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The linear parametric neurotransmitter positron emission tomography (lp-ntPET)
kinetic model can be used to detect transient changes (activation) in endogenous
neurotransmitter levels. Preclinical PET scans in awake animals can be performed
to investigate neurotransmitter transient changes. Here we use the spatiotemporal
kernel reconstruction (Kernel) for noise reduction in dynamic PET, and lp-ntPET kinetic
modeling. Kernel is adapted for motion correction reconstruction, applied in awake rat
PET scans. We performed 2D rat brain phantom simulation using the ntPET model at
3 different noise levels. Data was reconstructed with independent frame reconstruction
(IFR), IFR with HYPR denoising, and Kernel, and lp-ntPET kinetic parameters (k2a: efflux
rate, γ: activation magnitude, td: activation onset time, and tp: activation peak time)
were calculated. Additionally, significant activation magnitude (γ) difference with respect
to a region with no activation (rest) was calculated. Finally, [11C]raclopride experiments
were performed in anesthetized and awake rats, injecting cold raclopride at 20 min after
scan start to simulate endogenous neurotransmitter release. For simulated data at the
regional level, IFR coefficient of variation (COV) of k2a, γ, td and tp was reduced with
HYPR denoising, but Kernel showed the lowest COV (2 fold reduction compared with
IFR). At the pixel level the same trend is observed for k2a, γ, td and tp COV, but reduction
is larger with Kernel compared with IFR (10–14 fold). Bias in γ with respect with noise-
free values was additionally reduced using Kernel (difference of 292, 72.4, and −6.92%
for IFR, IFR+KYPR, and Kernel, respectively). Significant difference in activation between
the rest and active region could be detected at a simulated activation of 160% for
IFR and IFR+HYPR, and of 120% for Kernel. In rat experiments, lp-ntPET parameters
have better confidence intervals using Kernel. In the γ, and td parametric maps, the
striatum structure can be identified with Kernel but not with IFR. Striatum voxel-wise γ,

Frontiers in Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 901091

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.901091
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.901091
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.901091&domain=pdf&date_stamp=2022-05-12
https://www.frontiersin.org/articles/10.3389/fnins.2022.901091/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-901091 May 7, 2022 Time: 15:7 # 2

Miranda et al. Motion Correction Spatiotemporal Kernel PET

td and tp values have lower variability using Kernel compared with IFR and IFR+HYPR.
The spatiotemporal kernel reconstruction adapted for motion correction reconstruction
allows to improve lp-ntPET kinetic modeling noise in awake rat studies, as well as
detection of subtle neurotransmitter activations.

Keywords: positron emission tomography, brain, rat, motion correction, 4D reconstruction, kinetic modeling

INTRODUCTION

Transient changes in brain neurotransmitter levels can be
investigated with dynamic positron emission tomography (PET)
using for example the linear parametric neurotransmitter PET
kinetic model (lp-ntPET) (Morris et al., 2005; Normandin et al.,
2012). Transient changes in dopamine levels due to a rewarded
task (Pappata et al., 2002), a motor planning task (Alpert et al.,
2003), and due to psychosocial stress (Lataster et al., 2011), have
been investigated in human brain PET. More recently, the effect
of smoking (Cosgrove et al., 2014), gambling (Bevington et al.,
2021), and cannabis (Calakos et al., 2021) on transient dopamine
release has been investigated with the lp-ntPET method. These
type of studies are not possible to perform in typical preclinical
PET scans in which the animal is anesthetized. Therefore, the
use of motion correction techniques, allowing to scan animals
in the awake state (Kyme et al., 2014; Spangler-Bickell et al.,
2016; Miranda et al., 2017), would make possible to investigate
transient changes in neurotransmitter levels caused by a task
or external stimuli in preclinical PET. Methods that involve
head motion tracking followed by motion correction have been
developed and improved over the last years to perform scans in
awake rodents (Kyme et al., 2014; Spangler-Bickell et al., 2016;
Miranda et al., 2017).

Using the lp-ntPET model (Normandin et al., 2012), the
transient activation of certain neurotransmitter receptors can
be quantified using tracers targeting these receptors (e.g.,
[11C]raclopride for dopamine D2/3 receptors) (Kyme et al., 2019).
By modeling the tracer efflux in compartment modeling as a time
varying parameter (Normandin et al., 2012), transient changes
in endogenous neurotransmitter concentrations can be inferred
by transient changes in tracer binding. For instance, the lp-
ntPET has been used to quantify the striatal transient dopamine
activation profile in awake rats following an amphetamine
challenge (Kyme et al., 2019).

In order to perform kinetic modeling, dynamic PET
reconstruction is necessary to determine the tracer concentration
over time. Independent reconstruction of every time frame
is the straightforward method to perform dynamic PET, but
frame images, and therefore kinetic parameters, usually have
high noise level due to the small number of events in each
frame. To reduce noise in dynamic PET and kinetic modeling
parameters, a wide variety of methods can be implemented
(Reader and Verhaeghe, 2014; Wang et al., 2020), such as post-
processing using the highly constrained backprojection method
(Christian et al., 2010), or using machine learning denoising
(Reader et al., 2021). Particularly for the case of dynamic PET
for kinetic modeling, direct reconstruction has been developed
to reduce noise (Matthews et al., 2010). In this method, the

kinetic model is fitted to every voxel after every reconstruction
iteration and therefore parametric images can be calculated
during reconstruction. This method has been applied using
the lp-ntPET kinetic model for noise reduction (Angelis et al.,
2019). Another reconstruction developed for noise reduction in
dynamic PET is the kernel method (Wang and Qi, 2015; Wang,
2019; Miranda et al., 2021). This method makes use of spatial and
temporal correlations in the data to reduce noise in the iterative
reconstruction (Wang and Qi, 2015; Novosad and Reader, 2016;
Wang, 2019).

