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Abstract: Within the framework of the density functional theory (DFT) and the hybrid functional
B3LYP by means of the CRYSTAL17 program code, the wavenumbers and intensities of normal
oscillations of MgCO3, CaCO3, ZnCO3, CdCO3 in the structure of calcite; CaMg(CO3)2, CdMg(CO3)2,
CaMn(CO3)2, CaZn(CO3)2 in the structure of dolomite; BaMg(CO3)2 in the structure of the norsethite
type; and CaCO3, SrCO3, BaCO3, and PbCO3 in the structure of aragonite were calculated.
Infrared absorption and Raman spectra were compared with the known experimental data of
synthetic and natural crystals. For lattice and intramolecular modes, linear dependences on the radius
and mass of the metal cation are established. The obtained dependences have predictive power and
can be used to study solid carbonate solutions. For trigonal and orthorhombic carbonates, the linear
dependence of wavenumbers on the cation radius RM (or M–O distance) is established for the infrared
in-plane bending mode: 786.2–65.88·RM and Raman in-plane stretching mode: 768.5–53.24·RM, with a
correlation coefficient of 0.87.

Keywords: Density Functional Theory; normal vibrations; infrared spectra; Raman spectra;
metal carbonates; cation radius

1. Introduction

Carbonates form an extensive class of chemical compounds containing the carbonate ion CO2−
3

as the main structural element [1,2]. In nature, carbonates are found in many minerals and play a
crucial role in the carbon exchange of our planet [2–8]. Carbonate compounds are widely used in
the construction industry, optics, and nanotechnology [9–15]. Appearance of the carbonate species
due to chemical interaction with the atmosphere agents was detected at the surface of many oxide
materials widely used in optical and electronic technologies [16–20]. In recent years, many artificial
crystals of complex carbonates that have no analogues in nature were created [1]. Due to the specific
features of the crystal structure, such materials, in many cases, are characterized by high birefringence,
nonlinear optical properties, and transparency in the ultraviolet spectral range, which makes them
perspective materials for use in optical devices in the UV range [21–27]. In this aspect, it is of particular
importance to study the physicochemical properties of carbonates—in particular, the relationship
between their structural and spectroscopic characteristics. According to this approach, this work
is aimed at a systematic study of the relationship between the crystal structure and vibrational
characteristics of a set of crystals of simple and binary anhydrous carbonates known in nature.
Such minerals form several crystal-chemical families, which makes it possible to study the effects
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of cation substitution on the wavenumbers of vibrational modes within the framework of a single
structural type. In the near future, with the accumulation of experimental data of complex carbonates,
this algorithm can be extended to new families of complex artificial crystals.

Natural carbonates are composed of over 60 minerals [2]. Simple and double rock-forming
carbonates can be divided into three main groups based on the similarity of structures: calcite,
dolomite, and aragonite. The structures of these crystals are shown in Figure 1. Calcite is the most
abundant of all carbonate minerals [28]. The triangular geometry CO2−

3 dominates in the structure
of calcite, which leads to rhombohedral symmetry of the crystal lattice with the space group R-3c.
A primitive cell contains two formula units (Z = 2). Divalent cations are octahedrally coordinated
by oxygen atoms (Figure 1a). The calcite group includes anhydrous carbonates with the general
formula MCO3 (M: Ca2+, Mg2+, Fe2+, Zn2+, Mn2+, Co2+, Ni2+ and Cd2+): calcite (CaCO3) [29],
magnesite (MgCO3) [30], siderite (FeCO3) [31], smithsonite (ZnCO3) [32], hodochrosite (MnCO3) [33],
spherocobaltite (CoCO3) [34], gaspeite (NiCO3) [35], and otavite (CdCO3) [36]. The ability to form
isomorphic mixtures is widespread among the minerals of the calcite series [37].
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Figure 1. Fragments of the crystal structures of (a) CaCO3 (calcite), (b) CaMg(CO3)2 (dolomite), (c) 
BaMg(CO3)2 (norsethite) and (d) CaCO3 (aragonite) The unit cells are outlined. Lone atoms, excepting 
those in the unit cells, are omitted for clarity. 

Figure 1. Fragments of the crystal structures of (a) CaCO3 (calcite), (b) CaMg(CO3)2 (dolomite),
(c) BaMg(CO3)2 (norsethite) and (d) CaCO3 (aragonite) The unit cells are outlined. Lone atoms,
excepting those in the unit cells, are omitted for clarity.



Nanomaterials 2020, 10, 2275 3 of 19

One of the most common minerals is a double carbonate—dolomite (CaMg(CO3)2) [38].
Dolomite is structured by natural minerals: minocordite (CaZn(CO3)2) [39], ankerite (CaFe(CO3)2) [40],
and kutnohorite CaMn(CO3)2) [41]. Several crystals from the dolomite family were synthesized,
including CdMg(CO3)2, CdMn(CO3)2, and CdZn(CO3)2 [42], and the structures were identified in [43].
Under ambient conditions, dolomite crystallizes in a rhombohedral structure with the space group R-3
(Z = 2). Its layered structure consists of alternating [CaO6] and [MgO6] octahedra separated by nearly
flat and parallel carbonate groups. The structure differs from calcite by the absence of a slip plane.

Double carbonates are also known in the structure of norsethite (BaMg(CO3)2) [44] (Figure 1c).
BaMn(CO3)2 does not exist in nature, but it was synthesized in [45]. The norsethite structure is
described in c-space group R-3c symmetry with doubled c-axis, which corresponds to different rotations
of carbonate groups [46]. As the temperature rises in BaMg(CO3)2, a phase transition is observed
from a phase stable under ambient conditions to a high-temperature structure, which is accompanied
by a change in the symmetry R-3c → R-3m. In the R-3m symmetry, the unit cell of BaMg(CO3)2

consists of the [MgO6] octahedron, [BaO12] polyhedron, and anions. Octahedra and polyhedra are in
alternating layers, they are located exactly one above the other, parallel to the [001] direction and are
separated by triangular groups CO2−

3 . Natural isostructural orthorhombic carbonates are aragonite
(CaCO3) (Figure 1d), strontianite (SrCO3), cerussite (PbCO3), and witherite (BaCO3) [47,48], listed in
the order of increasing the size of the cation. In a crystal structure with the space group Pmcn (Z = 4),
layers of 9-coordinated cations M2+ (M: Ca2+, Sr2+, Pb2+, Ba2+) in an approximately hexagonal close
packing alternate with layers of planar CO2−

3 groups arranged perpendicular to the c-axis. Like calcites,
aragonites form solid solutions [49]. Studies of isostructural orthorhombic carbonates are important for
understanding phase transition sequences under pressure and temperature and, therefore, can provide
insight into a carbon behavior in the Earth mantle [50–53].

