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Abstract

Cognitive performance slows down with increasing age. This includes cognitive pro-

cesses that are essential for the performance of a motor act, such as the slowing

down in response to an external stimulus. The objective of this study was to identify

aging-associated functional changes in the brain networks that are involved in the

transformation of external stimuli into motor action. To investigate this topic, we

employed dynamic graphs based on phase-locking of Electroencephalography signals

recorded from healthy younger and older subjects while performing a simple visually-

cued finger-tapping task. The network analysis yielded specific age-related network

structures varying in time in the low frequencies (2–7 Hz), which are closely con-

nected to stimulus processing, movement initiation and execution in both age groups.

The networks in older subjects, however, contained several additional, particularly

interhemispheric, connections and showed an overall increased coupling density.

Cluster analyses revealed reduced variability of the subnetworks in older subjects,

particularly during movement preparation. In younger subjects, occipital, parietal,

sensorimotor and central regions were—temporally arranged in this order—heavily

involved in hub nodes. Whereas in older subjects, a hub in frontal regions preceded

the noticeably delayed occurrence of sensorimotor hubs, indicating different neural

information processing in older subjects. All observed changes in brain network orga-

nization, which are based on neural synchronization in the low frequencies, provide a

possible neural mechanism underlying previous fMRI data, which report an over-

activation, especially in the prefrontal and pre-motor areas, associated with a loss of

hemispheric lateralization in older subjects.
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1 | INTRODUCTION

Aging leads to a slowing down of cognitive abilities. This includes cog-

nitive processes that are crucial for motor performance. For example,

increased deficits in the execution and planning of movements, as well

as a slowing down in response to external stimuli (Liu et al., 2017;

Seidler et al., 2010; Wu & Hallett, 2005). A study by Niessen, Fink,

Hoffmann, Weiss, and Stahl (2017) recently showed that older sub-

jects have deficits primarily in the accuracy of processing visual stimuli

into motor actions and less in the pure execution of the motor act

itself. Even though several studies investigated the effects of non-

pathological aging on human motor performance, to date, our under-

standing of the neurobiological underpinnings of aging-associated

functional changes in the brain networks that are involved in the

transformation of external stimuli into movements remains sketchy.

Several fMRI studies reported an association between aging and

changes in movement-related neural activity. In particular, a generally

enhanced activation was reported, especially in pre-frontal and pre-motor

areas (Heuninckx, Wenderoth, Debaere, Peeters, & Swinnen, 2005; Sailer,

Dichgans, & Gerloff, 2000; Ward, Swayne, & Newton, 2008). This effect is

often referred to as the so-called PASA (posterior to anterior shift in aging)

phenomenon (Dennis & Cabeza, 2011). The HAROLD (hemispheric asym-

metry reduction in older subjects) model proposes another effect often

reported by fMRI studies, namely a reduced hemispheric asymmetry dur-

ing cognitive processing, which is thought to be rather a general aging-

associated than task-specific phenomenon (for a summary see

Cabeza (2002)). It is assumed that these effects (PASA and HAROLD)

reflect either a compensatory mechanism, that is, a recruitment of addi-

tional brain areas to support weakened functionality in core brain regions

(Cabeza et al., 1997; Nolde, Johnson, & Raye, 1998; Reuter-Lorenz

et al., 2000), or difficulties in recruiting specialized task-specific subnet-

works in older subjects (Babcock, Laguna, & Roesch, 1997; Cabeza, 2002;

Mitrushina & Satz, 1991). However, fMRI suffers from low temporal reso-

lution. Therefore fMRI-based analyses of functional connectivity between

brain regions provide only limited insight into the underlying neural inter-

actions. In this study, we intended to shed light on the neural mechanisms

underlying HAROLD and PASA using Electroencephalography (EEG)-

based functional connectivity analyses taking advantage of EEGs' high

temporal resolution.

One hypothesis states that such changes in healthy aging result

from changes in inter-regional neural synchronization since this is a

crucial mechanism underlying motor and cognitive tasks (Fell

et al., 2004; Palva & Palva, 2012; Popovych et al., 2016). Several stud-

ies using data from EEG/MEG/single-unit/ECog recordings while sub-

jects performed a variety of different motor tasks showed that

remote neural populations synchronize over a short-time period

(Singer, 1999, 2004; Uhlhaas, Roux, Rodriguez, Rotarska-Jagiela, &

Singer, 2010; van Wijk, Beek, & Daffertshofer, 2012), suggesting that

coordinated timing constitutes a fundamental principle involved in

motor and cognitive processing (Baker, Olivier, & Lemon, 1997; Baker,

Spinks, Jackson, & Lemon, 2001; Fries, 2005, 2015; Uhlhaas

et al., 2010). Furthermore, we could show in a previous study (Rosjat

et al., 2018) that during voluntary, that is, internally-triggered

movements, motor-related networks built on inter-regional neural

synchronization in the lower frequencies in younger as well as older

subjects. In addition, the results exhibited an increase in inter-

hemispheric connectivity in older subjects compatible with the HAR-

OLD model. However, due to the restriction of the phase-locking

analysis to EEG electrodes above the motor cortex, we were unable

to find evidence for the PASA phenomenon.

Accordingly, we here aimed at investigating how changes related

to healthy aging affect the dynamic organization of brain networks

with a particular interest in the role of occipital, parietal, and prefron-

tal and premotor regions besides the classical motor-related ones. In

addition, we focused on visually-cued movements for the following

reasons. First, we expected a more distinct effect of PASA in this kind

of task, since a raise in cognitive load is known to increase the PASA

phenomenon (Ansado, Monchi, Ennabil, Faure, & Joanette, 2012).

Second, we were interested in how visual information is transformed

toward motor execution in such visually-cued movements. For the

investigation of this aspect, it is essential to obtain information about

the timecourse of the network structure. Thus, we decided to focus

our analysis on dynamic graphs. A dynamic graph (also dynamic net-

work) is a composition of temporally successive connectivity networks

(Holme & Saramäki, 2012; Sizemore & Bassett, 2018). In contrast to

static networks, they take into account the temporal development of

the connectivity. They, therefore, serve to provide a more precise

temporal account of the different coupling structures of the respec-

tive age groups, especially about the influence of aging on the routing

of neural information during the different movement phases. Third,

we wanted to analyze whether the neural evidence for the HAROLD

model found in voluntary, that is, self-initiated movements (Rosjat

et al., 2018) could be replicated in visually-cued movements, that is,

whether the neural underpinnings are independent of the way the

movement was initiated.

