0161 (2)	0.7312 (2)	0.72021 (18)	0.0312 (5)	
N2	0.15618 (19)	0.70877 (18)	0.72206 (15)	0.0316 (4)	
C8	-0.0297 (2)	0.8639(2)	0.7526 (2)	0.0371 (5)	
C9	0.0340 (8)	0.9713 (6)	0.8502 (5)	0.0481 (14)	0.844 (19)
H9	0.1283	0.9784	0.9192	0.058*	0.844 (19)
C10	-0.0713 (7)	1.0725 (7)	0.8273 (7)	0.0587 (14)	0.844 (19)
H10	-0.0589	1.16	0.8787	0.07*	0.844 (19)
C11	-0.1853 (5)	1.0220 (6)	0.7243 (8)	0.0689 (16)	0.844 (19)
H11	-0.2715	1.0677	0.6884	0.083*	0.844 (19)
01	-0.1656 (4)	0.8939 (6)	0.6734 (6)	0.0664 (14)	0.844 (19)
C9′	0.059 (5)	0.970 (3)	0.843 (3)	0.0481 (14)	0.156 (19)
H9′	0.1661	0.9845	0.887	0.058*	0.156 (19)
C10′	-0.057 (4)	1.053 (5)	0.850 (4)	0.0587 (14)	0.156 (19)
H10′	-0.0414	1.1381	0.9055	0.07*	0.156 (19)
C11′	-0.187 (3)	0.992 (3)	0.770 (3)	0.0689 (16)	0.156 (19)
H11′	-0.2783	1.0324	0.7541	0.083*	0.156 (19)
01′	-0.1809 (18)	0.862 (2)	0.708 (3)	0.0664 (14)	0.156 (19)
C12	-0.2298(2)	0.5859 (2)	0.6823 (2)	0.0389 (5)	
H12A	-0.29	0.5136	0.6089	0.047*	
H12B	-0.2793	0.6709	0.6721	0.047*	
C13	-0.2264 (2)	0.5425 (2)	0.8045 (2)	0.0378 (5)	
C14	-0.2923 (3)	0.4323 (3)	0.8311 (2)	0.0524 (7)	
H14	-0.3555	0.3564	0.7712	0.063*	
C15	-0.2481 (4)	0.4523 (3)	0.9676 (3)	0.0634 (8)	
H15	-0.278	0.393	1.0161	0.076*	
C16	-0.1564 (3)	0.5706 (3)	1.0140 (2)	0.0570(7)	
H16	-0.1082	0.6076	1.1027	0.068*	
02	-0.14159 (19)	0.63101 (18)	0.91660 (15)	0.0492 (4)	
C17	0.2888 (2)	0.8126 (2)	0.7527 (2)	0.0387 (5)	
H17A	0.2543	0.9046	0.7483	0.046*	
H17B	0.337	0.7931	0.6881	0.046*	
C18	0.4023 (3)	0.8125 (2)	0.8827 (2)	0.0424 (6)	
C19	0.5399 (3)	0.7716 (3)	0.9248 (3)	0.0663 (8)	
H19	0.5931	0.7321	0.8738	0.08*	
C20	0.5922 (4)	0.7991 (4)	1.0628 (3)	0.0774 (10)	
H20	0.6864	0.7807	1.1206	0.093*	
C21	0.4837 (4)	0.8549 (3)	1.0937 (3)	0.0652 (8)	
H21	0.4882	0.884	1.1789	0.078*	
03	0.3639 (2)	0.86463 (18)	0.98518 (16)	0.0523 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Cl1	0.0399 (4)	0.0385 (3)	0.0571 (4)	0.0009 (2)	0.0175 (3)	0.0011 (3)	_
OW	0.197 (3)	0.0528 (13)	0.0828 (16)	0.0360 (17)	0.0950 (18)	0.0222 (12)	
C1	0.0345 (12)	0.0383 (12)	0.0231 (10)	0.0040 (9)	0.0104 (9)	0.0074 (8)	
C2	0.0344 (12)	0.0379 (12)	0.0215 (9)	0.0063 (9)	0.0091 (8)	0.0084 (8)	