The optical properties of natural carbonates were extensively explored since these widespread
and cheap natural minerals can be used as raw resources for infrared technology materials [54].
In this regard, their infrared spectra (IRS) [55] and Raman spectra (RS) [56,57] were previously studied
experimentally and then theoretically [58,59]. Single crystals of iron-free magnesite were studied
by Raman spectroscopy [30]; calcite and dolomite crystals were studied in [60] and all crystal were
studied in [61]. In [62], they were evaluated with the methods of laser Raman spectroscopy and
density functional theory (DFT) calculations using the plane wave basis (PW) and pseudopotentials of
the Troullier–Martins type (TM PP). Otavite vibrational spectra were measured in experiment [63].
Eight natural carbonate minerals with a calcite structure were studied using Raman spectroscopy [64].
It was shown that changes in the wavenumber of phonon modes of the Eg(T) symmetry correlate with
the distances between the nearest metal and oxygen atoms M–O and the cation ionic radii. Using a
graphical approach, the authors developed the spectroscopic Raman model to calculate the ionic radius
of a divalent metal cation present in a mineral.

In [65], studies of the infrared spectra of natural iron-free dolomite were carried out. A combined
study of infrared absorption and Raman scattering on a natural dolomite sample CaMg0.98Fe0.02(CO3)2

was performed [66]. DFT using exchange correlation potentials in the local density approximation
(LDA) and generalized gradient approximation (GGA) in the PW basis with TM PP were used here
to interpret the obtained results. The Raman and infrared spectra of cerussite were measured and
compared with the spectral characteristics of other minerals of the aragonite family [67]. RS and
IRS at high temperature in situ were measured for aragonite, strontianite, cerussite, and witherite at
atmospheric pressure [68]. Studies for high and medium temperature infrared absorption and Raman
spectroscopy on a synthetic strontianite sample led to the construction of a pressure-temperature phase
diagram [69]. In addition, here for the first time, the absorption spectra in the far infrared range were
measured for the entire family of aragonite-type carbonates.

The works in which experimental and theoretical spectroscopic studies were performed for a group
of carbonates with different structures are of particular interest. Thus, the purpose of the study [70]
was to establish the influence of the M2+ cation type on the shift of positions of the absorption bands of
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various anhydrous carbonate minerals from the calcite and dolomite families. In this contribution, it is
shown that the position of the minima of absorption bands is unique for each chemical composition
of carbonates and can be a diagnostic indicator in mineralogy. A selection of the frequencies of
intramolecular modes for a large number of carbonates is also found in [71]. In [72], infrared spectra in
the wavenumber range of 70–650 cm−1 were presented for 18 common and rare minerals which are
quite pure in composition and have a known crystal structure. It is shown that the spectra in the far
infrared range of different carbonates from the same structural group have a pronounced similarity,
and the observed shifts demonstrate the effect of changing the mass of cations. The vibrational modes
of natural minerals—aragonite, calcite, dolomite, magnesite, rhodochrosite, and siderite—that are
active in the Raman spectrum were observed, and their pressure and temperature inducing frequency
shifts were determined [73].

Thus, there are comparatively numerous experimental and individual theoretical studies of the
vibrational spectra of carbonates in which the patterns of their changes during the substitution of
cations were established for certain types of structures. However, systematic theoretical studies from a
unified standpoint, carried out for all types of carbonate structures and having a predictive power
in early works, are absent. The aim of this work is to theoretically study the dependences of the
characteristics of the infrared and Raman spectra of carbonates crystallizing in the structures of calcite,
dolomite, and aragonite on the radii and masses of metal cations. The parameters of vibrational
spectra of carbonates were calculated within the framework of a unified approach based on the known
experimental data of crystal structure. Furthermore, the results of our calculations were compared
with the available experimental and theoretical parameters of the infrared and Raman spectra of
carbonates and, on this basis, the general regularities of changes in the vibrational spectra were
determined upon substitution of metal cations. Then, the information can be used as an instrument in
the analysis of vibrational spectra of new crystalline compounds and solid solutions. The calculated
quantitative dependences can also be used in noncontact nondestructive diagnostics of carbonates by
spectroscopic techniques.

2. Calculation Method

The research of the ordinary optical properties dependences of metal carbonates were carried out
within ab initio principles using the Hartree–Fock theory (HF) methods and density functional theory,
which are well combined in the CRYSTAL17 program code [74,75]. The hybrid functional B3LYP,
which includes the 20% HF exchange with the Becke exchange functional [76] and the LYP correlation
functional [77], was used. The basic functions were chosen in the form of a linear combination of
localized atomic orbitals of the Gaussian type. We used full-electronic basis sets for carbon, oxygen,
magnesium, and calcium atoms from [78] and the gaussian basis sets of double-zeta valence with
polarization quality basis set for zinc and cadmium atoms [79,80]. We used pseudopotential basis sets
from [81] for strontium and barium, those of [82] for manganese, and those of [83] for lead.

The reciprocal space was sampled using a Monkhorst–Pack [84] grid with 216 independent
k-points in the irreducible Brillouin zone for trigonal crystals, and 64 points for orthorhombic
crystals. The accuracy of the self-matching procedure was no less than 10−9 a.u. (1 a.u. = 27.21 eV).
The vibrational frequencies of the lattice atoms were calculated using the FREQCALC procedure [85,86].
The phonon harmonic frequencies ωp at the point Г (k = 0, the center of the first Brillouin zone) were
obtained from the diagonalization of the mass-weighted Hessian matrix of the second derivatives of
energy with respect to atomic displacements u [87,88]:

WG
ai,bj =

H0
ai,bj

√
MaMb

, H0
ai,bj =

 ∂2E
∂u0

ai∂u0
bj

 (1)

where atoms a and b with masses Ma and Mb are displaced in the unit cell (index 0) from equilibrium
positions along the i- and j-Cartesian directions, respectively. The first order derivatives were
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calculated analytically, whereas the second order derivatives were obtained numerically. The intensity
of IR absorption for the ν-vibration was calculated using the Born effective charge tensor Z*,
which characterizes the change in dynamics and the electronic configuration of atom displacement.
The relative intensities of the Raman peaks were calculated analytically using the extension scheme of
the analytical calculation of IR intensity [89]. The proposed technique was previously used to study
the ordinary properties of sulfates [90].