We investigated inter-channel connectivity using the relative

phase-locking value (rPLV) (Lachaux, Rodriguez, Martinerie, &

Varela, 1999) applied to EEG data. We chose to use the rPLV as con-

nectivity measure as it is, in contrast to other methods like dynamic

causal modeling (DCM) or Granger causality, capable of measuring

fast transient synchronization. The high temporal resolution of this

connectivity measure is crucial for investigating the underlying

dynamic neural networks in our study. EEG data were recorded from

younger and older healthy participants who performed a simple

visually-cued finger-tapping task and dynamic networks based on

these phase relationships were created.

2 | MATERIALS AND METHODS

2.1 | Participants

In this study, we included EEG data of a group of 21 younger healthy

subjects (YS; 10F/11M, age: 22–35 years) and of a group of 31 older

healthy subjects (OS; 15F/16M, age: 60–78 years) first presented in

two earlier studies (Liu et al., 2017; Popovych et al., 2016). All
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participants were right-handed according to the Edinburgh Handed-

ness Inventory (Oldfield, 1971) and had normal or corrected to normal

color vision. The older participants had no history of psychiatric or

neurological disease (as assessed by the Trail making test (TMT A:

41.16 ± 16.27 s, TMT B: 78.59 ± 28.02 s) (Spreen & Strauss, 1998),

the Mini-mental-state-test (28.97 ± 1.29) (Folstein, Folstein, &

McHugh, 1975), the Clock-drawing test (Agrell & Dehlin, 1998), and

the Beck depression inventory (4.58 ± 3.21) (Beck, Ward, Mendelson,

Mock, & Erbaugh, 1961). All participants had given their written

informed consent prior to the study. The local ethics committee of

the Faculty of Medicine at the University of Cologne had approved

both studies.

2.2 | Experimental design

We recorded EEG data while both groups performed a simple finger-

tapping task. The experimental paradigm reported here consisted of

two conditions, a visually-cued condition with intention to act, that is,

a visually-cued motor condition (Figure 1a) and a visually-cued condi-

tion without intention to act, that is, a vision-only condition

(Figure 1b). In the motor condition (visually-cued tapping, Figure 1a)

the subjects were presented with a right- or left-pointing arrow (2�

wide and 1.2� high, expressed as visual angles) for 200 ms on a screen

with inter-stimulus intervals of varying length ≥ 4 s. The participants

had to press a button with their left or right index finger,

corresponding to the direction of the arrow, as fast as possible. In the

second condition (vision-only, Figure 1b) the same stimuli as in the

visually-cued tapping condition were presented. However, this time

the participants were carefully instructed to pay attention to the

arrows but to refrain from performing or imagining to perform the

button press. Thus, no motor action was performed in this condition

(for full details see Popovych et al. (2016) and Liu et al. (2017)). During

the experiment, a third, self-initiated tapping condition (not reported

here) was recorded. In this condition, the participants were free to

choose when to move which hand without any external stimuli. The

conditions were presented in pseudorandomized blocks of 1 min

duration each with a break of 17–20 s between consecutive blocks

(for details see Wang et al. (2017)). The overall duration of the experi-

ment including breaks was 70 min.

Our analyses were restricted to data acquired from the visually-

cued and vision-only condition (Figure 1a,b) and the conditions were

analyzed locked to the onset of the visual stimulus. We used the same

cohort as in Rosjat et al. (2018) for the following reason. We wanted

to check whether the type of movement initiation (internal versus

external) has an influence on the observed coupling structure. There-

fore, we decided to leave the cohort constant to ensure that any dif-

ferences, for example, in phase-locking are due to changes in the

experimental task.

2.3 | EEG recording and preprocessing

While the subjects performed the task, we continuously collected

EEG data from 64 active Ag/AgCl electrodes (Brain Products GmbH,

Munich, Germany), placed according to the international 10–20 sys-

tem. The reference electrode was placed at the left earlobe. Bipolar

horizontal and left vertical electrooculograms (EOG) were recorded

with three of the 64 scalp electrodes (previously located at FT9, FT10,

and TP10 in the 10–20 system). These were placed at the bilateral

outer canthi and under the left eye to monitor eye movements and

blinking. Before the experiment, it was ensured that the impedances

of all electrodes were below 15 kΩ. The EEG signals were amplified,

bandpass filtered in the frequency range 0.87–500 Hz, and digitized

at a sampling rate of 2.5 kHz. Index finger movement onsets were

detected by acceleration sensors attached to the tip of each index fin-

ger. We also used the information from the acceleration signals to

monitor the subjects' behavior, for example, to rule out errors such as

(a)

(b)
F IGURE 1 Experimental paradigm.
Organizational setup of the experiment.
(a) Visually-cued finger movements and
(b) vision-only condition. Each condition
is represented by a unique reminder
(e.g., blue square in the visually-cued
tapping condition). The arrows indicate
the hand (left or right) to be used
(adapted from Figure 1 in Wang
et al. (2017))
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mirror movements. We defined the onset of the finger movement as

the instant of time at which the numerical time derivative of the accel-

eration signal exceeded a predefined threshold.

The acquired raw data went through several offline pre-

processing steps. First, we band-pass filtered the data from 0.5 to

48 Hz to remove slow voltage drifts. We next downsampled the data

to 200 Hz to reduce the file size and thus the computing time. We

then removed artifacts using a semi-automated process in EEGLAB

using independent component analysis (ICA) (Makeig, Bell, Jung, &

Sejnowski, 1996). Finally, the data were epoched to intervals [−1,500,

+2,500] ms, which centered around stimulus onset.

For our analysis, we excluded trials that contained EEG artifacts

or included movements during the pre-stimulus period detected by

the accelerometer. After excluding trials based on these criteria, we

only considered data from participants who had at least 30 correct tri-

als per hand. Based on these quality considerations, data from three

younger and seven older subjects were excluded from further analy-

sis. Thus, EEG data from 18 younger and 24 older subjects were used

for further processing.

2.4 | Spatial filtering

A crucial pre-processing step for the following connectivity analysis

was spatial filtering. In the EEG, volume conduction is a primary con-

cern in determining the relationship of signals. The activity of a single

neural generator can influence the signal in several different electrode

positions and thus lead to inaccurate phase-locking between these

recording sites. To reduce the detection of false-positive connectivity,

we applied spatial filtering using surface Laplacians, which demonstra-

bly improves spatial resolution and allows the analysis of electrodes

close to the region of interest (Lachaux et al., 1999). Thus, our

preprocessed data were re-referenced to a small Laplacian reference

to improve the spatial resolution of the signals and thus their suitabil-

ity for subsequent connectivity analysis (Hjorth, 1975). Electrodes on

the outer edge, which do not have four neighbors, were excluded

from further analyses, so that a total of 42 electrodes were included

in the investigation.

