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a b s t r a c t 

The application of artificial intelligence (AI) in medicine, particularly through machine learning (ML), marked 
a significant progression in drug discovery. AI acts as a powerful catalyst in narrowing the gap between disease 
understanding and the identification of potential therapeutic agents. This review provides an inclusive summary 
of the latest advancements in AI and its application in drug discovery. We examine the various stages of the 
drug discovery process, starting from disease identification and encompassing diagnosis, target identification, 
screening, and lead discovery. AI’s capability to analyze extensive datasets and discern patterns is essential in 
these stages, enhancing predictions and efficiencies in disease identification, drug discovery, and clinical trial 
management. The role of AI in expediting drug development is emphasized, highlighting its potential to analyze 
vast data volumes, thus reducing the time and costs associated with new drug market introduction. The impor- 
tance of data quality, algorithm training, and ethical considerations, especially in patient data handling during 
clinical trials, is addressed. By considering these factors, AI promises to transform drug development, offering 
significant benefits to patients and society. 
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. Introduction 

The traditional drug discovery process is a complex and challeng-
ng endeavor that can require up to 15 years and over $1 to 2 billion for
ach approved drug [ 1 ]. This is primarily due to rising attrition rates and
xtended clinical trial duration [ 2 ]. Despite considerable investment in
esources, almost 90% of potential drug candidates fail even after they
ave advanced to the phase-I clinical trial [ 3 ]. Advancing a drug candi-
ate to phase-I clinical trial after rigorous optimization at the preclinical
tage is considered a significant milestone for both pharmaceutical com-
anies and academic institutions [ 4 ]. 

Large-scale computational screening and docking have been em-
loyed to enhance the success rate of lead compounds in clinical trials
 5 ]. However, these methods have limitations such as inefficiency and
naccuracy [ 6 ]. To overcome these challenges, deep learning (DL) and
L algorithms, which are subsets of AI, have been identified as potential

olutions [ 7 ]. These AI tools possess the ability to predict macrosystem
roperties with high accuracy while incurring low computational costs.
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s a result, there has been an increasing adoption of AI algorithms in
he drug discovery process by chemical and biological scientists. 

ML is extensively used in drug discovery, employing algorithms such
s DL, Bayesian network (BN), random forest (RF), clustering, and sup-
ort vector machine (SVM). The broad categorization of ML can be seen
n Fig. 1 . DL models process and analyze large amounts of data in tasks
uch as clinical imaging [ 8 , 9 ], virtual screening (VS) [ 10 , 11 ], and bioac-
ivity predictions [ 12 ]. BNs predict toxicity or bioactivity and patients’
esponse to treatments [ 13 ]. RF models are used for molecular target
dentification and feature selection, while clustering identifies patterns
r relationships within data [ 14 ]. SVM is a supervised learning algo-
ithm used to classify data into categories, with applications such as
redicting pharmacokinetic properties, VS, and toxicity prediction [ 15 ].

Computational modelling based on AI and ML has made various drug
iscovery processes achievable, including chemical compound identifi-
ation, target identification, peptide synthesis, drug toxicity and phys-
ochemical property assessment, drug monitoring, drug efficacy and
ffectiveness assessment, bioactive agent prediction, protein-protein
Ai Communications Co. Ltd. This is an open access article under the CC 
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Fig. 1. Artificial intelligence and subtypes . Machine learning can be broadly categorized into supervised, unsupervised, and reinforcement learning, which can be 
further divided into several subcategories. For supervised learning, these include classification, where algorithms categorize input data into predefined classes, and 
regression, aimed at predicting continuous outcomes from input features. Additionally, unsupervised techniques such as clustering are used to grouping similar data 
points. These subcategories are fundamental to the architecture of machine learning algorithms, significantly contributing to diverse applications in drug discovery. 
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strides. 
nteraction, protein folding and misfolding identification, structure
nd ligand-based virtual screening (LBVS), QSAR modeling, and drug
epositioning [ 16 ]. ML algorithms have made it faster to identify lead
ompounds from chemical libraries that contain over 106 million
ompounds and solve the toxicity challenges caused by off-target
nteractions [ 17 ]. Furthermore, ML-based tools such as AlphaFold have
ade it easier to predict the 3D structure of a target protein, which is

rucial in drug discovery process. 
AlphaFold is a recently developed AI-based tool from Google’s Deep-

ind. Researchers have also used AI to discover novel peptides for ther-
peutic purposes. Provenzano et al. [ 18 ] created Deep-AmPEP30, a DL-
ased platform for the identification of short anti-microbial peptides
AMPs) [ 18 ], while Yi et al. [ 19 ] devised ACP-DL, a DL-based tool us-
ng the LSTM algorithm, for the discovery of novel anti-cancer peptides
 https://github.com/haichengyi/ACPDL ) [ 20 ]. AI is increasingly used
n determining the proper drug dosage. Shen, Liu et al. [ 21 ] created
he AI-PRS platform, a neural network-driven methodology that uses a
arabolic response curve (PRS) to associate drug combinations and dose
o efficacy [ 22 ], while machine and statistical learning techniques in-
luding k-nearest neighbor (kNN), Naive Bayesian, SVM, ANN, decision
rees (DT), and RF are employed to forecast the hindrance in protein-
rotein interactions [ 23 ]. VS is an efficient method in computer-aided
rug design (CADD), which involves screening a promising therapeutic
ompound from a pool of compounds. 