3. Crystal Structure

The crystal structure parameters of calcite, dolomite, norsethite, and aragonite types calculated in
this work are shown in Table 1. There is a close agreement between the optimized and experimental

parameters of the crystal lattice. Thus, the standard deviation ∆ =

√
1
N

∑N
i=1

(
expi−theori

expi

)2
for N = 5

theoretical values from Table 1 and the experimental (exp) value for synthetic magnesite [30] is
1.6%, for natural calcite [29]—1.9%, for smithsonite [32]—1.5%, for synthetic otavite [36]—2.4%,
for dolomite [38]—1.5%, and for norsethite [46]—3.6%. For four crystals with aragonite structure,
the deviation of three lattice constants and two interatomic distances from experimental data for
natural minerals [48] is 2.7%.

Table 1. Calculated lattice constants a, b, c, unit cell volume V, and average distances between the
atoms of metal M and oxygen O (RM–O) and carbon C and oxygen (RC–O).

Carbonate a, Å b, Å c, Å V, Å3 RM–O, Å RC–O, Å

MgCO3 4.6624 4.6624 15.1891 285.9527 2.1229 1.2857
CaCO3_C 5.0385 5.0385 17.3168 380.7118 2.3905 1.2878

ZnCO3 4.7094 4.7094 15.1297 290.5952 2.1344 1.2973
CdCO3 4.9819 4.9819 16.6163 357.1529 2.3312 1.2874

CaMg(CO3)2 4.8382 4.8382 16.2563 329.5605 2.2571 1.2865
CdMg(CO3)2 4.8140 4.8140 15.8629 318.3695 2.2253 1.2862
CaMn(CO3)2 4.8295 4.8295 15.8159 319.4686 2.2302 1.2874
CaZn(CO3)2 4.8558 4.8558 16.2964 332.7782 2.2648 1.2866
BaMg(CO3)2 5.0637 5.0637 17.0662 378.9683 2.6811 1.2846
CaCO3_A 5.0020 8.0175 5.8581 234.9323 2.5604 1.2857

SrCO3 5.1469 8.4418 6.1947 269.1522 2.6838 1.2884
BaCO3 5.3665 8.9327 6.6847 320.4459 2.8567 1.2910
PbCO3 5.2453 8.5723 6.3725 286.5319 2.7451 1.2897

As the physical quantities to describe the regularities of changes in the vibrational properties of
carbonates from cationic substitution in the lattice, we used the mass of metal atoms (a.m.u.; Mg—23.985,
Ca—39.963, Mn—54.938, Zn—63.929, Sr—87.906, Cd—113.904, Ba—137.905, and Pb—207.977) and
the effective Shannon ionic radii [91]. The cationic radii of metals are determined by their electronic
structure and depend on the coordination environment. The last filled electron shell of the magnesium
ion is 2p6, and the radius of Mg2+ surrounded by six nearest neighbors is 0.72 Å. Similarly, for calcium:
3p6, 1.00 Å. In zinc and cadmium, the filled shells are 3d10 and 4d10, and the radii are 0.74 and 0.95 Å,
respectively. In aragonite, each Ca2+ ion is already surrounded by nine oxygen atoms and, therefore,
its effective radius is 1.18 Å. In the case of strontium and barium, the radii for the 9-fold environment
are 1.31 and 1.47 Å, and for 12—1.44, 1.61 Å. The electronic configuration of lead [Xe] 4f 14 5d10 6s26p2

distinguishes it from other elements; therefore, the radius of 9-coordinated Pb2+ is 1.35 Å, which is
larger than that of strontium, but smaller than that of barium. Transition metals have partially filled 3d
shells with the number of electrons from 5 to 8, and decreasing radii for Mn2+ (0.83 Å), Fe2+ (0.78 Å),
and Co2+ (0.745 Å). Following [33], we write the chemical formula of an arbitrary solid solution as
M1X1M2X2M3X3CO3, X1 + X2 + X3 = 1. Then, the average radius of the cation is determined as <RM>

= X1·RM1 + X2·RM2 + X3·RM3, where RM1, RM2, RM3 are radii of divalent ions M12+, M22+, M32+.
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For dolomite, the cation radius is 0.86 Å, and for norsethite—1.165 Å. The average atomic mass of
metals is calculated in a similar way.

It is convenient to describe the change in crystal cell parameters or frequencies (intensities)
of the vibrational spectra y on the radii of cations or their masses (r) using the linear dependence
y(r) = y0 + y1·r, where y0 is the value of the function at r = 0, y1—derivative of the function y,
characterizing the rate of change of the corresponding value. The obtained calculated data y(ri), I = 1,
N are approximated by a linear dependence (fit), and the accuracy of this procedure is controlled by

the relation: K =

√∑N
i=1

(
y f it

i − y f it
)2

/
∑N

i=1

(
ydata

i − ydata
)2

, where the average value y = 1
N

∑N
i=1 yi.

The change in the calculated unit cell volume of carbonates by one formula unit V/Z from the
cation radii RM obeys the linear dependence V/Z(Å3) = 25.22 + 31.54·RM with a correlation coefficient
of 0.936. The large slope of this dependence of 31.54 Å2 indicates that the replacement of the cation
is of great importance for carbonates. The indicated dependence with the experimental values of
volumes has the form V/Z(Å3) = 22.48 + 36.2482·RM (Å3) with the coefficient K = 0.945. For each
individual lattice type, the correlation coefficient is much better: for calcite and aragonite, 0.995,
and for dolomite, 0.969. The linear dependence is explained by the fact that the cell volume is
weakly related to the structure symmetry but is determined by the stacking of layers of polyhedrons,
which depends on the ionic radii of the substitutional atoms. According to Vegard’s law, the unit cell
parameters change linearly depending on the composition, and for trigonal crystals, it can be written
as: a(Å) = 4.008 + 0.959·RM (0.941), c(Å) = 11.772 + 4.917·RM (0.88). Hereinafter, the coefficient K is
indicated in brackets. The linear dependence for all carbonates is fulfilled for the average distance
between metal M and oxygen O: RM–O(Å) = 1.374 + 1.02·RM (0.985) with high accuracy.