2.5 | Relative amplitude changes and phase-
locking in oscillations

Following preprocessing, we transformed the epoched and cleaned

data to the time-frequency domain using Morlet wavelets (Kronland-

Martinet, Morlet, & Grossmann, 1987) in a δ − β frequency range

(2–30 Hz) with a step size of 1 Hz (5 cycles). This time-frequency

decomposition was performed with the Statistical Parametric Map-

ping toolbox (SPM12, Wellcome Trust Centre for Neuroimaging,

London, UK) implemented in MatLab R2018b (The MathWorks Inc.,

Massachusetts). We then analyzed the amplitude and phase informa-

tion from the time-frequency decomposition using customized

MATLAB scripts.

We obtained the temporal evolution of the amplitude A(f, t) and

phase φ(f, t) by applying the complex Morlet wavelet transformation

for each frequency separately to our data. We analyzed the relative

amplitude changes for the δ − θ (2–7 Hz), α (8–12 Hz) and β

(13–30 Hz) frequency ranges separately for the visually-cued motor

task and for the contrast between the visually-cued motor task and

the vision-only task (i.e., visual stimulation without intention to move).

We quantified the communication of two different brain regions,

that is, acquisition sites, by synchronization determined by the single-

frequency phase-locking value (sPLV; adapting the phase-locking

value defined in Lachaux et al. (1999)). For a pair of channels m and n,

sPLV is defined as:

sPLVm,n f,tð Þ= 1
N

XN

k =1

ei φmk
f,tð Þ−φnk

f,tð Þð Þ
�����

����� ð1Þ

here φmk
denotes the phase of the EEG at channel m in the k-th trial.

N is the total number of trials, and i is the imaginary unit. While mini-

mum sPLV = 0 represents a random distribution of phase differences

over all trials without any coherence, a maximal sPLV = 1 occurs only

in the case of perfect inter-trial phase locking of the phase differences

between the EEG signals at the two channels m and n over all trials.

Since we were interested in an event-related measure that repre-

sented the synchronization increases and decreases during stimulus

processing, movement preparation and execution, we normalized the

sPLV of the electrophysiological recordings at each pair of channels

with respect to its baseline value and calculated its relative change

over the entire epoch. We refer to these normalized sPLVs as relative

phase-locking values (rPLVs):

rPLVm,n f,tð Þ= sPLVm,n f,tð Þ−sPLVm,n fð Þ
�sPLVm,n fð Þ ð2Þ

here sPLVm,n fð Þ denotes the sPLV of the baseline interval for each fre-

quency, that is, the mean sPLV at frequency f in the baseline interval,

which was defined from [−1,300, −500] ms excluding the first 200ms

of the original interval as it contained edge artifacts of the Morlet

transformation.

To analyze inter-regional synchronization, we considered four

major frequency bands: δ (2–3 Hz), θ (4–7 Hz), α (8–12 Hz) and β

(13–30 Hz). Instead of first filtering the signal to a specific frequency

band, we calculated the rPLV separately for each frequency with a

resolution of 1-Hz before averaging these values over the frequencies

of the frequency band. In this way, we ensured a true 1:1 frequency

coupling that maximizes the contribution of each frequency in the

band. The steps described above were performed for both the tapping

and the vision-only control condition. The resulting mean rPLVs (aver-

aged over a frequency band of interest) were then contrasted by sub-

tracting the vision-only control condition from the visually-cued

condition, resulting in positive values when phase-locking is stronger

in visually-cued and negative values for stronger phase-locking in the

control condition. (cf. Figure 2). The contrasted mean rPLVs then

underwent statistical testing (described below) to define the edges of
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the phase-locking network. The resulting networks were analyzed

using graph theoretical metrics as implemented in the Brain Connec-

tivity Toolbox (Rubinov & Sporns, 2010).

By implementing the contrast condition we reduced the pure sen-

sory effect of the visual stimulation, which would otherwise have to

led to an all-to-all connectivity in the networks.

2.6 | Statistical analysis

We applied pointwise t-tests with a significance level of p < .05,

corrected for multiple comparisons (false discovery rate, FDR,

q = 0.05) (Benjamini & Hochberg, 1995), to test whether the mean rel-

ative amplitude changes (averaged over frequency band scaled loga-

rithmically relative to pre-stimulus baseline) between YS and OS

differed significantly in the intervals [0, 1,000] ms (δ − θ) and [0,

1,500] ms (α). To test whether the difference between the mean rPLV

(averaged over the frequency band) and the baseline (averaged over

the frequency band) was statistically significant, we compared the

mean rPLV obtained for each pair of electrodes at each time point in

the interval [0, 1,000] ms with its baseline value. To this end, we used

a pointwise t-test with a significance level of p < .05, corrected for

multiple comparisons (false discovery rate, FDR, q = 0.05)

(Benjamini & Hochberg, 1995). The corrections were performed con-

cerning the number of time points, age groups, and electrodes. The

baseline was constructed by generating normally-distributed random

values that had the same mean and SD as the EEG at any time point

of the baseline interval [−1,300, −500] ms.

For the construction of the rPLV networks, we defined a connec-

tion, that is, an edge of the network, between two given nodes to

exist at a given time point t if the mean rPLV between these two

nodes was significantly increased with respect to its baseline value.

Based on our previous results (Popovych et al., 2016; Rosjat

et al., 2018), which showed a symmetrical behavior of phase-locking,

and to reduce the number of statistical comparisons, the rPLVs during

left- and right-hand finger movements were collapsed together after

flipping the ones for the right-hand movements. Electrodes were

defined as being either ipsilateral or contralateral to the moved hand.

For convenience, results are presented resembling left-hand move-

ments, that is, electrodes over the left hemisphere are assumed to be

ipsilateral while electrodes over the right hemisphere are assumed to

be contralateral to the performed movement.

2.7 | Setup of dynamic networks

The statistical analysis above defines a binary undirected graph

Gt = (V, Et), where the graph G is defined by a set of vertices V and

edges Et: V × V ! R, for each point in time t for younger and older

participants. The dynamic graph, also called dynamic network, is

defined as the ordered set of graphs G(t) = {Gtjt � [1, …, T]}. It can also

more efficiently be represented by a list of triples (i, j, t), defining the

contacts of two nodes i and j and the time point t at which they occur

(Sizemore & Bassett, 2018). In contrast to static graphs, dynamic

graphs account for time-varying connectivity patterns that might

reflect the formation of subnetworks due to task performance.

F IGURE 2 Phase-locking analysis. Schematic illustration of the procedure to construct corresponding phase-locking networks from
contrasted, that is, visually-cued—vision-only, rPLVs (adapted from Figure 1 in Rosjat et al. (2018)). The black vertical lines represent movement
onset
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2.8 | Aggregated networks

Besides the dynamic networks, we investigated the aggregated graphs

of the dynamic networks, which are graphs that account for the num-

ber of occurrences of each edge over all graphs, that is, edges that

appear more often have a higher weight while rarely present edges

have a smaller weight.