ML can be used for VS with a filtered dataset, employing algorithms
uch as SVM, RF, and DT [ 24 , 25 ]. After validating the trained model
or accuracy, it is used on new data sets to screen for compounds that
ave the desired activity against a target. The shortlisted compounds
ndergo ADMET (absorption, distribution, metabolism, excretion and
oxicity) analysis and various bioassays before entering clinical trials.
L has the power to speed up VS, make it more robust, and even re-

uce false positives in VS. PARASHIFT, HEX, USR, and Shape algorithms
ave been constructed for LBVS. In recent years, with the rise of AI
lgorithms in the healthcare and pharma industry, different tools and
odels have been developed for both LBVS and structure-based virtual

creening (SBVS), i.e., for LBVS, tools include SwissSimilarity, META-
OCK, and HybridSim-virtual screening, while for SBVS, tools include
1274
ypsum-DL, ENRI, and SPOT-ligand 2. Drug repositioning involves in-
estigating drugs developed for one diseased condition and reposition-
ng them for other diseased conditions in drug designing and discovery.
his approach may be successful due to the possibility of multiple-target

nvolvement in multiple diseases. The emergence of AI-based tools and
lgorithms in drug discovery provides a platform for future research,
nd different AI-based algorithms and web-based tools have been devel-
ped in recent years, such as DRIMC, DrugNet, DPDR-CPI, PHARMGKB,
ROMISCUOUS 2.0, and DRRS. 

This review aims to provide a thorough overview of AI’s role in drug
iscovery ( Fig. 2 ). AI can aid in various stages of drug discovery in var-
ous ways, including disease identification, target acquisition, compu-
ational screening, predicting drug toxicity, gene editing for developing
ene therapies, and AI-based modeling for personalized drug dosing. We
xamine the current state-of-the-art AI technology and its potential to
evolutionize drug discovery. 

. AI-based disease identification 

AI has shown great potential in identification of infectious diseases.
y analyzing large amounts of data from various sources such as EHRs
electronic health records), social media, and news reports, AI can
uickly detect outbreaks of infectious diseases and provide early warn-
ng systems. AI can also assist in predicting the spread of diseases by
dentifying populations at high risk and tracking the movement of in-
ected individuals. Due to its capacity for swift and precise data pro-
essing of enormous amounts of data, AI can significantly improve our
bility to identify and respond to infectious diseases. 

In recent years, the field of AI has shown remarkable progress in
isease diagnosis, revolutionizing the way healthcare is delivered. AI
echnologies such as ML and DL have enabled medical professionals
o develop highly accurate and reliable diagnostic models for various
iseases. Early detection, precise diagnosis, and individualized treat-
ent plans have all been made possible by the use of AI in disease
iagnosis, which has improved patient outcomes. Infectious and non-
ommunicable disease diagnosis using AI has recently made significant

https://github.com/haichengyi/ACPDL
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Fig. 2. Schematic representation of the integration of artificial intelligence (AI) in the drug discovery process . The diagram illustrates the workflow from 

data collection, encompassing clinical sequencing, experimental text, and molecular structure analysis, to the implementation of AI algorithms and neural networks. 
The applications of this process include disease diagnosis, target acquisition, and computational screening. This illustration underscores the transformative potential 
of AI in advancing medical research and healthcare solutions. 
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AI methods have greatly advanced the diagnosis of infectious dis-
ases [ 26 ]. An exemplary case is the clinical decision support system
CDSS) known as “Sepsis Watch ” to detect Sepsis early [ 27 ], a severe
edical condition that occurs when an infection in the body triggers
 chain reaction, resulting in a life-threatening medical emergency, of-
en originating from infections in the lungs, urinary tract, skin, or gas-
rointestinal tract [ 28 ]. Sepsis Watch utilizes a unique ML method that
ombines multitask Gaussian processes (MGPs) with recurrent neural
etworks (RNNs) to identify sepsis [ 28 ]. The MGP component of the sys-
em learns the distributions of continuous functions for each dynamic
ariable. The system works by sampling dynamic features from the MGP
ourly, which are then combined with static features and input into the
NN, a form of DL particularly adept at processing time-series data and
ssential for incorporating both static and dynamic features of hospital
atient encounters [ 28 ]. This process generates a sepsis risk score be-
ween 0 and 1 for each patient. Additionally, the system includes scripts
ptimized to run every 5 min to identify patients who meet the sepsis cri-
eria, facilitating early detection and prompt medical intervention [ 28 ].
epsis Watch has been trained using 50,000 patient records with both
tatic (eg. prehospital patient comorbidities) and dynamic (eg. medica-
ion administrations) input features. It has been shown to improve the
are of sepsis patients [ 28 ]. However, this study had a few limitations,
ncluding some false positive predictions that prompted clinical action
ven though the patient did not ultimately develop sepsis. Additionally,
he study was limited to emergency department cases. 
1275
During the COVID-19 pandemic, there was a particular focus on the
evelopment of AI models for the effective diagnosis of this disease
 29 , 30 ]. Chest X-ray is one of the efficient indirect methods for COVID-
9 diagnosis. It was used to diagnose pneumonia associated with this
iral infection [ 31 ]. Many ML models have been developed to predict
he presence or absence of patterns in X-ray radiographs. For exam-
le, Narin et al. proposed an automated convolutional neural network
CNN) based diagnostic model for detecting pneumonia caused by coro-
avirus [ 9 ]. They developed pre-trained AI models using the X-ray ra-
iographs of healthy individuals, patients with COVID-19, patients with
iral pneumonia, and patients with bacterial pneumonia. The reported
ccuracies in classification reached up to 96%. Aapka Chikitsak is an
I-powered conversational bot designed to enhance telehealth services