Acta Cryst. (2012). E68, o3006-o3007

C3	0.0400 (13)	0.0381 (12)	0.0290 (11)	0.0011 (10)	0.0095 (9)	0.0075 (9)
C4	0.0601 (16)	0.0352 (12)	0.0345 (12)	0.0095 (11)	0.0155 (11)	0.0055 (10)
C5	0.0477 (15)	0.0508 (15)	0.0397 (13)	0.0198 (12)	0.0173 (11)	0.0086 (11)
C6	0.0360 (12)	0.0494 (14)	0.0363 (12)	0.0098 (11)	0.0145 (10)	0.0086 (10)
N1	0.0274 (9)	0.0353 (10)	0.0271 (9)	0.0025 (8)	0.0082 (7)	0.0067 (7)
C7	0.0326 (11)	0.0373 (12)	0.0233 (10)	0.0021 (9)	0.0091 (8)	0.0075 (8)
N2	0.0295 (10)	0.0366 (10)	0.0290 (9)	0.0019 (8)	0.0110 (7)	0.0067 (7)
C8	0.0356 (12)	0.0401 (13)	0.0367 (12)	0.0067 (10)	0.0136 (10)	0.0080 (10)
C9	0.041 (3)	0.0451 (15)	0.0502 (16)	-0.0033 (18)	0.0118 (16)	-0.0023 (12)
C10	0.075 (3)	0.033 (3)	0.071 (3)	0.0086 (18)	0.032 (2)	0.002 (2)
C11	0.072 (2)	0.055 (2)	0.078 (4)	0.037 (2)	0.020 (2)	0.012 (2)
01	0.0532 (14)	0.059 (2)	0.067 (2)	0.0210 (14)	-0.0006 (13)	-0.0014 (16)
C9′	0.041 (3)	0.0451 (15)	0.0502 (16)	-0.0033 (18)	0.0118 (16)	-0.0023 (12)
C10′	0.075 (3)	0.033 (3)	0.071 (3)	0.0086 (18)	0.032 (2)	0.002 (2)
C11′	0.072 (2)	0.055 (2)	0.078 (4)	0.037 (2)	0.020 (2)	0.012 (2)
01′	0.0532 (14)	0.059 (2)	0.067 (2)	0.0210 (14)	-0.0006 (13)	-0.0014 (16)
C12	0.0333 (12)	0.0452 (13)	0.0379 (12)	0.0045 (10)	0.0119 (10)	0.0084 (10)
C13	0.0338 (12)	0.0430 (13)	0.0342 (12)	0.0038 (10)	0.0101 (9)	0.0043 (10)
C14	0.0618 (17)	0.0512 (16)	0.0424 (14)	-0.0091 (13)	0.0191 (12)	0.0079 (12)
C15	0.083 (2)	0.0618 (18)	0.0477 (15)	-0.0101 (16)	0.0261 (15)	0.0175 (14)
C16	0.0727 (19)	0.0634 (18)	0.0328 (13)	0.0045 (15)	0.0153 (12)	0.0126 (12)
O2	0.0529 (11)	0.0516 (10)	0.0393 (9)	-0.0029 (8)	0.0134 (8)	0.0083 (8)
C17	0.0362 (13)	0.0388 (13)	0.0432 (12)	-0.0026 (10)	0.0176 (10)	0.0089 (10)
C18	0.0373 (13)	0.0388 (13)	0.0461 (13)	-0.0051 (10)	0.0116 (11)	0.0044 (10)
C19	0.0443 (16)	0.072 (2)	0.071 (2)	0.0068 (14)	0.0087 (14)	0.0062 (16)
C20	0.0531 (19)	0.074 (2)	0.075 (2)	-0.0040 (17)	-0.0146 (16)	0.0171 (17)
C21	0.070 (2)	0.0564 (18)	0.0466 (16)	-0.0170 (16)	-0.0038 (14)	0.0111 (13)
O3	0.0532 (11)	0.0541 (11)	0.0432 (10)	-0.0020 (9)	0.0109 (8)	0.0085 (8)