In this work, the lp-ntPET kinetic model was used to quantify
transient dopamine changes in the rat striatum. As a first
objective, we validated the spatiotemporal kernel reconstruction
for lp-ntPET kinetic modeling in a 2D simulation and compare
it with independent frame reconstruction. Then, we adapted
the spatiotemporal kernel reconstruction for motion correction
reconstruction to enable it in awake small animal scans. The
method was used to perform a [11C]raclopride scan, using cold
raclopride as challenge, in an awake freely-moving rat using the
point source tracking method (Miranda et al., 2017).

MATERIALS AND METHODS

Motion Tracking and Independent Frame
Motion Correction Reconstruction
The rat head motion in awake rat scans was tracked using the
point source tracking method (Miranda et al., 2017). Four point
sources prepared with [18F]FDG were attached on the rat head.
Two point sources were attached below each ear, one on the nose
bridge, and one in between the right ear and nose. Each point
source was prepared with [18F]FDG and had an activity in the
range of 222-370 kBq.

Animals were scanned on an Inveon PET scanner (Siemens
Medical Solutions, Inc., Knoxville, United States). Images are
reconstructed in a grid of 128 × 128 × 159 voxels with a
size of 0.776 × 0.776 × 0.796 mm along the x, y and z
directions, respectively. Independent frame motion correction
reconstruction was calculated using list-mode event-by-event
motion correction (LMMC) with 16 subsets and 8 iterations
(Rahmim et al., 2008). The sensitivity image for motion
correction was calculated by interpolation in the image space
(Rahmim et al., 2008). The attenuation map was calculated
using the binary image of the activity body outline with an
uniform attenuation factor for soft tissue (0.096 cm−1) (Angelis
et al., 2013). Motion dependent and spatially variant resolution
modeling was implemented as well (Miranda et al., 2020).
Dynamic images were reconstructed with a framing of 12
frames× 10 s, 6×20 s, 2×60 s, and 27×120 s.
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Spatiotemporal Kernel Reconstruction
for Motion Correction
The spatiotemporal kernel method (Wang and Qi, 2015;
Wang, 2019) has been adapted for the case of PET rigid
motion correction reconstruction. Briefly, the original method
to calculate the spatial kernel matrix consists of dividing the
entire PET scan in 3 frames and use the voxel intensity values
of these 3 frames as the feature of the corresponding voxel.
Using a Gaussian radial kernel, the correlation between voxels is
calculated, which serve as the values of the spatial kernel matrix
elements. For the case of small animal brain motion correction,
the region of the image outside the head of the animal is not
corrected for motion, and therefore it can be affected by blurring
motion. Therefore, we define a rectangular region enclosing the
animal head to calculate the spatial correlations for voxels only
in that region. We use a neighborhood of 9 ×9 ×9 voxels, and a
threshold of 0.8 in the radial Gaussian kernel value, to calculate
the spatial kernel matrix. Only the 48 closest nearest neighbors
were considered to create the sparse spatial kernel matrix.

To calculate the temporal kernel matrix, originally it was
proposed to use the sinogram as the frame feature to calculate
the correlation between frames (Wang, 2019). Although is
possible to perform sinogram rebinning to calculate the motion
corrected sinogram (Rahmim et al., 2008), these sinograms often
present gaps due to the position of the detectors after motion
correction which do not overlap the sinogram space. These gaps
can differ between frames, and the effect can be pronounced
in small animal brain scans, in which the animal head can
have a wide range of orientations. For this reason, we replaced
the sinogram with an approximate LMMC reconstruction as
the frame feature. LMMC reconstruction allows to consider
all events after motion correction for reconstruction (i.e., no
events are discarded due to falling out of the sinogram space),
and the motion corrected sensitivity image corrects for non-
uniformities due to motion compensation (Rahmim et al., 2008).
We calculate the approximate LMMC of every frame considering
16 subsets and only one iteration, without attenuation correction
or resolution modeling. This smooth reconstruction also allows
to reduce the difference between voxel kinetics, and therefore
improve correlation between frames to produce temporal basis
functions that can model the different kinetics present in the
image. The point sources are masked from every frame image
before calculating the frames features correlation with the radial
Gaussian kernel (Wang, 2019). To reduce noise in the temporal
basis functions calculated from the correlation between frames,
we filter every temporal basis function using a Gaussian filter with
σ = ts/100, were ts = 15 is the size of the frame neighborhood to
calculate the correlation with other frames.

Highly Constrained Backprojection
Denoising
Since the highly constrained backprojection (HYPR) denoising
(Christian et al., 2010) has been shown to improve parameter
estimation in lp-ntPET kinetic modeling (Wang et al., 2017), we
applied HYPR denoising to independent frame reconstruction
dynamic images. The time averaged sum of dynamic frames

was used as the composite image, and a 3 ×3 ×3 boxcar
filter was used to perform HYPR filtering in dynamic frames
(Christian et al., 2010).