4. Vibrational Spectra

The rhombohedral cell of calcite contains ten atoms, and 30 possible vibrational modes can be
classified for it, according to irreducible representations of the point group as: Гtot = A1g(R) + 3A1u +

3A2g + 3A2u(IR) + 4Eg(R) + 6Eu(IR). A1g and 4Eg modes are active in Raman spectra (R), 3A2u and
5Eu modes are active in infrared (IR), A1u and 3A2g modes are spectroscopically inactive, and 1A2u

and 1Eu modes are acoustic. Nine translational modes will refer to the symmetry A2g + A1u + A2u +

Eg + 2Eu, six librational modes to A2g + A2u + Eg + Eu, and twelve internal vibrations to A1g + A2g +

A1u + A2u + 2Eg + 2Eu. Modes of the A2u symmetry have polarization E||z and modes of Eu symmetry
have E⊥z polarization. Internal vibrations of Eu symmetry are of the ν4 type (in-plane bending),
A2u modes are of the ν2 type (out-of plane bending), and Eu symmetry are of the ν3 type of symmetric
stretching. In the Raman spectrum, the ν4 (in-plane asymmetric stretching) mode has Eg symmetry,
the ν1 symmetric stretch mode has A1g symmetry, and a ν3 asymmetric stretch type has Eg symmetry.

For dolomite structure, the expansion of the vibrational representation according to irreducible
representations is Гtot = 4Ag(R) + 6Au(IR) + 4Eg(R) + 6Eu(IR). Nine translational modes refer to symmetry
Ag + 2Au + Eg + 2Eu, six rotational modes refer to Ag + Au + Eg + Eu, and 12 internal modes refer to
2Ag + 2Au + 2Eg + 2Eu. For the norsethite type structure with the space group R-3m, the expansion
of the vibrational representation is: Гtot = 3A1g(R) + 2A1u +A2g + 5A2u(IR) + 4Eg(R) + 6Eu(IR). For the
aragonite orthorhombic structure, the symmetry of the carbonate group decreases to Cs. There will be
60 vibrational modes in total, where 1B1u + 1B2u + 1B3u are acoustic. The vibrational representation
is decomposed into irreducible representations as Γtot = 9Ag + 6B1g(R) + 9B2g(R) + 6B3g(R) + 6Au

+ 9B1u(IR) + 6B2u(IR) + 9B3u(IR). The B2u symmetry modes have polarizations E||x(a), B3u—E||y(b),
B1u—E||z(c). There will be 24 internal modes, eight of the ν4 and ν3 types, and four of the ν2 and ν1

types. The available experimental and theoretical data on vibration spectra of the carbonates under
consideration are summarized in Supplementary Materials [92–110].
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5. Optical Spectra of Crystals with a Calcite Structure

The infrared absorption spectra (IRS) and Raman scattering spectra (RS) of calcite-structured
carbonates calculated in this work, obtained by Gaussian broadening of normal long-wavelength
vibrations, are shown in Figure 2. The obtained wavenumbers of vibrations active in the IRS of
calcites, together with the available experimental data, are given in Table S1; for the vibrations active
in RS, they are given in Table S2 in the Supplementary materials. A good agreement was observed
between the calculated vibration wavenumbers and the experimentally measured values. Thus,
the average root-square deviations for eight IRS-active wavenumbers obtained by the B3LYP method
for magnesite and determined experimentally in [92] and [58] do not exceed 4.0% and 3.3%, respectively.
There is also a good agreement with the calculated data of the authors of [93] (4.7%) and [94] (3.5%).
The root-mean-square deviations for the wavenumbers of five vibrations active in RS, obtained by
the B3LYP method in this work, are 1.3% (1.0%) in the experiment in [95] for magnesite (calcite),
1.5% (1.4%) for the experiment in [58], 1.6% (1.1%) for the experiment in [61], and 1.6% (1.7%) for
the experiment in [73]. For four studied carbonates with five vibrations active in RS, in a matrix of
20 values, the deviation of the B3LYP calculation results from the experimental values [64] is 2.4%.
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Figure 2. Calculated infrared spectra (IR) (top) and spectra of Raman light scattering (bottom) of
intramolecular ν1, ν2, ν3, ν4, and lattice vibrations of magnesium (red, squares), calcium (black,
circles), zinc (blue, triangles), and cadmium (lilac, rhombuses) carbonates with a calcite structure.
For comparison, the experimental spectra of calcite are given [68].

In MgCO3, the most intense mode (5132 km/mol) in IRS corresponds to the internal vibration ν3

of Eu symmetry with the wavenumber of 1424 cm−1. Taking its intensity as 100%, for the ν2 vibration
with a wavenumber of 874 cm−1, we obtained 4%, and for the ν4 (746 cm−1) mode, even less—0.9%.
In calcite, the wavenumbers corresponding to the vibrations ν3, ν2, and ν4 are 1400, 875, and 712 cm−1,
and their intensities are 5447 km/mol (100%), 3%, and 0.5%, which practically do not differ from
magnesite. For ZnCO3 and CdCO3, the structures of the spectra in the high-frequency region remain
similar to magnesite. Thus, for internal modes, there is a linear correlation between the change in
the wavenumber and the radius of the cation RM. For ν4, it can be written in the form: ωEu(cm−1) =

812.9 − 98.7·RM (0.958), and with a smaller K coefficient for ν3: ωEu(cm−1) = 1546.9 − 154.8·RM (0.854).
A good correlation (K = 0.96) for the calculated intensity is observed for the ν3 vibrations, where it
increases with rise of atomic mass as: I(km/mol) = 4948 + 14 M, and, for the ν2 mode, it decreases with
increasing radius: I(km/mol) = 478 − 326 RM.