Geometric parameters (Å, °)

OW—HO1	0.844 (10)	C9′—C10′	1.432 (18)
OW—HO2	0.847 (10)	С9′—Н9′	0.95
C1—C2	1.391 (3)	C10′—C11′	1.297 (19)
C1—N2	1.397 (3)	C10′—H10′	0.95
C1—C6	1.397 (3)	C11'—O1'	1.388 (17)
С2—С3	1.395 (3)	C11'—H11'	0.95
C2—N1	1.398 (3)	C12—C13	1.489 (3)
C3—C4	1.384 (3)	C12—H12A	0.99
С3—Н3	0.95	C12—H12B	0.99
C4—C5	1.410 (4)	C13—C14	1.345 (3)
C4—H4	0.95	C13—O2	1.383 (3)
С5—С6	1.373 (3)	C14—C15	1.429 (4)
С5—Н5	0.95	C14—H14	0.95
С6—Н6	0.95	C15—C16	1.338 (4)
N1—C7	1.347 (3)	C15—H15	0.95
N1—C12	1.483 (3)	C16—O2	1.365 (3)
C7—N2	1.352 (3)	C16—H16	0.95
С7—С8	1.449 (3)	C17—C18	1.486 (3)
N2—C17	1.482 (3)	C17—H17A	0.99

C8—O1′	1.341 (15)	C17—H17B	0.99
C8—C9	1.357 (4)	C18—C19	1.333 (4)
C8—C9'	1.358 (18)	C18—O3	1.373 (3)
C8—O1	1.366 (4)	C19—C20	1.439 (5)
C9—C10	1,444 (5)	С19—Н19	0.95
С9—Н9	0.95	C20—C21	1.322 (5)
C10—C11	1.290 (5)	C20—H20	0.95
С10—Н10	0.95	C21—O3	1.369 (3)
C11—O1	1.371 (4)	C21—H21	0.95
С11—Н11	0.95		
HO1—OW—HO2	103 (2)	С8—С9'—Н9'	130.8
C2—C1—N2	106.81 (18)	С10′—С9′—Н9′	130.8
C2—C1—C6	121.7 (2)	C11′—C10′—C9′	109 (4)
N2—C1—C6	131.4 (2)	C11′—C10′—H10′	125.5
C1—C2—C3	122.2 (2)	C9'—C10'—H10'	125.5
C1—C2—N1	106.73 (18)	C10′—C11′—O1′	114 (3)
C3—C2—N1	131.0 (2)	C10′—C11′—H11′	122.8
C4—C3—C2	115.7 (2)	O1'—C11'—H11'	122.8
С4—С3—Н3	122.1	C8—O1′—C11′	97.6 (17)
С2—С3—Н3	122.1	N1—C12—C13	110.44 (17)
C3—C4—C5	122.0 (2)	N1—C12—H12A	109.6
C3—C4—H4	119.0	C13—C12—H12A	109.6
C5—C4—H4	119.0	N1—C12—H12B	109.6
C6-C5-C4	122.0 (2)	C13—C12—H12B	109.6
C6—C5—H5	119.0	H12A—C12—H12B	108.1
C4—C5—H5	119.0	C14-C13-O2	110.3 (2)
C5-C6-C1	116 3 (2)	C14-C13-C12	1332(2)
C5—C6—H6	121.8	02-C13-C12	116.5(2)
C1—C6—H6	121.8	C_{13} C_{14} C_{15}	106.2(2)
C7-N1-C2	108 79 (17)	C13—C14—H14	126.9
C7-N1-C12	126 83 (18)	C15—C14—H14	126.9
C_2 —N1—C12	123 78 (18)	C16-C15-C14	106.9(2)
N1-C7-N2	109.02(18)	C16—C15—H15	126.6
N1	125 66 (19)	C14-C15-H15	126.6
N_{2} C_{7} C_{8}	125.30(19) 125.32(19)	$C_{15} - C_{16} - O_{2}$	110.8(2)
C7-N2-C1	108.65(17)	$C_{15} = C_{16} = H_{16}$	124.6
C7 - N2 - C17	12740(18)	$\Omega^2 - C_{16} - H_{16}$	124.6
$C_1 = N_2 = C_1 T_1$	127.40 (18)	$C_{16} - O_{2} - C_{13}$	124.0 105.8 (2)
01'-08-09	109.7(10)	N_{2} C_{17} C_{18}	105.0(2)
01' - C8 - C9'	120(2)	N2 $C17$ $H17A$	109.3
C_{9} C_{8} C_{1}	1090(4)	C18 - C17 - H17A	109.3
C9' - C8 - 01	116 (2)	N2—C17—H17B	109.3
01' - C8 - C7	112 0 (9)	C18 - C17 - H17B	109.3
C9 - C8 - C7	133.6(4)	H17A - C17 - H17B	109.9
C9′—C8—C7	126 (2)	C19-C18-O3	109.8(2)
01 - 68 - 67	117 5 (2)	C19 - C18 - C17	133.6(3)
C8 - C9 - C10	105 8 (5)	03-C18-C17	1167(2)
С8—С9—Н9	127.1	C18 - C19 - C20	106.6(3)
		010 017 020	