2D ntPET Simulation
In order to validate the spatiotemporal reconstruction for
kinetic modeling using lp-ntPET, we performed a 2D simulation
of a brain phantom using the ntPET model (Morris et al.,
2005; Normandin and Morris, 2008). Similar to Angelis et al.
(2019), we simulated a rat brain phantom with the striatum
structure, where the left striatum did not present endogenous
neurotransmitter activation (rest region), while the right striatum
was activated (active region). A reference region, necessary to
perform lp-ntPET kinetic modeling, was considered as well.
The time activity curves (TACs) of the reference, rest, and
active regions were generated for a 60 min scan with the
same parameters as in Angelis et al. (2019). These parameters
consider an activation profile peak of 200% the basal dopamine
level (reducing dopamine binding by 10%), an onset activation
time of 20 min, with a peak time at 25 min. Figure 1 shows
the phantom image, and the TACs from the different regions.
The simulation was performed considering [11C] raclopride to
simulate tracer decay, and incorporating photon attenuation
with a uniform attenuation factor for soft tissue for the
entire head. The image had a size of 128 ×128 pixels with
a pixel size of 0.776 × 0.776 mm. List-mode data frames
were generated with the same framing used for dynamic image
reconstruction (section motion tracking and independent frame
motion correction reconstruction). Simulations with 10, 40, and
80 million counts were generated, considering 30 realizations
per count level. Data was reconstructed with independent frame
reconstruction and spatiotemporal kernel reconstruction with
300 iterations in both cases.

A second set of simulations were performed with the same
previously described phantom and ntPET model parameters, but
at 5 different peak levels of activation: 120, 140, 160, 180, and
200% the basal level (Figure 2). Ten realizations were calculated
per activation level, with 40 million counts in all cases.

Awake Rat Cold Raclopride Brain Scans
In order to perform the injection of the tracer in the awake
state, a catheter was initially implanted in the jugular vein (Feng
et al., 2015) in 2 Wistar female rats (Janvier Labs). Surgery
was performed under isoflurane anesthesia (5% for induction,
1.5% for maintenance). After surgery, rats were left to rest
during one week, followed by 3 days of acclimatization inside
the holder used to maintain the rats inside the scanner field of
view (Figure 3B). Catheter was flushed with heparin solution
for maintenance every day for one week, and 2–3 times per
week afterwards. The experiments followed the European Ethics
Committee recommendations (decree 86/609/CEE) and were
approved by the Animal Experimental Ethical Committee of the
University of Antwerp, Antwerp, Belgium (ECD 2016-89).

Two rats underwent a cold raclopride challenge scan, one
under anesthesia (210 g) and the other in the awake state (197 g).
For the scans under anesthesia, the rat was initially administered
with isoflurane (5% for induction, 1.5% for maintenance) and
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FIGURE 1 | 2D phantom regions and time activity curves used to generate the dynamic events data in the respective regions.

FIGURE 2 | Active region (and rest region for reference) time activity curves with (A) 120 %, (B) 140 %, (C) 160%, (D) 180 %, and (E) 200 % percent peak
dopamine release with respect to baseline. (F) Activation profiles for every respective level of activation.

placed on the scanner bed. At the start of the 60 min PET scan,
the rat was administered with [11C]raclopride (11.6 MBq, Molar
activity, MA: 38.2 MBq/nmol) through the jugular vein catheter.
Twenty minutes after the start of the scan, cold raclopride in
0.2 mL saline (1 mg/kg) was administered. This dose was chosen

to observe a clear displacement of [11C]raclopride (Wadenberg
et al., 2000; Kyme et al., 2019). For the awake scan (Figure 3A),
20 min before the start of the scan, four point sources were
attached on the rat head in the awake state. At the onset of the
PET scan, [11C]raclopride was administered through the jugular
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FIGURE 3 | (A) Scanning time schedules for the awake cold raclopride scan. (B) Diagram of the rat inside the holder tube connected to the line swivel and (C)
scanner setup showing the injection pump and swivel.

vein catheter (12.4 MBq, MA: 45.3 MBq/nmol). Twenty minutes
after the start of the scan, cold raclopride (1 mg/kg) in 0.2 mL
saline was administered through the jugular vein catheter.

Kinetic Modeling
In both simulations and experimental data, the lp-ntPET kinetic
model (Normandin et al., 2012) was used to calculate the
magnitude and time of the activation profile. The lp-ntPET
kinetic model represents the tissue TAC as a function of the
reference region TAC as (Alpert et al., 2003; Normandin et al.,
2012):

CT (t) = R1CR (t)+ k2

∫ t

0
CR (u) du

− k2a

∫ t

0
CT (u) du− γBi(t) (1)

where CT is the activity in tissue, CR the activity in the reference
tissue (cerebellum in our case), R1 the ratio of the delivery in
tissue compared to the reference tissue, k2 is the rate constant
transfer from free compartment to plasma, k2a is the apparent
rate constant transfer from specific compartment to plasma, and
γ is the magnitude of the activation response modeled with basis
functions Bi(t):

Bi(t) =
∫ t

0
CT(u)hi(u)du (2)

where hi(t) is modeled with a gamma variate function:

hi (t) =
(
t − td
tp − td

)α

exp
(

α

[
1−

t − td
tp − td

])
u(t − td) (3)

where td is the delay time (from injection onset) at which
the activation starts, tp is the peak time of the activation,

α determines the skewness of the activation, and u(t) is the
Heaviside function. Every i-th hi (t) function is calculated with
a different combination of td, tp and α parameters, with the
following ranges: td ranged from 10 to 40 min, in intervals
of 1.5 min, tp depended on td and ranged from td to tend−
5 min (tend : scan end time) in intervals of 1.5 min, and α

ranged from 0.5 to 3, in intervals of 0.5. A total of 2,394
basis functions were calculated using (2) and (3). The activation
response profile (ARP) is reported as the percentage of change in
baseline dopamine efflux (k2a):

ARP = 100 ×
γhi(t)
k2a

(4)

Since either in simulation experiments or in animal scans,
a decrease in [11C] raclopride binding is expected, non-
negative linear least-squares was used to calculate the set of
parameters

[
R1 k2 k2a γ

]
with all basis functions and selecting

the solution with the minimum least squared error from all
basis functions. Parameters

[
td tp α

]
are obtained from the basis

function which results in the minimum least squared error. If
no prior information about the decrease/increase of dopamine is
known, linear least squares (i.e., allowing positive and negative γ

magnitude) should be used.