n India by providing accessible COVID-19 information and addressing
he imbalance between the demand for and the supply of human health-
are providers. Initially, the user’s query is converted from audio input
nto text, and the text is used as a basis for performing Natural Language
nderstanding to decode the semantic meaning. Subsequently, relevant
ntities are identified and linked to their corresponding intents in Di-
logflow. The bot then generates a response, converts it to speech, and
elivers it back to the user [ 32 ]. 

ML models have also been built to assist in the diagnosis of other in-
ectious diseases such as urinary tract infections (UTIs), which are often
ssociated with high rates of diagnostic errors. Taylor et al. reported a
etrospective cohort analysis of approximately 80,387 adults who vis-
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ted the emergency department with UTI symptoms [ 33 ]. Considering
ymptoms as well as blood and urine sample analyses, six AI algorithms
ere developed for the diagnosis of UTI: SVM, artificial neural network

ANN), elastic net, adaptive boosting (AdaBoost), RF, and extreme gra-
ient boosting (XGBoost). The models were built using a full set of 211
actors and a reduced set of 10 variables, e.g., gender, epithelial cells
n the urine, history of UTI, and age. The XGBoost showed superior ac-
uracy over the other algorithms, with an area under the curve (AUC)
f 0.88 and 0.90 for the full and reduced XGBoost models, respectively.
he sensitivity and specificity were 61.70% and 94.90% for the full, and
4.70% and 94.70% for the reduced models, respectively [ 33 ]. Lifestyle
isorders, such as diabetes, obesity, and hypertension, are associated
ith the way people live, their diet, exercise levels, etc. 

ML models have achieved substantial success in the prevention and
etection of HIV, a virus causing human progressive immune system
ailure and promoting cancers. Xiang et al. developed an ensemble ap-
roach combining GCN (graph convolutional network) with LR and RF,
iming to identify individuals at high risk of HIV infection for preven-
ion [ 34 ]. They built a social network in which each node stood for
n individual participant, and the edges between them represented so-
ial connections. Each node was assigned with a feature set, including
ociodemographic characteristics and sexual behavioral characteristics.
he ensemble methods produced promising results on HIV infection de-
ection (GCN + LR with accuracy of 93.4% and F1 of 88.4%; GCN + RF
ith accuracy of 96.6% and F1 of 94.6%). Heerden et al. created a con-
ersational agent guiding users through an HIV counseling and testing
ession utilizing NLP (nature language process). This agent encourages
he targeted population to openly discuss their concerns with a virtual
ssistant, and its effectiveness has been confirmed through human eval-
ation [ 35 ]. Compared with previous agents, this agent made testers
eel like the session was more private and anonymous with more gentle
anguage and more accurate detection. 

Many AI-based algorithms have been developed for the early predic-
ion and management of diabetes. For instance, Spänig et al. developed
n interactive AI model with the capability of speech recognition and
peech synthesis that acts as a virtual doctor, interacts directly with pa-
ients. An open-source system CMUSphinx is utilized to develop robust
peech recognition capabilities. To support localized speech recognition,
he essential German language data is obtained, including a German lan-
uage model, an acoustic model, and a dictionary from the VoxForge
ataset [ 36 ], which aggregates transcribed speech specifically for use
n speech recognition technologies. This virtual doctor predicts Type-2
iabetes mellitus with an AUC of 0.84 [ 37 ]. The incidence of retinopa-
hy is high among diabetic patients. Gulshan et al. developed a deep
NN model that bypasses the human capacity at interpreting, evaluat-

ng, and classifying retinal images. The model is trained using 128,175
etinal photographs which are evaluated by a panel of clinicians and
phthalmologists. The model is demonstrated to have a high sensitiv-
ty and specificity of 97.50% and 93.40%, respectively [ 38 ]. In 2018,
he U.S. Food and Drug Administration approved the marketing of the
rst AI-based medical device called IDx-DR [ 39 ] for detecting diabetic
etinopathy. The device has a retinal camera through which the retinal
mage of the patient is taken and analyzed. The device is autonomous
nd decides on one of the following results based on the image quality
i) “more than mild diabetic retinopathy detected: refer to an eye care
rofessional ” or (ii) “negative for more than mild diabetic retinopathy;
escreen in 12 months ” [ 39 ]. 