С10—С9—Н9	127.1	C18—C19—H19	126.7
С11—С10—С9	107.3 (6)	С20—С19—Н19	126.7
C11—C10—H10	126.3	C21—C20—C19	106.7 (3)
С9—С10—Н10	126.3	С21—С20—Н20	126.6
C10-C11-O1	111.1 (5)	С19—С20—Н20	126.6
C10-C11-H11	124.5	C20—C21—O3	110.3 (3)
O1—C11—H11	124.4	C20—C21—H21	124.9
C8—O1—C11	106.8 (3)	O3—C21—H21	124.9
C8—C9′—C10′	98 (3)	C21—O3—C18	106.7 (2)
			()
N2—C1—C2—C3	179.89 (18)	C9—C10—C11—O1	-0.7 (6)
C6—C1—C2—C3	1.0 (3)	O1′—C8—O1—C11	96 (2)
N2-C1-C2-N1	0.3(2)	C9—C8—O1—C11	-0.3(4)
C6-C1-C2-N1	-178.61(18)	C9' - C8 - 01 - C11	-11(2)
C1-C2-C3-C4	-0.1(3)	C7—C8—O1—C11	1789(3)
N1 - C2 - C3 - C4	179 42 (19)	C_{10} $-C_{11}$ $-O_{1}$ $-C_{8}$	0.6(5)
$C_2 C_3 C_4 C_5$	-0.7(3)	01' C8 C9' C10'	-4(2)
$C_2 - C_3 - C_4 - C_5$	0.7(3)	$C_{1} = C_{3} = C_{10} = C_{10}$	-33(0)
$C_{3} - C_{4} - C_{5} - C_{6}$	0.7(3)	$C_{3} = C_{8} = C_{9} = C_{10}$	33(9)
$C_{4} = C_{5} = C_{6} = C_{1}$	0.2(3)	01 - 03 - 09 - 010	24(2)
$C_2 = C_1 = C_0 = C_3$	-1.0(3)	$C^{2} = C^{2} = C^{2$	-166.6(15)
$N_2 - C_1 - C_6 - C_5$	-1/9.6(2)		-1(2)
CI = C2 = NI = C7	-0.6(2)		5 (3)
C3—C2—N1—C7	179.8 (2)	C9—C8—O1′—C11′	12.4 (16)
C1-C2-N1-C12	-172.23 (17)	C9'—C8—O1'—C11'	6 (2)
C3—C2—N1—C12	8.2 (3)	O1—C8—O1′—C11′	-80 (2)
C2—N1—C7—N2	0.7 (2)	C7—C8—O1′—C11′	171.4 (13)
C12—N1—C7—N2	172.00 (17)	C10'—C11'—O1'—C8	-7 (3)
C2—N1—C7—C8	-179.78 (18)	C7—N1—C12—C13	-92.9 (2)
C12—N1—C7—C8	-8.5 (3)	C2—N1—C12—C13	77.2 (2)
N1—C7—N2—C1	-0.5 (2)	N1—C12—C13—C14	-124.4 (3)
C8—C7—N2—C1	179.96 (18)	N1—C12—C13—O2	57.0 (3)
N1—C7—N2—C17	177.42 (17)	O2—C13—C14—C15	0.5 (3)