Data Analysis
From simulation data, the mean and standard deviation (SD)
of the activation parameters of interest, i.e., k2a, γ, td, and tp,
over all realizations at the 3 different count levels, was calculated
for independent frame reconstruction (IFR), spatiotemporal
kernel reconstruction (Kernel), and IFR with HYPR denoising
(IFR+HYPR). The relative difference with respect to the noise-
free parameters is calculated as well. Mean and SD parametric γ,
td, and tp maps are calculated for the different count levels.
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For the simulation with different activation profile levels, the
relative magnitude of γ, i.e., the ratio γ/k2a, which indicates
the activation magnitude relative to the baseline washout, was
calculated for the active and rest region. A paired t-test was
calculated between rest and active regions γ/k2a ratios at the 5
different activation levels for IFR, Kernel, and IFR+HYPR.

For the experimental data cold raclopride scans, a single
frame reconstruction was used to manually align the rat
brain to an MRI template with delineated striatum and
cerebellum regions. TACs were extracted from these regions
using PMOD 3.6 (Pmod technologies, Zurich, Switzerland).
Kinetic modeling was performed and regional striatum k2a, γ, td,
and tp parameters were calculated. In addition, the approximate
Bayesian computation (ABC) framework (Toni et al., 2009; Kyme
et al., 2019; Fan et al., 2021) was used to calculate the confidence
intervals of the parameters k2a, γ, td, and tp in experimental data.
For the prior, using the parameters obtained from the solution
of least squares error, we considered a uniform distribution,
with limits at +-100% the best fit values, considering 10 million
sampling trials. The tolerance, obtained by trial and error as in
Fan et al. (2021) was set at 2 times the least square error fit. Finally,
td, tp, and γ and its t-statistic (γ/SE(γ)) voxel-wise parametric
brain maps, were calculated.

RESULTS

2D ntPET Simulation
Figure 4 shows the regional and a pixel-wise TACs from the
active and rest regions, and the ARP from the respective TACs,
for noise realizations with 80 million counts. For IFR at the
regional level, TACs present little variation (mean coefficient
of variation, COV, along the TAC: 1.20%), however, the ARP
present larger variation (COV: 2.59%). The mean magnitude
of the ARP is higher in the active region compared to the
rest region and has a sharper profile. At the pixel level, TACs
present high noise (COV: 10%), and ARP have large magnitude
differences across realizations (COV: 22.8%). However, mean
active ARP is higher than in the rest region, and peak time
in active ARP coincides with the noise-free ARP. Denoising
IFR with HYPR reduces variation in active region TACs and
ARP, both at the regional (TAC: 0.94%, ARP: 1.72%) and pixel
level (4.01%, 5.99%), with better resemblance in ARP shape
compared to noise-free ARP, although with reduced magnitude.
For the Kernel reconstruction at the regional level, both TAC and
ARP variation is further reduced (0.40 and 0.90%, respectively)
compared to IFR and IFR+HYPR. Moreover, magnitude of
the rest ARP is reduced using Kernel compared to IFR. For
Kernel at the pixel level, variation in the active TAC (2.2%)
is similar to IFR variation at the regional level (1.19%). Noise
in ARP is greatly reduced at the pixel level using Kernel
(1.46%) compared to IFR (22.8%), and IFR+HYPR (5.99%),
with lower variation at the regional level than IFR (2.59%) and
IFR+HYPR (1.72%). Corresponding plots for 40 and 10 million
counts simulations are shown in Supplementary Figures 1, 2,
respectively. Noise increases with lower counts for all methods.
At the pixel level for 10 million counts, the shape of the ARP

is greatly distorted for IFR and improved in IFR+HYPR, but
the mean peak time (32 min) still is close to the noise-free
value. On the other hand, Kernel ARP are less distorted and
with good peak time (26 min) correspondence with the noise-
free ARP.

Table 1 show the lp-ntPET kinetic modeling parameters of
interest for the simulations with all 3 count levels, for IFR,
IFR+HYPR and Kernel. At the regional level, coefficient of
variation is improved in IFR when HYPR denoising is used, with
Kernel further reducing variability. On the other hand, relative
difference of k2a and γ with respect to the noise-free value is
larger using IFR+HYPR and Kernel compared with IFR, but
td and tp relative difference is lower using Kernel compared to
IFR and IFR+HYPR.

Similar to Tables 1, 2 shows kinetic modeling statistics, but
at the pixel level. As in the regional analysis, at the pixel level
for all count levels, coefficient of variation is larger for IFR, with
HYPR denoising reducing variability. Kernel shows the lowest
COV for all parameters at all noise levels. Except for k2a at
80 and 40 million counts, Kernel shows smaller difference with
respect to noise-free values than IFR. Particularly, γ present large
differences with respect to noise-free values using IFR.