Alzheimer’s disease is a neurodegenerative disorder in the brain. Ge-
etic factors and age are major risk factors associated with AD. However,
ecent research indicates that other factors, such as environmental and
ifestyle factors, can also contribute to the development of AD [ 40 ]. AI-
ased algorithms have shown promising results in the early prediction
nd diagnosis of AD [ 41 ]. For instance, Jo et al. proposed a hybrid model
hat combines DL -based feature extraction with ML algorithms for AD
iagnosis using magnetic resonance imaging (MRI) scans [ 42 ]. The pro-
osed model achieved a classification accuracy of 96%. Similarly, Shi
1276
t al. developed an AI-based model for the early prediction of AD using
ositron emission tomography (PET) images [ 43 ]. The model achieved
n accuracy of 89.5% in predicting the onset of AD within two years.
ancer is another NCD that has benefited from the recent advancements

n AI-based algorithms. AI-based algorithms have been developed for
arious cancer-related tasks, such as diagnosis, prognosis, and treatment
lanning. For example, Ding et al. developed a DL algorithm that inter-
rets PET of the brain for the early prediction of AD. Their model showed
 specificity and sensitivity of 82% and 100%, respectively. This model
an predict AD, on average, 75.8 months before its diagnosis, with a
OC (receiver operating characteristic) of 0.98 [ 8 ]. Li et al. developed a
L-based model that automatically evaluates dementia severity by an-
lyzing resting-state functional magnetic resonance imaging data (rs-
MRI). The study involved 133 patients with Alzheimer’s disease, and
heir clinical dementia rating (CDR) scores ranged from 0.5 to 3. To
xtract features, three-dimensional CNNs were applied to rs-fMRI data.
he accuracy of the model was found to be highly satisfactory [ 44 ]. In
ddition, AI-based algorithms have also shown promising results in pre-
icting the response to treatment in cancer patients. For example, AI
as the potential to improve the speed of analysis and the accuracy of
mage interpretations. Esteva and co-workers developed a CNN model
rained with images of skin lesions to classify different types of skin
ancer [ 45 ]. Albayrak et al. used deep learning to extract features from
reast histopathological images to detect mitosis. The proposed model
xtracted CNN features for SVM training and detected breast mitosis
 46 ]. Causey et al. developed CNN model-based algorithm, NoduleX to
redict malignant lung nodules from clinical CT data. The model was
rained using over 1000 lung nodule images from LIDC and IDRI. Nod-
leX predicted with a 0.99 AUC [ 47 ]. Shiri et al. tested ML methods
sing Radiomics analysis for predicting EGFR and KRAS mutation sta-
us in NSCLC (non-small cell lung cancer) patients that showed AUCs of
.82 and 0.83, respectively [ 48 ]. CNN models also power histological
mage analysis to diagnose cancer [ 49-51 ]. 

AI algorithms have demonstrated promising outcomes in the diag-
osis, prediction, and management of non-communicable diseases in-
luding diabetes, Alzheimer’s disease, and cancer. The implementation
f AI-based algorithms can facilitate the early detection of these dis-
ases, thus enabling timely interventions and personalized treatment
lans, ultimately leading to improved patient outcomes. By leveraging
he power of AI, healthcare professionals can potentially reduce the bur-
en of NCDs, enhance the quality of healthcare delivery, and optimize
ealthcare resources. The detailed overview of role of AI in disease iden-
ification can be seen in Fig. 3 . 

. Target identification 

Target identification is a critical step in the drug discovery process.
he traditional approach involves time-consuming and costly experi-
ental methods, such as high-throughput screening (HTS) and X-ray

rystallography. However, the use of AI has revolutionized this field by
nabling the identification of potential targets through computational
ethods. Fig. 4 illustrates how AI-aided role in drug discovery. 

AI-based target identification involves the use of ML algorithms to
nalyze large datasets and identify targets with the potential to interact
ith a given drug. This approach utilizes various data sources, such as
ene expression profiles, protein-protein interaction networks, and bio-
ogical pathways, to generate a list of candidate targets [ 52 ]. ML algo-
ithms, such as SVMs and neural networks, can then be used to prioritize
hese targets based on their relevance to the disease of interest. 

Furthermore, AI-based target identification can help identify novel
argets that were previously unknown or overlooked. By analyzing large
atasets from various sources, ML algorithms can uncover hidden pat-
erns and relationships that may not be immediately apparent using
raditional methods. This can lead to the discovery of new biological
athways and targets that may have therapeutic potential. AI-based tar-
et identification has the potential to revolutionize the drug discovery



A.U. Rehman, M. Li, B. Wu et al. Fundamental Research 5 (2025) 1273–1287

Fig. 3. The overview of AI-based disease identification . AI-based disease 
identification can be divided into four categories: neurodegenerative disorders 
diagnosis, cancer diagnosis, infectious disease diagnosis and lifestyle disorders 
diagnosis. 
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been used for decades to forecast the three-dimensional structure of 

F
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t

rocess by enabling the identification of potential targets through com-
utational methods. There are multiple experimental methods available
or identifying drug targets, such as affinity pull-downs and genome-
ide knockdown screens. However, these approaches require a signifi-

ant amount of labor, resources, and time, and are also subject to a high
ate of failure. In contrast, computational methods have the potential to
ignificantly decrease the effort and resources required for drug target
dentification [ 53 ]. 