2.9 | Community structure

We performed a cluster analysis using the Louvain community algo-

rithm (clustering parameter q = 0.9), which uses a greedy optimization

method to minimize the ratio of the number of edges inside communi-

ties to edges outside communities, for each time step and the aggre-

gated graph for both groups of participants to retrieve information on

closely connected subnetworks (Blondel, Guillaume, Lambiotte, &

Lefebvre, 2008; Reichardt & Bornholdt, 2006; Ronhovde &

Nussinov, 2009; Sun, Danila, Josi�c, & Bassler, 2009). To reduce the

effect of randomly assigned cluster labels between time points, we

always used the previous cluster as the initial condition for the follow-

ing community detection. Additionally, we post-hoc assigned a label for

each community, minimizing the number of label switches between

time points, which prevents the same cluster from being assigned dif-

ferent cluster labels at consecutive time points. Furthermore, based on

these clusters we tested the similarity of clusters between age groups

by computing the variation of information (VI) (Meil�a, 2007).

VI X,Yð Þ= H Xð Þ+H Yð Þ−2MI X,Yð Þ
log nð Þ ð3Þ

where H is entropy, MI is mutual information, and n is the number of

nodes. This metric ranges from 0, that is, identical clustering, to

1 (as it is normalized by log(n)), i.e., maximally distinct clustering. To

account for actual age effects, we compared V I(X, Y) (X representing

younger subjects and Y representing older subjects) with time-lagged

self-distribution distances V I(X(t), X(t − 1)) and V I(Y (t), Y (t − 1)) to

test whether the partition distance between younger and older sub-

jects is larger than within group partition changes in time.

The flexibility F of the dynamic network is defined by the average

over all node flexibilities fi (Bassett et al., 2011), which are defined as the

number of times that a node changed communities, normalized by the

maximal number of times this node could have changed communities,

fi =
m

T−1
ð4Þ

with m the number of community changes and T the number of time

points.

2.10 | Network information flow

We analyzed the hub nodes of the networks. Those nodes play a cru-

cial role in the network, as they serve as the connection between dif-

ferent subnetworks. For the analysis of hub nodes, we calculated the

betweenness centrality for each time point, which is defined as the

fraction of shortest paths that pass through each node

(Brandes, 2001; Kintali, 2008). We primarily focused on the first

occurrence of each hub node in the network as well as on their

timecourses. This gives an indication of how neural information is

transmitted from stimulus processing to motor action.

3 | RESULTS

3.1 | Behavioral results

We first tested whether there was a significant difference between

older subjects (OS) and younger subjects (YS) in reaction time (RT),

defined as the time that elapsed from stimulus presentation until

movement onset, and accuracy rate, that is, the percentage of correct

responses among all trials. The reaction time was significantly longer

in older subjects than in younger subjects (see Table 1, first row). The

mean response accuracy in the visually-cued condition for older sub-

jects and for younger subjects was greater than 90%, consistent with

the instructions of the task. However, as expected, the accuracy was

lower for the older participants (Table 1, second row). We further

TABLE 1 Summary of statistical results

Mean YS Std YS Mean OS Std OS t-value df p-value

Reaction time 426 ms 77 ms 497 ms 84 ms 3.9442 82 .00017

Accuracy 97.7% 2.22% 93.13% 5.69% −3.2329 40 .0025

Movement time 81.9 ms 8.6 ms 88.3 ms 8.3 ms −3.4307 82 .00095

Interhemispheric connections 3.6 3.6643 8.55 8.5112 −11.159 198 <.0001

Node flexibility (200–300 ms) 0.3874 0.1526 0.2043 0.1253 5.6589 40 <.0001

Node flexibility (1–700 ms) 0.352 0.0784 0.3094 0.0587 2.7318 40 .0092

Variance of information (YS) 0.3271 0.1425 0.5426 0.1595 29.8243 198 <.0001

Variance of information (OS) 0.338 0.1168 0.5426 0.1595 24.9761 198 <.0001

Variance of information (YS vs. OS) 0.4321 0.0655 0.2548 0.0593 9.6527 19 <.0001
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tested the movement times, that is, the time from movement onset

(determined using the accelerometer) to the actual button press of

younger versus older subjects for significant differences and found

that the finger movements of older subjects were significantly (how-

ever on average only 6 ms) slower than those of the younger ones

(Table 1, third row).

In summary, and consistent with the current literature, we found

an age-related deceleration in response to the external stimuli and a

reduced accuracy in task performance. However, the performance of

the motor act itself was only slightly impaired.

3.2 | Relative amplitude changes in oscillations

We next investigated the changes in amplitudes in response to the

visual stimulus to check whether the data reveal known basic motor-

related effects (ERD/ERS) and to clarify whether phase-locking effects

could possibly be due to changes in amplitude in the same frequency

range. During processing of visual stimulation and execution of move-

ment, both age groups show a relative increase in amplitude in δ − θ

frequencies (2–7 Hz), both in the visually-cued motor and in the con-

trast condition. Consequently, there are no significant differences in rel-

ative amplitude between the two age groups (Figure 3a, third column).

In the α frequency range (8–12 Hz), event-related desynchronization

(ERD) can be observed in both groups in both the visually-cued and the

contrast condition during motor execution, that is, around 500 ms after

stimulus. In the visually-cued condition, OS show a significantly

increased ERD (i.e., greater event-related spectral power decrease) in

all examined electrodes compared to YS (2.1202 < t's < 5.3578,

p's < .05 [FDR corrected], df = 40, 0.4202 < SD's < 3.2969) (Figure 3b

top row). Note, that the ERD in OS also lasts longer than in YS, reaching

well into the post-movement phase in the central, motor, and parietal

electrodes (up to 1,300 ms, orange bar, 2nd column, Figure 3b). In the

contrast condition, however, the differences in ERD are much less pro-

nounced (all p's > .05, apart from few p's < .05) (Figure 3b bottom row).

In β frequencies (13–30 Hz), the ERD is also visible in most electrodes

during movement. Additionally, especially in YS, we observe an event-

related synchronization (ERS) after the execution of the movement

(approximately 1,000 ms after stimulus). The ERS is significantly stron-

ger in YS than in OS in both, the visually-cued (−3.4455 < t's < 6.4240,

p's < .05 [FDR corrected], df = 40, 0.2788 < SD's < 1.4721) and the

contrast condition (−3.8928 < t's < 5.2834, p's < .05 [FDR corrected],

df = 40, 0.4394 < SD's < 1.4033) (Figure 3c, bottom row). In summary,

we observe age-related differences in ERD and ERS in the α and β fre-

quencies and no age-related differences in the δ − θ frequencies con-

sistent with the current literature.