For lattice vibrations of MgCO3, the most intense ones are the Eu symmetry modes with
wavenumbers of 344 cm−1 (25%), 301 cm−1 (2%), and A2u symmetry modes at 351 cm−1 (4%),
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242 cm−1 (5%). For CaCO3, the lattice modes are shifted to the low-wavenumber region, and their
intensities decrease. In the region of lattice vibrations of ZnCO3, the most intense modes will
be Eu symmetry with wavenumbers of 287 cm−1, 212 cm−1, and only then with A2u symmetry:
348 cm−1, 176 cm−1. In CdCO3, this trend continues. Thus, for translation modes of Eu symmetry,
a dependence on the cation mass is observed: ω(cm−1) = 306.0 − 1.37·M (0.915). For the rest of
the lattice modes, the best linear dependence was established for the cation radius: for rotational
ones: ωEu(cm−1) = 466.5 − 353.1·RM (0.91),ωA2u(cm−1) = 463.2 − 348.5·RM (0.884, and for translational
modes: ωA2u(cm−1) = 484.7 − 186.3·RM (0.991).

In RS, the intense line (taken as 100%) in Figure 2 is due to vibrations of the ν1 type, and falls on
1099 cm−1 in MgCO3, and 1087 cm−1 in calcite. This mode has a significant polarization dependence [89]:
the xx and yy components are ten times larger than the zz component. Internal vibrations of ν4 type
also have a noticeable intensity: for magnesite—with a wavenumber of 737 cm−1, for calcite—711 cm−1,
and also for ν3 type: 1444 cm−1 and 1433 cm−1, respectively. In carbonates of relatively heavy metals
zinc and cadmium, the positions of the maxima of the ν4 and ν1 bands are practically preserved
(ωEg(cm−1) = 783.3 − 72.9·RM (0.906),ωA1g(cm−1) = 1138.0 − 49.2·RM (0.906)), whereas for the ν3 region
the changes are significant. This is due to the fact that the intensity of this mode increases linearly with
an increase in the atomic mass of the metal cation: Iν3(%) = −29.9 + 1.1·M (0.987). For CdCO3, the ν3

vibration becomes the most intense in RS and has pronounced xz and yz polarizations.
For lattice vibrations, the most intense vibration in the RS spectrum has the Eg symmetry, and its

wavenumbers in MgCO3 are 323 cm−1 (intensity 11%), ZnCO3 310 cm−1 (15%), CdCO3 258 cm−1 (23%),
and CaCO3 275 cm−1 (18%). Thus, for the lattice translational vibration, there is a linear dependence of
the formω(cm−1) = 361.0 − 210.6·RM (0.992), and for rotational,ω(cm−1) = 449.0 − 185.5·RM (0.912).
Since there is a good linear relationship between RM–O and the radius of the RM cation, the above
formulas can easily be rewritten for distances as well. The above formulas allow predicting the
wavenumber values for other carbonates; thus, for the lattice modes Eg(T), Eg(L), internal ν4 and ν1,
the wavenumbers predicted by the formulas for MnCO3 are 186, 296, 723, and 1097 cm−1, and for
CoCO3, they are 204, 311, 729, and 1101 cm−1. The experimental values for rhodochrosite are 184, 290,
719, and 1086 cm−1 [62]; for spherocobaltite, they are 194, 302, 725, and 1090 cm−1 [34].

6. Vibrational Spectra of Crystals with a Dolomite Structure

The IRS and RS of carbonates with the dolomite structure are given in Figure 3, and Tables S3 and S4
of the accompanying materials show the wavenumbers of normal long-wave vibrations of crystals with
the dolomite and norsethite structures, calculated by the B3LYP method and measured experimentally.
The examination of these tables shows that there is a satisfactory agreement between the wavenumbers
of lattice [69] and internal [61] vibrations of natural dolomite calculated and measured in IRS.
The root-mean-square deviation is 8.7 and 1.0%, respectively. For the wavenumbers of vibrations
active in RS, the root-mean-square deviation of the results of this calculation from the experimental
values is 1.4%. In crystals with a dolomite structure, the picture of theoretical spectra does not differ
significantly from the calcite spectra. In IRS CaMg(CO3)2, the most intense mode (5318 km/mol, 100%)
is the ν3 mode at 1416 cm−1. The internal vibration ν2 with a wavenumber of 877 cm−1 has an intensity
of 3.5%, and for vibration ν4 at 727 cm−1, the intensity is close to 1%. Unlike calcite, the vibration ν1 of
the Au symmetry is allowed by symmetry; however, its intensity is practically zero. The most intense
(19%) in the region of lattice vibrations is the Eu symmetry mode with a wavenumber of 337 cm−1.
Modes of the same symmetry, but with a much lower intensity, appear at 257 (2.5%) and 167 cm−1 (4%).
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Figure 3. Calculated infrared spectra (IR) (top) and Raman spectra (bottom) of intramolecular ν1, ν2,
ν3, ν4, and lattice vibrations of double calcium-magnesium (black, squares), cadmium-magnesium
(red, circles), calcium-manganese (blue, triangles), and calcium-zinc carbonates (lilac, rhombuses) with
a dolomite structure.

In CdMg(CO3)2, the most intense (5788 km/mol, 100%) vibration will be ν3 with a wavenumber
of 1407 cm−1, and for lattice vibration with a wavenumber of 338 cm−1, the intensity is 16%. A similar
picture is observed in CaZn(CO3)2, where the intensity of the ν3 vibration is 5928 km/mol (100%),
and the intensities of two lattice vibrations with wavenumbers of 290 and 310 cm−1 are 11% and 3.5%,
respectively. The situation is different in CaMn(CO3)2, where the intensity of the ν3 mode is much
lower—1121 km/mol (100%), and against its background, the relative intensities of other ν2 and ν4

vibrations increased to 22 and 6%, respectively.
The RS of dolomite will be dominated by a fully ν1 symmetric vibration with a wavenumber

of 1097 cm−1. Its full intensity is taken as 100%. Then, the intensities of the ν4, ν2, and ν3 modes
will be 15%, 0.2% and 9%, respectively. In the region of lattice vibrations, the most intense are the
Eg symmetry modes with wavenumbers of 296 cm−1 (13%) and 175 cm−1 (3%). In CdMg(CO3)2,
the ν1 mode does not change in wavenumber and remains most intense. The wavenumber of the ν3

mode decreases, but its intensity sharply increases to 49%. In CaMn(CO3)2, the intensity of the ν3

mode becomes maximum (taken as 100%), while for the ν1 vibration it is only 15%. Thus, as for IRS,
the binary carbonate CaMn(CO3)2 differs from other crystalline dolomites in the parameters of its
vibrational spectra.