Cryo-EM, or electron cryo-microscopy, revolutionized the investi-
ation of proteins and protein complexes in the 1980s. Single-particle
nalysis (SPA), electron cryo-tomography (cryo-ET), microcrystal elec-
ron diffraction (MicroED), low-energy electron holography (LEEH), and
ryo-scanning transmission electron tomography (CSTET) are a few ex-
mples of cryo-EM imaging techniques [ 54 , 55 ]. For a deeper under-
ig. 4. The overview of the AI-based process for identifying and evaluating sm

odeled using tools like Modeller and AlphaFold2, followed by Homology Modelin
ocket exploration, including the identification of both orthosteric and allosteric bin
it identification stage employs SBVS and LBVS to pinpoint potential compounds. Fin
o predict the ADMET properties. 

1277
tanding of the structures of protein complexes in their environment,
ryo-electron tomography (cryo-ET) has shown great promise. Com-
uter algorithms are used to combine these images to create a 3D struc-
ure representation. 

The software CryoDRGN, created by Zhong et al. [ 56 ], uses ML to
nable the reconstruction of proteins and protein complexes from het-
rogeneous cryo-electron microscopy data [ 56 ]. In order to embed het-
rogeneous single-particle cryo-EM images in a low-dimensional latent
pace and produce 3D volumes as a function of this embedding, the
uthors have proposed a technique that makes use of ML models. Cryo-
RGN can produce an infinite number of maps from the imaged ensem-
le and is capable of modeling complex ensembles with both continuous
nd discrete heterogeneity. The software can also visualize the motion
f the protein [ 57 ]. 

Trypsin is one of the most important and widely used proteolytic
nzymes in mass spectrometry (MS)-based proteomic research. The di-
estion of proteins by protease enzyme is a basic step in the protein
dentification using MS. A few AI tools were developed to efficiently
redict the digestion behavior of the protease enzymes [ 58 , 59 ]. Deep-
igest is the first algorithm developed using a DL method to predict the
roteolytic cleavage sites of eight different protease enzymes (trypsin,
rgC, chymotrypsin, GluC, LysC, AspN, LysN, and LysargiNase). The DL
odel was trained on 19 public large-scale data sets covering the eight
roteases from samples of four organisms (E. coli, yeast, mouse, and
uman). The predictive ability of the tool was evaluated by the AUC,
1 scores, and the Matthews correlation coefficients (MCCs); the val-
es were 0.956–0.98, 0.66–0.90, and 0.65–0.84, respectively [ 58 ]. Sun
t al. developed an algorithm to predict the missed cleavage site in the
ryptic protein digestion [ 59 ]. The algorithm is demonstrated to have
 high accuracy, with an AUC of 0.99. This algorithm can be incorpo-
ated into the peptide database search in the MS analysis to facilitate
he identification of proteins more effectively and efficiently. 

The development of computational tools, high-performance comput-
rs, and ML algorithms is not limited to three dimensional (3D) models
f protein targets but also enabled a large number of drug discovery
ools. This is a significant advancement in experimental techniques that
re fraught with challenges. For example, the X-ray diffraction tech-
ique is limited to crystallizable samples, which is a major experimental
imitation [ 60 ]. 

In the absence of experimental data, computational techniques have
all molecules . Beginning with target acquisition, where protein sequences are 
g and validation of protein 3D structure through ProQ and SolvX. Next is the 
ding sites within the protein proteome, via static and dynamic structures. The 
ally, the toxicity prediction stage uses pattern recognition techniques in AI/ML 
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roteins. Modeller, a homology modeling software, predicts a protein’s
tructure based on its alignment to one or more proteins of known
tructure (templates) [ 61 ]. AlphaFold, the DL algorithm developed by
eepMind, a UK based company, predict the 3D structure of proteins

rom their amino acid sequences [ 62 ]. The development of this AI- tool
s claimed to be a breakthrough in drug discovery as it was used to
olve the structure of nearly 200 million proteins, which is ∼98.5%
f the proteins in the human body. In July 2021, the predicted three-
imensional models for the whole human proteome generated using Al-
haFold, were made available to the public, as recently reported in Na-
ure [ 63 ]. Together with the European Bioinformatics Institute (EMBL-
BI), a database called AlphaFold DB ( https://alphafold.ebi.ac.uk/ ) was
reated to store all the structures solved so far with AlphaFold. How-
ver, the effect of mutation on the folding of proteins is beyond the
apability of AlphaFold [ 64 ]. It is also limited to predicting only a sin-
le state of a given protein, it does not consider the dynamic nature of
rotein structures [ 65 ]. Recently, new methods based on natural lan-
uage processing (NLP) which only uses the amino acid sequences from
equence databases to learn structural, functional and evolutionary pat-
erns and predict structural conformation. In 2022, two methods gained
ttention i.e. ESMFold and EMBER3D. ESMfold, developed by Lin et al.
n 2022, utilizes a masked transformer protein language model with a
eep understanding of biological properties, trained with 15 billion pa-
ameters. While it falls short of AlphaFold2 in overall performance, as
ndicated by lower TM-scores (0.68 compared to AlphaFold2 ′ s 0.85 on
ASP14), ESMFold outperforms AlphaFold2 when evaluating the amino
cid sequence alone without multiple sequence alignment (MSA) (0.68
ersus 0.37 on CASP14). ESMFold demonstrates comparable accuracy
o AlphaFold2 for structures predicted with high confidence, exhibiting
 median all-atom RMSD (root-mean-square deviation) of 1.91Å and
 backbone RMSD of 1.33Å —achieving accuracy levels akin to experi-
ental results. Additionally, ESMFold shows a substantial improvement