3.3 | Phase synchronization

We found an increased phase-locking in the δ − θ frequency band

(2–7 Hz) during stimulus processing and movement preparation and

execution in both age groups and both conditions (Figure 4). In the

visually-cued condition, a significant increase in rPLV was present

throughout all electrode pairs (Figure 4 top row) in both age groups

(Ys: −12.3739 < ts < 5.6742, p < .05 (FDR corrected), df = 17,

0.0709 < SD < 2.1193; OS: −11.0582 < ts < 4.6396, p < .05 (FDR

corrected), df = 23, 0.0942 < SD < 1.7203), whereas contrasting

highlighted more specific connections (Figure 4 bottom row) (Ys:

−8.8947 < ts < 5.8060, p < .05 (FDR corrected), df = 17,

0.0987 < SD < 1.3434; OS: −8.2287 < ts < 5.8060, p < .05 (FDR

corrected), df = 23, 0.1148 < SD < 1.1383). In addition, there were

increased rPLVs in the β frequency band (13–30 Hz) in the post-

movement period (approx. 500 ms after stimulus presentation). How-

ever, this phase-locking effect in the β frequency band could only be

observed in few electrode pairs and therefore did not survive the FDR

correction. No significantly increased rPLVs were observed in the α

frequencies. We hence focused our further dynamic graph analysis on

the δ − θ frequencies and on the contrast condition in which the pure

sensory effect of the visual stimulation was reduced.

3.4 | Dynamic networks and graph connection
density

Representative graphs resulting from the dynamic network analysis

are shown in Figure 5 (for a video displaying the full timecourse of the

dynamic graphs see Video S1). The figure displays network connectiv-

ity which can roughly be assigned to stimulus processing (150 ms),

movement preparation (250 ms), movement execution (350 &

450 ms) and the post movement phase (550 ms). The younger sub-

jects displayed the densest networks in the stimulus processing and

movement preparation phase, the older subjects additionally in the

early phase of movement execution. The connections in YS networks

clustered around occipital regions and central motor-related regions,

while OS networks showed a dense connectivity spread over the

whole brain. Both group of subjects associated graphs expressed pro-

nounced connectivity between ipsilateral (blue) and contralateral

(green) sensorimotor nodes in the movement execution and post

movement phase. However, a paired t-test revealed that the older

subjects' networks additionally included an increased number of inter-

hemispheric connections (orange) which were already present in the

movement preparation phase (Table 1, fourth row). Overall, older sub-

jects' networks displayed an increase in connectivity, leading to a

denser graph.

We quantified this by analyzing the average node degree over

time for YS and OS (Figure 6). A paired t-test showed that the aver-

age node degree was significantly increased in OS compared to YS in

whole network connectivity, that is, taking all nodes of the network

into account (t's < −2.9027, p's < .05 [FDR-corrected], df = 60,

0.3404 ≤ SD's ≤ 4.7489). The same effect was observed for motor

network connectivity, that is, taking only nodes above the motor-

related regions into account (t's < −3.3773, p's < .05 [FDR-

corrected], df = 19, 1.0954 ≤ SD's ≤ 4.8284). In both cases, the sig-

nificant differences were mainly present in the time interval from

200 to 400 ms.
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3.5 | Community structure

In the following, we applied the Louvain clustering method (Figure 7a,

b). During stimulus processing, YS networks were separated in a

cluster with a focus on occipital and parietal electrodes (red nodes)

and a cluster containing motor, frontal, and central electrodes (light

blue nodes). OS networks, on the other hand, were divided into three

more widespread clusters with electrodes from almost all eight

F IGURE 3 Event-related amplitude changes. Amplitude differences on a logarithmic scale in δ − θ (a), α (b) and β frequencies (c) in visually-
cued (top rows) and contrast conditions (lower rows) for YS (left column), OS (middle column) and differences YS-OS (right column) for all
42 considered electrodes. Non significant amplitude differences between YS and OS are grayed out in the right column. t = 0 represents the
onset of the visual stimulus. Blue and orange bars depict time-intervals of motor responses for YS and OS, respectively
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regions (Figure 7b [100 ms]). In the movement preparatory and early

movement execution phases (200–300 ms), OS network clusters were

reduced to two extended, stable clusters that integrated electrodes

from all 8 regions (cf. Figure 7b [200 and 300 ms]). The YS networks,

on the other hand, broke up into several smaller clusters, also showing

no clear regional distinction. A paired t-test showed a significant

reduction in node flexibility in OS in the interval (200, 300) ms

(Table 1, 5th row). Even when the interval was increased to (1–700)

ms the node flexibility was significantly reduced in OS (Table 1, 6th

row). During movement execution the number of connections

decreased (cf. Figure 6a), which led to a sparser network that for YS

could be divided mainly into a contralateral motor—central—ipsilateral

frontal community (red) and several smaller communities (Figure 7b,

400 ms). In OS, the motor, frontal, and central electrodes were more

densely connected, which led to less distinct clusters as in YS.

We calculated the variance of information (VI), which serves as

a marker of the difference of two clusters of the same nodes,

between both groups for each time point (VI[YS,OS]). As a com-

parison and, in particular, to detect real effects of age, we per-

formed a paired t-test comparing VI(YS,OS) to the VI for YS (VI

[YS,YS]; Table 1, 7th row) and OS (VI[OS,OS]; Table 1, 8th row)

for consecutive time points (Figure 7c). With this analysis, we

could show that the variance between age groups stays at a high

level in the first 700 ms of the epoch (with a value between

0.6–0.8). The variance between age groups was constantly

higher compared to the self-distribution distances of YS and OS,

except for the time interval [200, 300] ms. In this interval, the

self-variance of information for OS displayed a drop compared

to YS as confirmed by a paired t-test (Table 1, 9th row). This

drop was related to the less variable networks, that is, the

decreased node flexibility during movement preparation

described above. At the same time, YS showed an increased vari-

ance of information reflecting a high clustering variability during

that time.