In IRS of the BaMg(CO3)2 crystal (Figure 4) in the region of intramolecular vibrations, the most
intense (5194 km/mol) vibration will be ν3 with a wavenumber of 1439 cm−1. Against this background,
the ν2 vibration with a wavenumber of 878 cm−1 and the intensity of 3% is almost imperceptible,
moreover, the ν4 vibrations (694 cm−1, 0.5%) and ν1 allowed here (1125 cm−1, 0.2%) practically do not
appear. In the region of lattice vibrations, vibrations of Eu symmetry with wavenumbers of 315, 200,
and 106 cm−1 stand out in intensity, while less intense vibrations of A2u symmetry have wavenumbers
of 347 and 115 cm−1. The first of these less intense vibrations corresponds to the displacements of
magnesium atoms in antiphase with the anions, and the second corresponds to the displacements
of barium atoms. Magnesium atoms are also involved in the formation of this mode, and they shift
synchronously with the anion. In RS of BaMg(CO3)2, vibrations of anion atoms will also dominate:
ν1 with a wavenumber of 1126 cm−1 (its intensity is taken as 100%), ν2 of the same symmetry and
intensity of 3%, as well as doubly degenerated ν4 (697 cm−1) and ν3 (1444 cm−1) with intensities of 21%
and 3%, respectively. For lattice vibrations, the A1g symmetry mode with a wavenumber of 284 cm−1

and Eg symmetry modes with wavenumbers of 108 and 254 cm−1 will be noticeable, of which the first
is rotational, and the second is translational vibration.
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Let us establish ordinary dependences for the entire class of trigonal crystals. For the lowest-
wavenumber lattice translational vibration in IRSωEu(cm−1) = 379.0 − 244.3·RM (0.794); for RS,ωEg(cm−1)
= 367.3 − 216.2·RM (0.896), andωEg(cm−1) = 413.1 − 39.6·RM (0.813). Using the first formula, we obtain for
ankerite (CaFe(CO3)2) 164 cm−1 (in experiment, 166 cm−1 [72]), kutnogorite Ca0.78Mn1.13(CO3)2 159 cm−1

(153 cm−1). For lattice vibrations active in RS, the formulas give estimated values for rhodochrosite
(MnCO3) 188, 297 cm−1. The experimental values are 185 and 290 cm−1 [73].

7. Vibrational Spectra of Crystals with Aragonite Structure

The calculated spectra of infrared absorption and Raman light scattering of calcium, strontium,
lead, and barium carbonates with aragonite structure are shown in Figure 5. The wavenumbers of
normal long-wave vibrations of crystals with the aragonite structure calculated by the B3LYP method,
together with the available experimental and theoretical data, are summarized in Tables S5–S8 of the
Supplementary Materials. The comparison of wavenumbers calculated by the B3LYP method with the
experimental values shows that the root-mean-square deviation for four ν1–ν4 wavenumbers in four
carbonates is, according to [68], 1.5% for IRS; 0.8% for RS; for IRS [55]—2.0%, and for RS [57]—0.9%.
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In the IRS of aragonite, in the region of lattice vibrations, there is a maximum at 245 cm−1, formed 
by the B3u symmetry mode with an intensity of 13%, and the main maximum with an intensity of 23% 
at 194 cm−1 (B2u symmetry). For SrCO3, four peaks are observed at 129, 175, 192 and 215 cm−1 with 
intensities of 3, 18, 15 and 9%, while in BaCO3 the intense band is at 157 cm−1 (B1u and B3u) with a low-
wavenumber band at 146 cm−1, and high-wavenumber at 171 cm−1 shoulders. In PbCO3, the main 

Figure 5. Calculated infrared spectra (IR) (top) and Raman spectra (bottom) of intramolecular ν1, ν2,
ν3, ν4, and lattice vibrations of calcium (black, squares), strontium (red, circles), barium (blue, triangles),
lead carbonates (lilac, rhombuses) with aragonite structure. For comparison, the experimental spectra
of aragonite and cerussite are given [68] (Reproduced with permission from [68]; Copyright Springer
Nature, 2020).

In the IRS of aragonite, the most intense vibrations are of the ν3 type with the B2u, B3u

symmetry, wavenumbers of 1448 and 1480 cm−1 and intensities of 4523 and 4727 km/mol. In Figure 4,
they correspond to a broad intense band with the maximum at 1462 cm−1 (1461 cm−1 in [68]).
For convenience of comparison, the intensity of vibration of B3u symmetry is taken as 100%. In SrCO3,
the maximum intensity of the B3u mode at 4757 km/mol is taken as 100%, in BaCO3, the B2u symmetry
modes at 4953 km/mol, and in PbCO3: 6241 km/mol. Thus, the intensity ν3 increases with the
atomic mass of the metal, and the position of the maximum in the series changes according to the
law:ω(cm−1) = 1480.2 − 0.365·M (cm−1) with a correlation coefficient of 0.991.

Unlike calcite, in the infrared spectra of aragonite, the vibration of the ν1 type will be active
due to the modes of symmetry B3u, B1u. In the spectrum shown in Figure 4, they correspond to a
weak (0.2%) band with a maximum at 1090 cm−1, the wavenumber of which shifts towards lower
values with increasing atomic mass: ω(cm−1) = 1090.6 − 0.127·M. The intensity of vibrations of the ν2

type of B1u symmetry is much higher than that of ν1 vibrations, it decreases with an increase in the
atomic mass of the metal, and its wavenumber practically does not change: ω(cm−1) = 893.3 − 0.065·M.
In the experimental spectra, this dependence has the form: ω(cm−1) = 866.2 − 0.123·M. Vibrations of
the ν4 type in CaCO3 and SrCO3 correspond to the modes of symmetries B3u, B2u with distances
between wavenumbers of 13 and 6 cm−1. In BaCO3 and PbCO3, the distances between wavenumbers
decrease to 2 and 3 cm−1. This behavior of vibrational modes of the ν4 type is consistent with
experimental data [68], where it was found that two peaks are observed in aragonite (CaCO3) and
strontianite (SrCO3), and only one for cerussite (PbCO3) and witherite (BaCO3). There is a good
ordinary dependence of the peak position on the atomic mass of the metal: in the experiment it is
ω(cm−1) = 707.5 − 0.128·M, and in the calculation: ω(cm−1) = 715.4 − 0.119·M, with the correlation
coefficients 0.944 and 0.977, respectively.