Figure 5 shows the mean and SD γ parametric maps for the
different count levels using IFR and Kernel. For the rest region,
as also shown in Table 2, magnitude of γ becomes larger using
IFR and IFR+HYPR at increasing noise levels, while using Kernel,
magnitude is similar across noise levels. Standard deviation is
larger in the active region compared to the rest region pixels
using IFR and IFR+HYPR, but lower using Kernel. For all count
levels and both regions, standard deviation is lower using Kernel.
Supplementary Figures 3, 4 show the mean and SD td and
tp parametric maps for the different count levels using IFR,
IFR+HYPR, and Kernel. As with γ, td Kernel parametric maps
are similar across noise levels and with lower standard deviation
compared with IFR and IFR+HYPR in the active region, but
IFR+HYPR reduce noise to a level similar to that in the Kernel
reconstruction. On the other hand tp parametric maps are similar
using IFR, IFR+HYPR and Kernel, with Kernel presenting lower
standard deviation in 80 and 40 million counts, but IFR+HYPR
showing lower SD in 10 million counts in the active region.
Indeed, tp was the parameter with lowest COV for IFR and
IFR+HYPR as shown in Table 2.

Table 3 shows the relative magnitude of γ (γ/k2a) for different
peak activation levels, and the difference between active and rest
region relative magnitude. Using IFR, no significant difference
in γ/k2a was found for peak activation levels of 120 and 140%,
but with HYPR denoising difference at 120% becomes significant.
Significant difference in IFR is found for 160, 180, and 200% peak
activation levels, with highest significance in the 200% level. For
Kernel, difference between active and rest γ/k2a is significant for
all activation peak levels (p∗∗ < 0.01), reaching a significance
of p∗∗∗∗ < 0.0001 for the activation levels higher or equal to
140%. In addition, γ/k2a increase in proportion to the activation
peak level (120%: 0.088, 140%: 0.142, 160%: 0.199, 180%: 0.250,
200%: 0.295) using Kernel, while this is not observed using IFR
(120%: 0.263, 140%: 0.159, 160%: 0.223, 180%: 0.282, 200%:
0.330) or IFR+HYPR.
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FIGURE 4 | Individual and mean TACs for every realization, at the regional (A,B,E,F,I,J) and pixel level (C,D,G,H,K,L), and activation response profiles (ARP) for the
active and rest regions, using independent frame reconstruction (IFR), independent frame reconstruction with HYPR denoising (IFR+HYPR), and spatiotemporal
kernel reconstruction (Kernel), for simulations with 80 million counts. Dotted lines show 2 SD.
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TABLE 1 | Regional lp-ntPET kinetic modeling k2a, γ, td and tp mean, coefficient of variation (COV), and difference with respect to noise-free value, for independent
frame reconstruction (IFR), independent frame reconstruction with HYPR denoising (IFR+HYPR), and spatiotemporal kernel reconstructions (Kernel), in simulations with
80, 40 and 10 million counts.

Noise-free IFR IFR+HYPR Kernel

Mean COV Difference Mean COV Difference Mean COV Difference

80 million

k2a (min−1) 0.0522 0.0557 2.80% 6.65% 0.0632 2.44% 20.89% 0.0576 1.28% 10.2%

γ (min−1) 0.0187 0.0185 10.5% −1.27% 0.0173 5.87% −7.58% 0.0167 4.13% −10.7%

td (min) 20.5 21.2 6.02% 3.54% 21.4 4.72% 4.25% 20.4 3.25% −0.47%

tp(min) 26.5 25.6 2.94% −3.29% 25.6 2.94% −3.29% 26.5 0.00% 0.00%

40 million

k2a (min−1) 0.0522 0.0556 3.69% 6.53% 0.0630 3.39% 20.59% 0.0576 2.06% 10.2%

γ (min−1) 0.0187 0.0183 13.7% −2.42% 0.0169 8.47% −9.91% 0.0170 4.29% −9.48%

td (min) 20.5 21 8.25% 2.44% 20.8 8.12% 1.46% 20.4 5.61% −0.24%

tp(min) 26.5 25.7 3.33% −3.02% 25.7 3.33% −2.83% 26.5 0.00% 0.00%

10 million

k2a (min−1) 0.0522 0.0551 7.10% 5.62% 0.0624 5.74% 19.46% 0.0573 2.88% 9.69%

γ (min−1) 0.0187 0.0204 26.5% 8.69% 0.0177 20.17% −5.79% 0.0168 9.19% −10.2%

td (min) 20.5 21.0 10.8% 2.68% 20.8 8.80% 1.71% 20.5 6.50% 0.24%

tp(min) 26.5 25.8 3.97% −2.83% 25.6 4.51% −3.40% 26.2 2.77% −1.13%

TABLE 2 | Pixel-wise lp-ntPET kinetic modeling k2a, γ, td and tp mean, coefficient of variation (COV), and difference with respect to noise-free value, for independent
frame reconstruction (IFR), independent frame reconstruction with HYPR denoising (IFR+HYPR), and spatiotemporal kernel reconstructions (Kernel), in simulations with
80, 40 and 10 million counts.