F IGURE 4 Event-related rPLV
changes. Significant increase in phase-
locking in the δ − θ frequency band in the
visually-cued condition (top) and in the
contrast condition (bottom) for YS (left)
and OS (right) for 819 electrode pairs.
rPLV values are color coded from
0 (no change) to 0.5 (50% increase). Non
significant changes are grayed out. t = 0

represents the onset of the visual
stimulus. Blue and orange bars depict
time-intervals of motor responses for YS
and OS, respectively
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3.6 | Aggregated networks

In the following, we investigated the aggregated networks, in order

compare the results presented here on visually-cued movements, with

the already published results of the analyses on self-initiated

movements (Rosjat et al., 2018), as these had a much lower time reso-

lution. The resulting networks are presented in Figure 8. YS and OS

showed densely connected nodes above the occipital cortex, which

were related to the early time intervals of the dynamic graphs. In YS

the motor network showed additionally dense connectivity between

F IGURE 5 Dynamic graph snapshots in the δ − θ frequency range. Exemplary graph snapshots for YS (top) and OS (bottom) for five different
time points representative for stimulus processing, movement preparation and execution and post movement. Edges related to the core motor
network are color coded in blue (ipsilateral), green (contralateral) and orange (interhemispheric). Color codes are chosen as in Rosjat et al. (2018)
for better comparison

(a) (b)

F IGURE 6 Node degree dynamics. (a) Timecourses of the average overall node degrees of YS (blue) and OS (red) surrounded by shaded

regions representing the confidence interval. (b) Timecourses of the average motor network node degrees of YS (blue) and OS (red) surrounded
by shaded regions representing the confidence interval. Movement periods are marked with blue (YS) and red (OS) solid lines at the x-axes.
Intervals with significant differences between age groups are marked with black dots
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nodes above ipsilateral frontal and central regions (blue), diagonal

interhemispheric connections between nodes above the ipsilateral

frontal and contralateral motor cortex (orange), horizontal inter-

hemispheric connections between nodes above the ipsilateral and

contralateral motor cortex (orange), and between nodes above the

contralateral motor and central electrodes (green) (Figure 8a). In con-

trast, OS showed a densely connected network between all nodes,

but more strikingly an increase in interhemispheric horizontal connec-

tivity between nodes above the frontal, frontocentral, and central

regions, that is, between nodes above the ipsilateral and contralateral

frontal and above the ipsilateral and contralateral motor cortex

(Figure 8b).

Additionally, we investigated the Louvain clustering for the aggre-

gated networks (Figure 8c,d). Both aggregated networks could be

clustered into three communities, which are represented by different

colored nodes (blue, red, and green). The YS network clustered into an

occipital-parietal cluster (red nodes), a cluster mainly involving the

nodes above the ipsilateral frontal, central, and contralateral motor

cortex (blue nodes) and a contralateral frontal and ispilateral motor

regions one (green), whereas the OS network showed a cluster that

mainly involved nodes above frontal areas and ipsi- and contralateral

motor cortex (blue nodes), a cluster above parietal and central areas

(green nodes), and one cluster containing the remaining nodes (red).

Thereby, the clustering results of the aggregated networks supported

the network differences of the dynamic networks during movement

execution described above.

3.7 | Network information flow

In the last step, we analyzed the HUB nodes of the dynamic graphs

using the betweenness centrality. We investigated the order of first

appearance as well as the timecourse of the HUB nodes (Figure 9). In

both groups, occipital nodes appeared as the first HUB nodes in the

F IGURE 7 Louvain clustering. (a) Channel partitions for YS (left) and OS (right). Clusters are labeled from 1 to 6 (with arbitrary colors).
Unconnected channels are displayed in blue (cluster 0). Movement periods are marked with black horizontal lines. (b) Circular graphs showing
representative clusterings from 100 ms, 200 ms, 300 ms, and 400 ms post stimulus. Nodes are colored corresponding to the clusters in panel (a).
Edges related to the core motor network are color-coded in blue (ipsilateral), green (contralateral), and orange (interhemispheric). (c) Distribution
distance for clusters computed for younger and older subjects (black) compared to self-distribution distances of younger (blue) and older subjects
(red). Movement periods are marked with blue (YS) and red (OS) solid lines
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system. In YS, HUB nodes were then shifted to parieto-central (light blue)

and later to contralateral motor nodes. After most participants pressed the

button (cf. Figure 9b [boxplot]), the HUB nodes switched back and forth

between central/fronto-central (dark blue) and contralateral motor nodes.

Whereas OS HUB nodes first shifted to central and fronto-central nodes,

from there to contralateral frontal nodes, and only in the last step to con-

tralateral motor nodes. A comparison of the timecourses showed that OS

HUBs remained roughly 100 ms longer in occipital nodes than in YS. Thus,

YS HUB nodes shifted about 100 ms earlier to parieto-central nodes and

finally also to contralateral motor nodes.

Because of the results presented in Figure 9, we hypothesized that

the timing of connectivity between electrodes above contralateral motor

and central regions might be a crucial factor in establishing the differ-

ences in behavioral output observed between OS and YS. For this, we

investigated whether the peak time of the rPLV was related to the

timing of movement output, that is, the reaction times. Since rPLV was

strongest either between C4 and Cz/FCz or CP4 and Cz/FCz, we

decided to create a virtual connection by averaging over all four possi-

ble combinations. The reaction time was significantly correlated to the

peak time of this virtual contralateral motor-central connection, p < .01,

ρ = 0.42 (see Figure 10) confirming our hypothesis.

4 | DISCUSSION

In the current study we were interested in age-related changes in the

processing of neural information during externally-triggered, that is,

visually-cued movements. To this extent, we performed a dynamic

graph analysis on EEG data recorded from healthy younger and older

participants, while they performed a visually-cued finger-tapping task.

The graphs were based on phase-locking as a measure of inter-

regional synchronization, which, according to the communication

through coherence (CTC) hypothesis, reflects increased functional

connectivity between neural populations expressed by coherently

coordinated firing patterns (Fries, 2005, 2015). For this purpose, we

calculated the rPLV, which measures the instantaneous synchroniza-

tion between two distinct recording sites. The great advantage of

rPLV is that it is capable of measuring fast transient synchronizations

and thus preserves the advantage of the high temporal resolution of

EEG recordings, which is essential for the construction of dynamic

graphs related to the motor task. In contrast, other frequently used

methods like dynamic causal modeling (DCM) or Granger causality

require statistically stationary signals and thus result in connectivity

information with lower time resolution. Since some of the effects we

F IGURE 8 Aggregated networks in aging.
Top: Representation of the aggregated
networks for younger (a) and older subjects
(b). The thickness of the lines accounts for the
number of occurrences of the corresponding
edge in the respective time interval. Bottom:
Circular representation of the aggregated
networks for younger (c) and older subjects
(d). Nodes are color-coded depending on

assigned clusters. Edges related to the core
motor network are color-coded in blue
(ipsilateral), green (contralateral), and orange
(interhemispheric)
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observed (e.g., decreased node flexibility) lasted for only a few hun-

dred milliseconds and, hence, could not guarantee stationary signals

(as they took place close to the button press), the application of rPLV

instead of DCM or Granger causality was crucial for investigating the

underlying dynamic neural networks in our study.