C8—C7—N2—C17	-2.1 (3)	C12-C13-C14-C15	-178.2 (3)
C2-C1-N2-C7	0.1 (2)	C13-C14-C15-C16	-1.4 (3)
C6-C1-N2-C7	178.9 (2)	C14—C15—C16—O2	1.8 (4)
C2-C1-N2-C17	-177.90 (17)	C15-C16-O2-C13	-1.5(3)
C6-C1-N2-C17	0.9 (3)	C14—C13—O2—C16	0.6 (3)
N1—C7—C8—O1′	-17.5 (16)	C12—C13—O2—C16	179.5 (2)
N2—C7—C8—O1′	161.9 (15)	C7—N2—C17—C18	105.0 (2)
N1—C7—C8—C9	134.8 (4)	C1—N2—C17—C18	-77.4(2)
N2-C7-C8-C9	-45.8 (5)	N2-C17-C18-C19	1084(3)
N1-C7-C8-C9'	147 (2)	N_{2} C_{17} C_{18} O_{3}	-71.7(3)
$N_{2} - C_{7} - C_{8} - C_{9}'$	-34(2)	03-C18-C19-C20	0.2(3)
N1 - C7 - C8 - O1	-44 2 (5)	C_{17} C_{18} C_{19} C_{20}	-1800(3)
$N_2 = C_7 = C_8 = O_1$	$+ + \cdot 2 (3)$ 135.2 (5)	C18 - C19 - C20 - C21	-0.4(4)
112 - 01 - 01	-26 A (14)	$C_{10} = C_{17} = C_{20} = C_{21}$	0.4 (4)
$C_1 - C_2 - C_3 - C_{10}$	20.4(14)	$C_{17} - C_{20} - C_{21} - C_{3}$	-0.2(2)
$C_{2} = C_{2} = C_{1}$	12/(10)	$C_{20} = C_{21} = 0_{3} = C_{18}$	-0.3(3)
01 - 08 - 09 - 010	-0.1 (4)	C19 - C18 - O3 - C21	0.1 (3)
C7—C8—C9—C10	-179.1 (4)	CT/C18O3C21	-179.8 (2)

C8—C9—C10—C11 0.5 (5)

Hydrogen-bond geometry (Å, °)

D—H	H···A	D····A	D—H···A
0.85 (1)	2.35 (1)	3.189 (2)	174 (5)
0.84 (1)	2.34 (1)	3.183 (2)	176 (4)
0.95	2.49	3.278 (7)	141
0.99	2.77	3.694 (2)	155
0.99	2.39	3.098 (6)	127
0.99	2.61	3.594 (2)	176
0.95	2.29	3.168 (4)	153
0.95	2.62	3.436 (3)	143
0.95	2.85	3.788 (4)	170
0.95	2.87	3.498 (4)	124
	<i>D</i> —H 0.85 (1) 0.84 (1) 0.95 0.99 0.99 0.99 0.99 0.95 0.95 0.95	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*, *y*, *z*+1; (iv) -*x*, -*y*+1, -*z*+2.