n prediction speed, eliminating the need for MSA construction. The
uthors leverage this approach to introduce the ESM Metagenomic At-
as, predicting over 617 million structures from metagenomic databases.
mong these, 225 million structures are predicted with high confidence,

ncluding novel ones [ 63 ]. While Ember3D falls short of surpassing Al-
haFold in performance, it exhibits significantly faster processing speeds
ompared to both AlphaFold and ESMFold. Notably, AlphaFold2 strug-
les to efficiently investigate the impact of single amino acid variants
n protein structure. In contrast, Weissenow et al. [ 64 ] demonstrated
hat Ember3D’s predicted distance maps show a strong correlation with
ative and mutant 3D structures obtained through deep mutational scan-
ing, outperforming ESMFold in this regard. The researchers also devel-
ped a tool that highlights differences between native and mutant pre-
icted structures for all possible amino acid exchanges at each position
n a protein sequence. The tool utilizes the similarity between the native
nd mutated amino acids to identify exchanges that may have a signif-
cant impact on the protein structure [ 64 ]. Cheng et al. introduced Al-
haMissense, a DL model that extends the capabilities of the AlphaFold2
rotein structure prediction tool. This model undergoes training with
opulation frequency data and incorporates both sequence information
nd predicted structural context to enhance its overall performance.
lphaMissense effectively categorizes 32% of all missense variants as

ikely pathogenic and identifies 57% as likely benign, achieving a 90%
recision cutoff on the ClinVar dataset. This outcome ensures a robust
rediction for the majority of human missense variants [ 65 ]. A specific
nd detailed review [ 66 ] on all the recent advances in protein struc-
ure prediction are reviewed by Peng et al. Some breakthrough protein
tructure prediction models are tabulated in Table 1 . 

In addition, AI algorithms can predict the likelihood of allosteric reg-
lation in a protein based on its structure and ligand presence, and iden-
ify allosteric modulators that may modify its activity [ 66 ]. ML methods,
ike Allosite; developed by our group [ 67 ], and AlloPred [ 68 ], used SVM
ith optimized features for protein pocket classification [ 69 ], while oth-

rs used RF [ 70 ] to build a three-way predictive model. Advanced ML
1278
odels, such as XGBoost [ 71 ], can now classify allosteric sites with
reater accuracy. XGBoost implements the gradient boosting algorithm
ith regularized terms to reduce overfitting and has demonstrated su-
erior predictive performance in protein-protein interactions [ 72 ] and
ot spots [ 73 ] compared to SVM and RF. 

Tian et al. developed a webserver called PASSer (Prediction of Al-
osteric Sites Server), combining the results of XGBoost and GCN to pre-
ict the allosteric sites on proteins using an ensemble learning method.
 total of 1946 entries information of allosteric sites from Allosteric
atabase were collected for training with 19 descriptors extracted for
ach site by Fpocket. For a given pocket, physical properties are calcu-
ated and fed into the XGBoost model while an atomic graph is fed into
he GCNN model. The final result is the averaged probability of these
wo models. The model showed an accuracy of 0.97, precision of 0.73,
nd specificity of 0.98. The aforementioned model can acquire knowl-
dge about both the physical traits and topology of allosteric pockets and
as been demonstrated to outperform the XGBoost and GCN models in-
ividually. The findings are consistent with earlier research and have a
reater likelihood of placing allosteric sites in top positions. The online
erver is equipped with an easily navigable interface. Protein structures
nd top pockets are displayed in an interactive window on the result
age [ 66 ]. 

Protein structural fluctuations generate novel cryptic pockets
 74-77 ], which offer druggable sites beyond experimentally determined
tructures. Cryptic pockets regulate protein functions allosterically.
hese pockets are hidden protein cavities that open up when ligands or
rotein partners bind [ 78 ]. Targeting these cryptic pockets offers drug
evelopment opportunities. Cryptic pockets can target undruggable pro-
eins [ 79 ]. An algorithm to predict which proteins have cryptic pock-
ts could help prioritize proteins to target in cases where proteins lack
round state pockets or modulators are difficult to design. CryptoSite is
n excellent supervised ML algorithm that predicts ligand-binding cryp-
ic pockets from protein structures [ 80 ]. CryptoSite accurately predicts
ryptic pocket participation for amino acid residues (ROC-AUC = 0.83).
iller et al. developed PocketMiner, a graph neural network (GNN), to

redict cryptic pockets in protein structures. The model is trained us-
ng residues likely to form cryptic pockets from 2400 simulations of 35
roteins. Model AUC was 0.87. This supports molecular dynamics sim-
lations for cryptic pocket identification [ 78 ]. 

Madhukar et al. developed BANDIT, a Bayesian ML platform for
rug target prediction that integrates multiple data types to achieve
reater predictive power. BANDIT utilizes over 20 million data points
rom six distinct data types, including drug efficacies, post-treatment re-
ponses, bioassay results [ 81 , 82 ], and known targets [ 83 , 84 ]. The plat-
orm achieves high accuracy at identifying shared target interactions
nd uncovers novel targets for cancer treatment. BANDIT was tested on
2000 compounds and can quickly pinpoint potential therapeutics with
ovel mechanisms of action to accelerate drug development. 