Noise-free IFR IFR+HYPR Kernel

Mean COV Difference Mean COV Difference Mean COV Difference

80 million

k2a (min−1) 0.0522 0.0558 32.7% 6.83% 0.0642 6.96% 22.86% 0.0585 1.76% 12.1%

γ (min−1) 0.0187 0.0265 126% 41.2% 0.0191 30.30% 1.98% 0.0172 5.30% −8.39%

td (min) 20.5 23.2 37.7% 13.4% 20.5 14.01% 0.00% 20.4 4.22% −0.47%

tp(min) 26.5 28.7 25.9% 8.22% 25.7 3.65% −2.92% 26.5 0.00% 0.00%

40 million

k2a (min−1) 0.0522 0.0493 32.2% −5.55% 0.0626 15.5% 19.79% 0.0587 2.71% 12.3%

γ (min−1) 0.0187 0.0482 50.3% 156% 0.0229 35.8% 21.86% 0.0174 7.20% −7.21%

td (min) 20.5 22.9 30.0% 11.9% 20.1 23.1% −1.95% 20.4 6.24% −0.24%

tp(min) 26.5 28.6 26.8% 7.92% 25.9 4.4% −2.08% 26.5 0.00% 0.00%

10 million

k2a (min−1) 0.0522 0.0396 54.7% −24.0% 0.0590 21.2% 12.94% 0.0569 6.30% 8.88%

γ (min−1) 0.0187 0.0736 74.8% 292% 0.0324 45.8% 72.43% 0.0175 15.8% −6.92%

td (min) 20.5 24.9 40.8% 21.7% 21.1 30.8% 3.17% 20.1 9.10% −1.71%

tp(min) 26.5 32.25 31.5% 21.7% 26.6 15.8% 0.38% 26.3 3.12% −0.57%

Awake Rat Cold Raclopride Brain Scans
Figure 6 shows the regional striatum and cerebellum TACs as
well as the kinetic modeling fit and ARP, in both anesthetized
and awake rats using IFR, IFR+HYPR, and Kernel. Noise is
greater in Awake IFR, compared to Anesthesia IFR TACs, with
both IFR+HYPR and Kernel reducing noise in both cases. ARP
calculated from IFR, IFR+HYPR, and Kernel fits have very
good correspondence, but IFR+HYPR shows reduced magnitude
compared to IFR and Kernel. The ARP from awake rats have
a sharper profile and larger relative magnitude compared with
anesthesia ARP. Table 4 shows the parameters of the lp-ntPET
kinetic modeling. Anesthesia scan parameters k2a, and γ have

good correspondence between IFR, IFR+HYPR and Kernel, but
confidence intervals (95%) are smaller for values calculated using
Kernel. Difference in awake scans k2a, and γ are larger between
IFR and Kernel (12 and 15% difference, respectively), with
IFR+HYPR showing intermediate values. Timing parameters td,
and tp are the same using IFR, IFR+HYPR but slightly change
using Kernel, for which confidence intervals are smaller.

Supplementary Figures 5, 6 show the posterior distribution
of parameters estimated with ABC, in anesthesia and awake
scans, respectively. In the anesthesia scan, compared to IFR,
IFR+HYPR slightly decreases distribution spread, with Kernel
showing distributions with the smallest spread in all parameters.
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FIGURE 5 | Rest and active parametric γ mean (top row) and standard deviation (bottom row) images, for independent frame reconstruction (IFR), independent
frame reconstruction with HYPR denoising (IFR+HYPR), and spatiotemporal kernel reconstructions (Kernel).

FIGURE 6 | Regional striatum and cerebellum TACs calculated from independent frame reconstruction (IFR), independent frame reconstruction with HYPR denoising
(IFR+HYPR), and spatiotemporal kernel reconstructions (Kernel), in cold raclopride challenge scans of anesthetized and awake rats. Activation response profiles
calculated from the lp-ntPET modeling are shown below. Cold raclopride injection at 20 min (red dotted line).

In the awake scan the same trend is observed, where the peak
of the distributions in timing parameters is more clear with
the Kernel method.

Figure 7 shows the γ, γ/SE(γ) (γ t-statistic), and td parametric
maps for the anesthesia scan, as well as striatum voxel-wise ARP,
calculated using IFR, IFR+HYPR, and Kernel reconstructions.
Figure 8 shows the equivalent figure for the awake scan. The

shape of the striatum is not visible from the IFR anesthesia
γ parametric map, showing high intensity values throughout
the brain, while HYPR denoising slightly improves striatum
structure. With Kernel the striatum structure is visible in the γ

map, but also showing high intensity values outside the striatum.
The IFR γ t-statistic parameter map shows lower intensity
values outside the striatum, and some regions of high intensity
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within the striatum. HYPR denoising further improves striatum
structure and reduces noise outside striatum. The same effect is
observed in the Kernel γ t-statistic map, but showing a better
striatum structure shape and slightly higher intensity values
outside the striatum. The onset time td parametric map shows
no striatum structure at the cold raclopride injection time value
(20min, assigned to white color) using IFR and IFR+HYPR, while
td maps using Kernel show good correspondence at the striatum
region with the cold raclopride injection time. This is also shown
in the ARP curves calculated from striatum voxels TACs, with
IFR showing large variation across voxels, which is reduced using
IFR+HYPR, and further reduced using Kernel. Supplementary
Figure 7 shows histograms of γ, td, and tp values considering
striatum voxels. Distribution of values is larger in IFR histograms,
especially in the td histogram where no clear distribution centered

at a single value can be discerned. HYPR denoising reduces
spread, and Kernel histograms show distributions with the lowest
spread, with clear peaks in γ and td histograms (0.16 min−1,
and 20 min, respectively), close to the regional analysis values
(0.16 min−1, and 22 min).

As in the anesthesia scan, in awake γ parametric maps using
IFR the striatum structure cannot be identified, with HYPR
denoising reducing noise outside the striatum. Using Kernel, the
striatum structure is better defined, but also showing high values
outside the structure. Calculating the γ t-statistic map reduces
high intensity values outside the striatum for all methods, and
the striatum structure is visible using IFR and IFR+HYPR, but
shape is better defined using Kernel. The IFR and IFR+HYPR
td parametric map show regions within the striatum with values
close to the true cold raclopride injection time (white regions),

TABLE 3 | Mean and standard deviation of the relative magnitude of γ in the active and rest regions, as well as their difference and significance, for peak levels of
activation of 120, 140, 160, 180, and 200% the baseline level.

Rest Active

Mean γ/k2a SDγ/k2a Meanγ/k2a SDγ/k2a Difference P-value

120%

IFR 0.188 0.123 0.263 0.153 0.0752 0.151 (n.s.)