In the Raman spectrum of aragonite (CaCO3), ν1 vibration of Ag symmetry with a wavenumber
of 1078 cm−1 is the most intense (taken as 100%). Vibrations ν4 of the Ag and B1g symmetries
with intensities of 9% each are also noticeable, which form the maximum in the spectrum shown
in Figure 5 at 702 cm−1. In BaCO3, the ν1 vibration maximum shifts to 696 cm−1, and its intensity
increases. In addition, the width of this peak increases. Oscillations of the ν3 type in CaCO3 have B3g

(1465 cm−1) and B2g (1595 cm−1) symmetries, and an intensity of 5%. In SrCO3, these are vibrations
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at wavenumbers of 1450 and 1565 cm−1 with intensities of 4%. In BaCO3, they shift to lower values
of 1429 and 1528 cm−1, and the intensities increase to 9 and 13%. Oscillations of the B2g symmetry
correspond to the displacements of atoms to the C–O bonds along the b axis, whereas B3g—along the a
axis, perpendicular to the layers of anions and cations.

The Raman spectrum of PbCO3 differs from the spectra of other carbonates with the aragonite
structure. Here, the most intense (taken as 100%) is the vibration of the ν3 type of B2g symmetry with
a wavenumber of 1486 cm−1 [68]. Three other vibrations of this type have B3g, Ag, B1g symmetries,
similar wavenumbers of 1394, 1383 and 1380 cm−1 and intensities of 50%, 16%, and 25%, respectively.
They form a second maximum in RS at 1388 cm−1. The ν1-type vibration with a wavenumber of
1067 cm−1 has an intensity of 61%. Modes of the same Ag symmetry are also dominant in the formation
of the ν2 band, the position of which in aragonites obeys the law: ω(cm−1) = 895.6 − 0.117·M with a
high correlation coefficient of 0.977.

In the IRS of aragonite, in the region of lattice vibrations, there is a maximum at 245 cm−1,
formed by the B3u symmetry mode with an intensity of 13%, and the main maximum with an intensity
of 23% at 194 cm−1 (B2u symmetry). For SrCO3, four peaks are observed at 129, 175, 192 and 215 cm−1

with intensities of 3, 18, 15 and 9%, while in BaCO3 the intense band is at 157 cm−1 (B1u and B3u) with a
low-wavenumber band at 146 cm−1, and high-wavenumber at 171 cm−1 shoulders. In PbCO3, the main
features of the spectrum are shifted to the low-wavenumber region. There are two main peaks at
82 cm−1 with an intensity of 17%, and a peak at 103 cm−1 and an intensity of 18%. This structure of
the IRS in the lattice region is consistent with the results of measurements [72], where it was found that
the broad band at 263 cm−1 in the structure of aragonite shifts to longer wavelengths with an increase
in the atomic number of the metal: up to 227 cm−1 in strontianite, then up to 205 cm−1 in witherite,
and, finally, up to 136 cm−1 in cerussite.

For lattice vibrations of aragonite in RS, there will be three main bands with maxima at 152 cm−1,
209 cm−1 and 250, 276 cm−1. There is a good agreement between the calculated and experimental
data [68]. In SrCO3, there are two intense bands with maxima at 150 and 191 cm−1, formed by the modes
of symmetries B3g, B2g, and a weak band at 252 cm−1. In the BaCO3 spectrum, the maximum of the
first band is at 153 cm−1, the second at 181 cm−1 with a shoulder at 198 cm−1, and the third at 237 cm−1.
The second maximum is formed by modes with B2g symmetry with pronounced yz polarization.
The spectrum of PbCO3 contains a large number of bands of low intensity, not exceeding 6%.

In [68], it was found that RS and IRS confirm the general trend that each of the internal modes
is shifted to lower wavenumbers in the following order: aragonite → strontianite → witherite →
cerussite. The coefficients of linear interpolation of the wavenumbers of intramolecular (ν4, ν1, ν3)
vibrations active in RS for carbonates with the aragonite structure, obtained from experimental data [68]
and theoretical calculations using the B3LYP method are summarized in Table 2. In the calculations,
each type of vibration was determined as the average of the individual modes, which are shown in
Table S9. For lattice vibrations, similar linear dependences are also obtained, as recorded in Table S10.

Table 2. Linear interpolation coefficients of the wavenumbers of intramolecular (ν4, ν1, ν3) vibrations
of the M cation mass for carbonates with aragonite structure, active in RS, obtained from experimental
data [68] and theoretical calculations by the B3LYP method. The correlation coefficient is shown
in brackets.

Method ν4 ν1 ν3 v3

Experiment [68] 713.2 − 0.173·M (0.986) 1090.1 − 0.17·M (0.919) 1495.3 − 0.588·M (0.989) 1597.2 − 0.582·M (0.99)
B3LYP 714.3 − 0.128·M (0.933) 1087.059 − 0.116·M (0.894) 1486.0 − 0.426·M (0.992) 1619.0 − 0.638·M (0.998)

As a check of the obtained formulas, we will use the available data [49], where the Raman spectra
of (CaCO3) X1 (SrCO3) X2 (BaCO3) X3 solid solutions were measured. Thus, in the spectrum of
the composition 0.34:0.33:0.33, wavenumbers of 1452, 1086, 711, 273, 192, 155 cm−1 were observed.
Calculation according to the formulas of Tables S8 and S9 gives: 1466, 1077, 703, 262, 183, and 158 cm−1,
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that is, the root mean square deviation of the calculated and experimentally determined wavenumbers
is about 2.7%.