In 2021, Kozlovskii and Popov developed a DL approach to pre-
ict the binding site for small molecules on nucleic acids, DNA, and
NA, based on their 3D structures [ 85 ]. Their approach is called
iteNetN ( https://sites.skoltech.ru/imolecule/tools/bitenet/ ) having a

arge dataset of 1933 nucleic acid-ligand complexes, including 1065
NA and 886 RNA structures (18 structures contain both DNA and
NA) of different type. It was the first 3D CNN to learn features directly

rom nucleic acid structures. They validated the model using two differ-
nt protein structures, HIV-1 transactivation response element RNA and
TP-aptamer structures. The model showed an AUCROC of ca. 0.87,
roved to be top-performing for protein-small molecule and protein-
eptide binding site detection [ 86 , 87 ]. 

DeepDTnet is a network-based DL method developed by Zeng et al.
o aid the target identification process [ 88 ]. The model is trained with
hemical, genomic, and cellular network data for the accurate predic-
ion of molecular targets. The model is shown to have a high accuracy
n prediction with an AUC of 0.96 [ 88 ]. In another study, Mamoshina
t al. developed ML techniques to analyze human muscle transcriptomic

https://alphafold.ebi.ac.uk/
https://sites.skoltech.ru/imolecule/tools/bitenet/
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Table 1 

List of the methods for protein structure prediction with their standlone availability links . 

S. No Method Web links 

1 AlphaFold2 https://github.com/deepmind/alphafold 
2 ColabFold https://github.com/sokrypton/ColabFold 
3 DMPFold2 https://github.com/psipred/DMPfold2 
4 ESMFold https://github.com/facebookresearch/esm 

5 EMBER3D https://github.com/kWeissenow/EMBER3D 
6 HelixFold-Single https://paddlehelix.baidu.com/app/drug/protein-single/forecast 
7 Openfold https://github.com/aqlaboratory/openfold 
8 OmegaFold https://github.com/HeliXonProtein/OmegaFold 
9 RoseTTAFold https://github.com/RosettaCommons/RoseTTAFold 
10 RNG https://github.com/aqlaboratory/rgn 
11 RNG2 https://github.com/aqlaboratory/rgn2 
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ata to discover biomarkers associated with muscle-related diseases and
o identify tissue-specific drug targets [ 89 ]. The authors collected tran-
criptomic data from human muscle tissues and used a combination of
nsupervised and supervised ML algorithms to identify differentially
xpressed genes and gene modules that are associated with muscular
ystrophy and sarcopenia. They further investigated the identified gene
odules and pathways using functional annotation and network anal-

sis tools to identify potential drug targets. Their best model showed a
earson correlation of 0.80. 

After identifying the protein targets, corresponding novel lead com-
ounds can be further generated from scratch, leveraging the pocket
eatures and ligand topology. Zhang et al. developed a pocket-aware
igand generator ResGen. A two-level autoregression protocol for molec-
lar generation is introduced in the model to better incorporate the
eometry of protein pockets. The global autoregression is to generate
toms in pockets, and the atomic autoregression is to produce the co-
rdinates and topology of the newly added atoms. ResGen could gener-
te more physically sensible molecules with tighter binding [ 90 ]. Wei
t al. developed a fragment-based generation model Lingo3DMol built
n the transformer-based structure [ 91 ]. A new molecule representation
SMILES is introduced, enabling the generation of 3D molecules with
easonable conformations and topology. Additionally, non-covalent in-
eractions and ligand–protein binding patterns are also considered dur-
ng the generation. Lingo3DMol demonstrates excellent performance in
erms of drug likeness, synthetic accessibility, pocket binding mode and
olecule generation speed. 

. AI-enabled virtual screening in drug discovery: opportunities 

nd challenges 

The initial phase of drug discovery usually involves computational
creening of numerous compounds to identify those with the desired
ellular or biochemical effects. To enhance the speed, efficiency, and
ost-effectiveness of this process, new methods are constantly being de-
eloped. A positive response during the first round of screening in a
iochemical assay identifies primary “hit ” compounds. Subsequently,
dditional screening is performed to assess whether the physicochem-
cal and pharmacological properties of the hit compounds are suitable
or developing a medicine. If they pass this filter, they are designated
s “leads ”. These leads are then refined chemically and subjected to bi-
logical screening in subsequent rounds before proceeding to clinical
esting. With some luck, a lead may ultimately receive drug approval,
 process that may take 12–15 years from the beginning of testing
 92 ]. 

Despite significant advancements in drug discovery and medicinal
hemistry technologies, drug development still remains a slow and ex-
ensive process. The current standard process involves HTS, where in
itro assays are conducted on thousands of compounds to identify hit
ompounds that can be optimized to lead compounds with desirable
roperties such as increased potency, solubility, and reduced toxicity
nd off-target effects [ 93 ]. 
1279
The conventional drug discovery process involves synthesizing and
esting thousands of compounds, which is both time-consuming and
ostly, requiring large amounts of protein supplies and established lab-
ratory methods for bioactivity testing. In contrast, VS has emerged as a
ost-effective approach to scan millions of commercially available com-
ounds and prioritize those for further testing, synthesis, or purchase. VS
ethods are classified into two categories: structure-based and ligand-

ased methods. However, despite the potential benefits, it still takes an
verage of 10 to 15 years and over $2 billion to develop a single drug
 94 ]. 