IFR+HYPR 0.128 0.061 0.208 0.109 0.0796 p* < 0.05

Kernel 0.0412 0.0216 0.0885 0.0173 0.0472 p** < 0.01

140%

IFR 0.145 0.0751 0.159 0.00849 0.0146 0.626 (n.s.)

IFR+HYPR 0.106 0.0526 0.152 0.0963 0.0459 0.164 (n.s.)

Kernel 0.0503 0.0388 0.142 0.00927 0.0919 p**** < 0.0001

160%

IFR 0.155 0.0672 0.223 0.0369 0.0674 p** < 0.01

IFR+HYPR 0.0912 0.0397 0.183 0.0252 0.0923 p**** < 0.0001

Kernel 0.0333 0.0109 0.199 0.0134 0.166 p**** < 0.0001

180%

IFR 0.175 0.0852 0.282 0.0471 0.107 p** < 0.01

IFR+HYPR 0.0950 0.0606 0.238 0.0360 0.143 p**** < 0.0001

Kernel 0.0370 0.0267 0.250 0.0180 0.213 p**** < 0.0001

200%

IFR 0.145 0.0747 0.330 0.0420 0.185 p**** < 0.0001

IFR+HYPR 0.0954 0.0501 0.271 0.0284 0.176 p**** < 0.0001

Kernel 0.0451 0.0231 0.295 0.0136 0.250 p**** < 0.0001

Calculated from simulations with 40 million counts and considering 10 realizations per activation level. Reconstructed with independent frame reconstruction (IFR),
independent frame reconstruction with HYPR denoising (IFR+HYPR), and spatiotemporal kernel reconstructions (Kernel). n.s: not significant.

TABLE 4 | Regional striatum k2a, γ, td , and tp parameters calculated with the lp-ntPET kinetic model, using independent frame reconstruction (IFR), independent frame
reconstruction with HYPR denoising (IFR+HYPR), and spatiotemporal kernel reconstructions (Kernel), for the anesthetized and awake rats.

Anesthesia Awake

IFR IFR+HYPR Kernel IFR IFR+HYPR Kernel

k2a(1/min) 0.135 ± 0.0392 0.150 ± 0.0406 0.132 ± 0.0266 0.124 ± 0.0928 0.118 ± 0.0863 0.109 ± 0.0270

γ (1/min) 0.174 ± 0.0787 0.164 ± 0.0759 0.159 ± 0.0508 0.215 ± 0.106 0.191 ± 0.0923 0.182 ± 0.0393

td (min) 17.5 ± 6 17.5 ± 6 19 ± 5.25 17.5 ± 6.75 17.5 ± 6.75 16 ± 6

tp (min) 49 ± 6 49 ± 6 49 ± 5.25 37 ± 8.25 35.5 ± 7.5 37 ± 6.75

Uncertainty is calculated using the ABC algorithm.
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FIGURE 7 | Parametric γ, γ/SE(γ) (γ t-statistic), and tdbrain maps, as well as activation response profiles (ARP) for striatum voxels, calculated using independent
frame reconstruction (IFR, first row), independent frame reconstruction with HYPR denoising (IFR+HYPR, middle row), and spatiotemporal kernel reconstruction
(Kernel, third row), for the anesthetized rat scan. White regions in td maps correspond to cold raclopride injection time (20 min). Striatum delineated from MRI
template shown in red.

but striatum shape is not well defined. On the other hand, Kernel
td map white regions are well defined within the striatum. Voxel-
wise striatum ARP variation is reduced using Kernel compared
with IFR and IFR+HYPR. Supplementary Figure 8 shows γ,
td, and tp histograms considering striatum voxels. Histogram
distributions are improved with HYPR denoising, but have less
spread using Kernel, particularly in γ and tp histograms. Peak
value of tp in the IFR and IFR+HYPR histograms (30 min)
shows a large difference with respect to the region analysis
value (38.5 min), while Kernel tp histogram peak value has a
closer value (38 min).

DISCUSSION

The spatiotemporal kernel method has been validated for lp-
ntPET kinetic modeling and adapted in conjunction with
motion correction reconstruction, reducing noise in dynamic

reconstructions and in kinetic parameters. Depending on the
level of noise, subtle transient changes in neurotransmitter
levels might be difficult to detect using regular independent
frame reconstruction. The spatiotemporal kernel reconstruction
reduces noise in the dynamic PET data, therefore allowing
one to detect changes in the time activity curves and calculate
kinetic parameters with less uncertainty. This was validated
in simulation experiments, and then applied in a real data
awake rat experiment.

For simulations data, at the pixel level Kernel produce
reconstructions TACs with similar noise to IFR TACs at the
regional level. Some negative bias is present in γ, at the regional
and pixel level using IFR+HYPR and Kernel, which can be
observed in the ARP lower magnitude compared to noise-free
ARP (Figure 4). This could be caused by some smoothing
effect of the HYPR filtering and Kernel reconstruction in
the TAC. For HYPR this could be caused by the mismatch
between the composite image and the lower intensity voxels
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FIGURE 8 | Parametric γ, γ/SE(γ) (γ t-statistic), and tdbrain maps, as well as activation response profiles (ARP) for striatum voxels, calculated using independent
frame reconstruction (IFR, first row), independent frame reconstruction with HYPR denoising (IFR+HYPR, middle row), and spatiotemporal kernel reconstruction
(Kernel, third row), for the awake rat scan. White regions in td maps correspond to cold raclopride injection time (20 min). Striatum delineated from MRI template
shown in red.

in the release frames, while for Kernel the contrast can be
adjusted by fine-tuning the spatial kernel matrix threshold
(Wang and Qi, 2015). However, timing parameters (td and tp)
have excellent statistics (low coefficient of variation and bias)
in both regional and pixel-wise data using Kernel. Although
variability in the TAC magnitude increases with noise level
using Kernel, the overall shape is well preserved, which might
be an important factor in calculating accurate lp-ntPET kinetic
modeling timing parameters. On the other hand, noise in IFR
TACs can be overfitted using lp-ntPET and wrongly interpreted
as an activation by the model. This is shown in the high variability
in the IFR ARP parameters at the pixel level.