8. Conclusions

In this work, the Hartree–Fock theory and the electron density functional in the form of a
hybrid B3LYP functional in the basis of a linear combination of atomic orbitals by means of the
CRYSTAL17 program code are used to calculate the structure and normal long-wavelength vibrations
of MgCO3, CaCO3, ZnCO3, CdCO3 in the structure of calcite, CaMg(CO3)2, CdMg(CO3)2, CaMn(CO3)2,
CaZn(CO3)2—in the structure of dolomite, BaMg(CO3)2—in the structure of the norsethite type,
CaCO3, SrCO3, BaCO3, PbCO3—in the structure of aragonite. The analysis of the calculated
results and their comparison with the available experimental data shows that the wavenumbers
and intensities of individual vibrational modes obey the ordinary laws. For the calcite family,
the intramolecular modes of the ν2 and ν3 types that are active in IRS correlate with the cation
radius ω(cm−1) = 812.9 − 98.7·RM, andω(cm−1) = 1546.9 − 154.8·RM with correlation coefficients of
0.958 and 0.854. Vibration of the ν4 type is active in RS, where the dependence of its wavenumber
on the radius of the metal cation has the form ω(cm−1) = 783.3 − 72.9·RM, and for the most intense
ν1: ω(cm−1) = 1138.0 −42.9·RM, with coefficients of correlation 0.906. For the entire class of trigonal
crystals (calcite, dolomite, norsethite), the dependence of low- wavenumber lattice vibrations has
the form for Eu symmetry: Eu: ω(cm−1) =379.0 − 243.3·RM, and Eg: ω(cm−1) = 367.3 − 216.2·RM,
ω(cm−1) = 413.1 − 139.6·RM. For carbonates with aragonite structure for the calculated wavenumbers
ν4, ν2, ν1, ν3, linear dependences with high correlation coefficients are obtained for the atomic
mass: ω(cm−1) = 714.3 − 0.128·M; ω(cm−1) = 895.6 − 0.117·M; ω(cm−1) = 1087.1 − 0.116·M;
ω(cm−1) = 1619.0 − 0.638·M, and for IRS: ω(cm−1) = 715.4 −−0.119·M’; ω(cm−1) = 893.3 − 0.065·M;
ω(cm−1) = 1090.6 − 0.127·M;ω(cm−1) = 1480.2 − 0.365·M. For trigonal and orthorhombic carbonates,
linear dependences of metal substitution were established for the radius of the RM cation (the distance
between the metal and oxygen RM–O) only for the infrared in-plane bending mode ν4: ω(cm−1) =

786.2 − 65.88·RM (ω(cm−1) = 881.0 − 67.13·RM–O), and Raman in-plane asymmetric stretching mode
ν4: ω(cm−1) = 768.5 − 53.24·RM (ω(cm−1) = 844.2 − 53.83·RM–O), with a correlation coefficient of
0.87 (0.91). For the rest of the modes, it was not possible to obtain linear dependences with high
correlation coefficients.

Thus, ab initio predictions, with a relatively low computational capacity, can reproduce the full
vibrational spectra of crystalline compounds of material science interest, and, on the basis of ordinary
spectral dependences, predict their features for solid crystalline solutions. The obtained quantitative
dependences of the characteristics of vibrational modes can be used in non-contact non-destructive
diagnostics of carbonates by optical methods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/11/2275/s1,
Table S1: Wavenumbers (cm−1) of lattice, translational (T), rotational (L) and internal mode vibrations active in
IR spectra (IR), obtained in this work by the B3LYP method, measured experimentally (Exp.) and calculated
(Theor.) for carbonates with calcite structure, Table S2: Wavenumbers (cm−1) of lattice, translational (T),
rotational (L), and internal modes vibrations active in the Raman spectra, obtained in this work by the B3LYP
method, measured experimentally [Exp] and calculated [Theor] in the works of other authors for carbonates
with calcite structure, Table S3: Wavenumbers (cm−1) of lattice and internal modes vibrations active in the IR
spectra, obtained in this work by the B3LYP method, measured experimentally [Exp.] and calculated [Theor.]
in the works of other authors for carbonates with dolomite and norsethite structure, Table S4: Wavenumbers
(cm−1) of lattice and internal modes vibrations active in Raman spectra, obtained in this work by the B3LYP
method, measured experimentally [Exp.] and calculated [Theor.] in the works of other authors for carbonates with
dolomite and norsethite structure, Table S5: Wavenumbers (cm−1) of internal modes v1, v2, v3, v4 vibrations active
in infrared spectra (IRS) calculated by the B3LYP method, measured experimentally [Exp.] and calculated [Theor.]
in the works of other authors for crystals with aragonite structure, Table S6: Wavenumbers (cm−1) of internal modes
v1, v2, v3, v4 vibrations active in the Raman spectra, calculated by the B3LYP method, measured experimentally
[Exp.] and calculated [Theor.] in the works of other authors for crystals with aragonite structure, Table S7:
Wavenumbers (cm−1) of lattice vibrations, active in infrared (IR) spectra, calculated by the B3LYP method,
measured experimentally [Exp.] and calculated [Theor.] in the works of other authors for crystals with aragonite
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structure, Table S8: Wavanumbers (cm−1) of lattice vibrations active in the Raman spectra, calculated by the B3LYP
method, experimentally measured [Exp.] and calculated [Theor.] in the works of other authors for crystals with
aragonite structure, Table S9: Values of the coefficients ω0 (сm−1), ω1(сm−1/a.m.u.) of linear interpolation of
frequenciesω=ω0 +ω1·М(сm−1) by the atomic mass of the metal M intramolecular (ν4, ν2, ν1, ν3) modes, active in
the Raman and infrared spectra absorption (IR) of carbonates with aragonite structure, obtained from theoretical
calculations by the B3LYP method. The correlation coefficient K is shown in parentheses. Table S10: Values of the
coefficients ω0 (сm−1), ω1(сm−1/a.m.u.) of linear interpolation of wavenumbers ω =ω0 +ω1·М(сm−1) by the
atomic mass of the metal M of lattice vibrations active in the Raman spectra of carbonates with aragonite structure
obtained from theoretical calculations by the B3LYP method. The correlation coefficient K is shown in parentheses.
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