To start with, we computed the relative power changes of all con-

sidered electrodes in the δ − θ, α, and β frequency range and the

rPLVs between all pairs of the considered electrodes in these frequen-

cies. Note that only rPLVs in the δ − θ frequency range turned out to

be significantly increased. The electrodes were then defined as the

nodes of the dynamic graph, while the edges for each time-point rep-

resented significantly increased rPLVs. We compared the time evolu-

tion of the dynamic networks that we obtained for the younger and

older subjects with a focus on stimulus processing, movement

preparation and movement execution. We investigated the networks

considering three different aspects: the overall connectivity, that is,

the node degree of the whole graph in general and the one of the

motor-related nodes, the formation of clusters, that is, subnetworks

during the different phases of the motor act, and the evolution of

HUB nodes over time, that is, the network information flow.

4.1 | Relative amplitude changes in oscillations

The analysis of the changes in event-related amplitude differences has

revealed varying effects for the individual frequency bands. In the low

frequencies (δ − θ), neither in the visually-cued motor nor in the con-

trast condition significant differences in the strength of the amplitude

changes between both groups could be seen. In the higher frequencies

(α and β), well known motor effects, the so-called ERD and ERS could

be observed in the oscillations (Gerloff, Richard, et al., 1998, Gerloff,

Uenishi, Kunieda, Hallett, & Shibasaki, 1998; Neuper, Woertz, &

Pfurtscheller, 2006; Pfurtscheller & da Silva, 1999). The ERD during

motor execution (approximately 500–700 ms after stimulus) differs in

the mid frequency range (α). Here, the OS show a significantly stronger

and longer ERD. However, this change was much less pronounced in

the contrast as compared to the visually-cued motor condition. In the

higher frequencies (β), a significant difference between YS and OS

could be seen especially in the time after motor execution (about

1,000 ms) in ERS. The YS show a clear β-rebound after movement exe-

cution, which is not present in OS. In contrast to the results in the α fre-

quency range, this effect is visible in the visually-cued motor as well as

in the contrast condition. Analogous results for aging differences in the

respective frequencies, in particular in ERD and ERS have been

reported (Labyt et al., 2003; Liu et al., 2017; Toledo, Manzano, Barela, &

Kohn, 2016; Yordonova, Kolec, Hohnsbein, & Falkenstein, 2004).

Finally, differences in movement time were about 6 ms, whereas

F IGURE 9 HUB nodes. Timepoints of first occurrences of HUB
nodes (a) and timecourses of HUB nodes in the interval [0, 750] ms
(b)—represented by groups of electrodes (Occipital: PO7, PO8;
Central: Pz (light blue), CPz, Cz, FCz; contra-Frontal: FC2, FC4, FC6,
F2, F4, F6; contra-Motor: C2, C4, C6, CP2, CP4, CP6)—as defined by
betweenness centrality in the networks of younger and older

subjects. The mean reaction times for each age group are depicted by
boxplots on the x-axis

F IGURE 10 Behavioral correlation. Each subject's reaction time
(both age groups) plotted against the rPLV peak time between virtual
contralateral motor and Cz/FCz electrodes
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differences in ERD lasted about 300–500 ms after movement. Thus,

the ERD outlasted the end of the movement longer in OS than in

YS. Hence, the longer ERD in OS cannot be explained by differences in

movement time.

4.2 | Setup of dynamic networks

In the construction of the dynamic networks in the δ − θ frequency

range, we defined a connection at a given time point to be present

if the respective rPLV was significantly increased compared to

baseline (i.e., before the stimulus) levels. Since this involved exten-

sive testing, we applied FDR correction (q = 0.05) to account for

the considerable number of multiple comparisons. One could argue

that this method is not strict enough. However, it has turned out

that even with a stricter FDR correction (q = 0.01), the main differ-

ences in motor-related networks between YS and OS prevailed and

the core message of our results remained unaffected (results not

shown). Furthermore, we decided to analyze our data at the elec-

trode level. At least in principle, a source localization could have

provided further insights into the origin of the effects reported

here. However, we refrained from doing so to avoid the ill-posed

inverse problem, which only provides an assumption of the source

activity and could, therefore, lead to erroneous interpretations

(Bradley, Yao, Dewald, & Richter, 2016; Grech et al., 2008; Wendel

et al., 2009). Instead, we used the small Laplacian reference to sub-

stantially reduce the effect of volume conduction on our data.

Although not a source localization method, through the small

Laplacian, electrodes that are directly above the sources are maxi-

mally sensitive to the underlying activity. We have to keep in mind

that thereby, the small Laplacian also eliminates possible physiolog-

ical long-range connections particularly in the low frequencies.

However, this means that we only underestimate the number of

long-range connections and that the presented ones are likely to be

of true physiological origin. Furthermore, we can see in our results,

that there are many neighboring electrode pairs that do not have

significant rPLVs, that is, connections, which one would expect to

see in the case of pure volume conduction (e.g., C1–Cz, C4–C6).

These observations suggest that our results can also not primarily

be driven by volume conduction.

4.3 | Dynamic graph connection density

Several fMRI studies have reported an overactivation related to the

aging human brain (Dennis & Cabeza, 2011; Heuninckx et al., 2005;

Sailer et al., 2000; Ward et al., 2008). The results of the dynamic

graphs in the δ − θ frequency band reported here, that is, the increase

in node degree, might reflect over-connectivity, which may relate to

the overactivation previously reported in fMRI studies. One might

argue that this over-connectivity in OS is driven by increases in ampli-

tude in the respective frequency band. This, however, can be ruled

out due to the fact that no difference in relative change in δ − θ

amplitude could be observed between YS and OS in neither the motor

and nor the contrast condition. Furthermore, significant differences in

relative change in α and β amplitudes occurred only after movement.

4.4 | Community structure

The analysis of the dynamic and aggregated networks revealed a sub-

stantial increase in the number of interhemispheric connections in

OS. The cluster analysis of aggregated networks in YS unraveled three

clusters, a cluster mainly consisting of parietal and occipital electrodes,

a cluster of ipsilateral frontal, central, and contralateral motor elec-

trodes, and a cluster that included ipsilateral motor and contralateral

frontal electrodes. In OS, on the other hand, there was no clear separa-

tion into clusters possible. This might be related to the increased num-

ber of interhemispheric connections and thus a weaker inter-regional

separability, which is consistent with the HAROLD model stating

reduced hemispheric asymmetry during cognitive tasks (Cabeza, 2002).