Similarly, parametric γ, td and tp maps present lower noise
using Kernel compared with IFR and IFR+HYPR, and have less
variation across noise levels. But HYPR denoising presents closer
performance to Kernel. At reduced count levels magnitude of
γ parametric maps increase with respect to high count levels,
but this effect is less pronounced using Kernel compared with

IFR and IFR+HYPR. Activation onset time td parametric maps
calculated using IFR present larger bias with increasing noise,
but have stable values across different noise levels using Kernel.
For peak time tp parametric maps, mean values are similar
between IFR, IFR+HYPR and Kernel maps, but noise is lower
using IFR+HYPR and Kernel. As also observed in the pixel-wise
analysis, this indicates that peak time tp might be the most robust
parameter calculated with lp-ntPET kinetic modeling.

The spatiotemporal kernel reconstruction also allows to detect
more subtle activation profiles, as observed in the simulations
with different ARP magnitudes. At the lowest activation of
120% the baseline level, kinetic modeling with lp-ntPET using
IFR+HYPR and Kernel produced relative activation magnitudes
(γ/k2a) in the active region significantly different from the rest
region, but IFR+HYPR failed to show significant differences
at 140% the baseline level. The significance and magnitude
of the difference increased with largest activation peak value
using Kernel. Using IFR on the other hand, only for activations
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of 160% baseline and larger, a significant difference in the
relative activation magnitude was observed between rest and
active regions. Reduced noise in the Kernel reconstruction would
therefore allow to detect neurotransmitter release of less intensity
compared with IFR.

In anesthesia and awake cold raclopride scans, there is
good correspondence between IFR, IFR+HYPR and Kernel
lp-ntPET parameters at the regional level, with less noisy
TACs calculated using Kernel. k2a and γ parameters confidence
intervals calculated using ABC (Fan et al., 2021) are smaller
using Kernel compared with IFR and IFR+HYPR due to the
TACs lower noise. For all methods, the activation due to the cold
raclopride challenge has larger relative magnitude and faster rise
in the awake compared to the anesthesia scan. This can also be
observed in the striatum TACs where the activity level reaches the
cerebellum level at an earlier time in the awake scan compared
to the anesthesia scan. Due to the relatively large volume of the
rat striatum structure (0.043 cm3 single side), regional analysis
performs well using IFR. However, for smaller structures, or
for studies with lower activity injection, the spatiotemporal
kernel method would show larger differences compared with
independent frame reconstruction (Miranda et al., 2021).

At the voxel level, performance of IFR is suboptimal, with
HYPR denoising improving performance. The striatum structure
cannot be identified in the IFR and IFR+HYPR activation
magnitude γ parametric maps, but it is visible in the Kernel
γ parametric maps, although large intensity values are still
present outside the striatum, in both anesthesia and awake scans.
Calculating the γ t-statistic helps to better identify the striatum
structure in parametric maps using all methods, reducing high
intensity regions outside the striatum, but striatum shape is better
defined using Kernel. Activation onset time td parametric maps
also show no striatum structure using IFR and IFR+HYPR, but
it is well identified using Kernel by looking at the voxels with
values close to the true cold raclopride injection time (20 min).
Looking at the striatum voxels ARP, variation is large across
voxels using IFR, and reduced with HYPR denoising, but more
consistent ARP are obtained using Kernel, and consequently
more consistent kinetic parameters are obtained. This is also
shown in the γ, td, and tp histogram plots with less spread values
using Kernel compared with IFR and IFR+HYPR.

The spatiotemporal kernel reconstruction benefits from the
relatively large rat striatum size spanning several voxels (about
100), which allows calculation of spatial basis functions also
spanning several voxels. In addition, the temporal basis functions
spanning only a finite time interval allow to preserve the shape
of the TAC, including the transient changes. Temporal noise in
the IFR voxel-wise TACs is detrimental for the lp-ntPET kinetic
modeling since noise can be overfitted and wrongly interpreted
as an activation in the TAC. Additional incorporation of HYPR
denoising in calculation of the kernel matrix could further
improve performance of the Kernel method (Cheng et al., 2021;
Miranda et al., 2021).

Future work involves using the spatiotemporal kernel
reconstruction in studies that could present subtle activations,
for example in drug challenge (Kyme et al., 2019) or behavioral
studies (Koepp et al., 1998; Lataster et al., 2011).

CONCLUSION

The spatiotemporal kernel reconstruction (Kernel) has been
validated for lp-ntPET kinetic modeling and adapted for
PET brain motion correction reconstruction in freely moving
animals. In simulation experiments, Kernel improves kinetic
parameters noise and bias, and allows to detect neurotransmitter
activations of lower magnitude, compare with independent
frame reconstruction (IFR) and HYPR denoising. In
anesthetized and awake rat experiments, Kernel produce
lp-ntPET parametric maps with better definition of the striatum
structure and with more consistent parameter values across
striatum voxels compared with IFR. Noise reduction using
Kernel allows to perform neurotransmitter activation studies
with lower parameters noise, and with detection of subtle
neurotransmitter activations.
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