Additionally, we performed a similar cluster analysis on the

dynamic graphs for each time-point. The clusters were different in

both groups for almost the whole analyzed period. The dynamic graph

communities in YS during motor execution were, similar to the aggre-

gated ones described above, separated in a more structured way, that

is, a dominant cluster including ipsilateral frontal, central, and contra-

lateral motor electrodes. The most striking difference between YS and

OS was observed during movement preparation, that is, immediately

before movement onset. While YS showed a peak in VI between

time-points in this epoch, that is, a very variable network structure,

OS networks exhibited a drop in VI accompanied with a significant

decrease in node flexibility. The decreased flexibility in OS networks

might be related to the over-connectivity described above and the fact

that OS expressed difficulties in recruiting task-specific subnetworks

(Babcock et al., 1997; Cabeza, 2002; Mitrushina & Satz, 1991) and

needed the whole network, that is, higher effort to keep nearly the

same task performance as YS.

4.5 | Network information flow

We furthermore included an analysis of HUB nodes of the dynamic

graphs and focused on the time points of their first occurrence and

their timecourses. In YS, the networks involved a direct shift of the

HUB nodes from occipital via parieto-central to contralateral sensorimo-

tor electrodes. Once YS had executed the movement, HUB nodes

switched back and forth between central and contralateral motor elec-

trodes, which might be related to the incoming sensory feedback from

the button press. The HUBs of OS, in contrast, remained roughly 100 ms

longer in the occipital regions, then shifted to central/fronto-central elec-

trodes and then targeted an additional HUB node above contralateral

frontal electrodes, which appeared at 370 ms, that is, approximately the

same time as the shift to contralateral motor areas in YS. Finally, the con-

nectivity to contralateral sensorimotor areas dominated, which occurred

roughly 80 ms later than in YS. Here, we observed two things, on the
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one hand the HUB nodes in OS remained longer in occipital regions,

which indicates already a delay in the processing of the visual stimulus,

and on the other hand a shift to more frontal areas. This shift of the

HUB nodes is compatible with the PASA (posterior–anterior shift in

aging) phenomenon (Dennis & Cabeza, 2011), which refers to the fact

that the overall activity in OS is shifted to more frontal areas rep-

resenting a stronger involvement of cognitive control.

4.6 | Connecting network changes with behavior

The motor output itself, that is, the movement of the index finger, did

change only slightly. The difference between younger and older subjects'

movement times, that is, the times from movement onset to the button

press, was about 6 ms which is approximately one sampling point at

200 Hz of the EEG signal. The reaction times between younger and older

subjects differed by approximately 70 ms, thus older subjects started

their movements later than younger subjects did and therefore a time

period existed in which younger and older brain networks received dif-

ferent input in terms of sensory feedback. However, we do not expect

this to have an influence on network dynamics before movement onset

where the main differences in network structures were observed. The

reaction time on the other hand is closely related to the processing of

the stimulus. We hypothesize that additionally to the prolonged

processing of the stimulus in occipital regions, a detour via frontal areas

in particular is accountable for the longer reaction times in OS. This

hypothesis is supported by the reported positive correlation between

the reaction times and the peak timing of the connection between cen-

tral and contralateral motor electrodes. This result suggests a decreased

behavioral output in case of a stronger PASA effect. We therefore

hypothesize that increased frontal activity reflects reduced efficiency or

specificity rather than compensation (Morcom & Henson, 2018).

4.7 | Comparing motor network connectivity
between visually-cued and voluntary movements

In a previous publication (Rosjat et al., 2018), we reported on an

invariant, that is, present and unchanged in all movement phases,

motor network in younger volunteers consisting of iPFC/iPM, mPFC/

SMA, and cSM while subjects were performing voluntary, that is,

internally triggered, movements. This invariant network was signifi-

cantly attenuated in OS and accompanied by increased interhemispheric

connectivity. The results we have presented here reveal comparable pat-

terns, albeit in the execution of an externally triggered motor task

(as opposed to the voluntary movements before). YS established most

(motor-related) connections between ipsilateral frontal, central, and con-

tralateral motor regions. The networks of OS, on the other hand, showed

additional interhemispheric connections, especially between ipsilateral

frontal and contralateral frontal as well as ipsilateral motor and contralat-

eral motor electrodes. Also, similar to the results during voluntary move-

ments, OS exhibited higher connectivity between central and

contralateral frontal electrodes. These results indicate that by

investigating the contrast between visually-cued and vision-only condi-

tions, we devised a condition alike the pure motor task (voluntary move-

ment). When contrasting visually-cued and vision-only conditions, it

cannot be excluded that NOGO effects, that is, effects of actively

suppressing a prepared movement, may occur in the vision-only condi-

tion. However, the fact that false movements were observed only in a

negligible number of cases in both younger and older subjects indicates

that the subjects did not prepare for any movement in the vision-only

condition. If they had done so, both conditions would have been compa-

rable or even identical up to the time of movement initiation, which

would have resulted in similar phase-locking, that is, networks consisting

of only a small number of connections. Since this was not the case, our

data suggests that a NOGO effect played a minor role at most in our

study. Thus, our findings indicate that we identified a highly stable core

network (iPFC/iPM—mPFC/SMA—cSM) that is important for movement

execution over several experimental conditions.

4.8 | Future perspectives

There are several possible ways to continue to further deepen our

knowledge on aging-associated functional changes in brain networks

underlying movements. One might include a group with pathological

aging (e.g., stroke) to investigate the compensation following brain

lesions. This would be particularly interesting in a longitudinal study,

which may serve to investigate how the compensation mechanisms

develop while motor skills improve in rehabilitation. An attempt could be

made to investigate subjects with good and subjects with poor motoric

improvements in rehabilitation to try to identify advantageous and disad-

vantageous changes in information flow in the different movement

phases. It could then be explored whether influencing these could lead

to an improvement in motor response. Another interesting approach

would be to include a more challenging motor task (e.g., complex move-

ment patterns) to get a better understanding of whether a detour via

frontal nodes really reflects a reduced efficiency in recruiting specified

brain regions or whether it might be beneficial for older subjects.

5 | SUMMARY

In this article we performed an analysis of dynamic networks based on

synchronization in the δ − θ frequency range in the context of stimu-

lus processing and motor execution in order to understand the neural

mechanisms underlying HAROLD and PASA. We were able to demon-

strate a similar structure as has been shown in self-initiated move-

ments indicating an independence of the underlying neural

mechanisms on movement initiation: The networks in older subjects

displayed an overall increased connectivity, especially in motor related

electrodes by establishing significantly more interhemispheric connec-

tions which is consistent with the HAROLD model. In addition, we

could show that the flexibility in the networks of older subjects

decreased, indicating a kind of over-connectivity and resulting difficul-

ties in recruiting task specific regions. Finally, an analysis of the HUB
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nodes, that is, the neural information flow revealed an extended stim-

ulus processing in occipital regions and a detour via frontal regions in

older subjects, which is compatible with the PASA phenomenon.
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