.1. Structure-based methods 

To utilize structure-based methods, 3D structural information of the
rotein-ligand complex or at least the protein’s binding site is needed.
olecular docking is a commonly used technique that generates multi-

le possible binding poses of a ligand in the target protein structure and
anks them using a scoring function (SF) [ 95 ] to estimate their bind-
ng affinity [ 96 ]. Recently, machine/DL-based SFs [ 21 ] have been intro-
uced as a new group of SFs. On the other hand, ligand-based methods
uch as QSAR modeling, molecular similarity search, and ligand-based
harmacophores, are more established technologies that require only
igand information [ 97 ], unlike structure-based methods. AI techniques
an also be employed to improve the efficiency of computer-aided drug
iscovery processes, which often need extensive high-performance com-
uting resources and significant computation time. 

Gentile et al. reported an open-source protocol for AI-enabled
S methods to screen libraries with billions of molecules. They
sed a screening platform called Deep Docking ( https://github.com/
amesgleave/DD_protocol ) which can accelerate the SBVS by 100 folds.
he input data consists of the molecule’s SMILES with its Morgan finger-
rints as descriptors and the target’s structure. Deep Docking performs
olecular docking for a small subset of a large library based on DNN to

nfer the ranking of the yet-unprocessed remainder, followed by ligand-
ased prediction of the docking for the rest of the library. In this way,
eep Docking discards undockable molecular structures without wast-

ng computational resources. A key advantage of this protocol is that it
an be used in conjunction with other docking programs such as Glide,
utodock-GPU, and FRED from OpenEye. Although, the deep docking
ethod provides faster screening, it is limited to I) the availability of

raphical processing units (GPU) and ii) the quality and accuracy of the
ocking program used [ 10 ]. 

Various ML techniques, including Naïve Bayesian (NB) classifiers,
NNs, SVMs, RFs, and ANNs, can be used for VS. While SVMs and ANNs
re commonly regarded as the most accurate, each technique has its own
trengths and weaknesses. For instance, NB excels at identifying favor-
ble scaffold fragments, RFs can be parallelized and boosted, and kNN
s simple to implement and can utilize MTL. Combining an ensemble of
L models is often preferred as it can enhance performance [ 98 ]. 

For LBVS, NB classifiers are widely utilized and exhibit excellent per-
ormance. Wang et al. investigated four classification models to identify

https://github.com/deepmind/alphafold
https://github.com/sokrypton/ColabFold
https://github.com/psipred/DMPfold2
https://github.com/facebookresearch/esm
https://github.com/kWeissenow/EMBER3D
https://paddlehelix.baidu.com/app/drug/protein-single/forecast
https://github.com/aqlaboratory/openfold
https://github.com/HeliXonProtein/OmegaFold
https://github.com/RosettaCommons/RoseTTAFold
https://github.com/aqlaboratory/rgn
https://github.com/aqlaboratory/rgn2
https://github.com/jamesgleave/DD_protocol
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nhibitors of methicillin-resistant Staphylococcus aureus. These models
nclude NB, SVM, recursive partitioning (RP), and kNN algorithms, in-
orporating various sets of physicochemical descriptors and fingerprints.
mong these models, the NB classifier displayed the highest perfor-
ance in the testing set of, achieving an accuracy of 0.891 and a speci-
city of 0.920 [ 99 ]. Likewise, Lian et al. [ 100 ] showed that NB models
utperformed SVM models with an accuracy of 0.975 and a specificity of
.989 in classifying the inhibitors and non-inhibitors of neuraminidase.
hey further identified nine effective inhibitors of neuraminidase using
n enhanced ensemble model comprising NB models and SVMs. 

Another simple ML classification method is kNN. Unlike NB, kNN is
ntuitive. In searching for G-Protein Coupled Receptor ligands, Luo et al.
ound that kNN-QSAR with variable selection outperformed LBVS ap-
roaches without ML [ 101 ]. Compared to other ML methods, kNN’s per-
ormance is usually in the middle [ 99 , 102 ]. kNN is less popular than the
L methods below because of this. In screening for Estrogen Receptor-
ediated endocrine disruptors, kNN has been used for VS [ 103 ]. 

Vapnik et al., introduced SVMs for the first time [ 104 ]. They func-
ion by representing input data as feature vectors and plotting them
ithin the same-dimensional space. Although SVM can be used for un-

upervised learning, supervised learning is preferred for VS because it
uarantees that a compound will eventually be categorized as active or
nactive. Chandra and colleagues conducted a study to identify poten-
ial inhibitors for PTP1B, a treatment for Type 2 diabetes [ 105 ]. Multiple
L models were developed, and the best model that utilized SVM was

pplied to an external database. This model successfully identified five
nhibitory compounds, two of which demonstrated significant activity
n vitro . In a separate study, Deshmukh et al., [ 106 ] discovered that
heir SVM model was able to identify almost half of the known FEN1 in-
ibitors in a test set, and also identified previously unknown inhibitors
rom the Maybridge small molecule database, which were experimen-
ally validated. Baba et al. found that SVM models with regression were
ore effective than RF in predicting a compound’s ability to permeate

he skin[ 107 ]. Lee et al., [ 108 ] employed RF-QSAR to study compound
olypharmacology, resulting in the creation of a targetfishing server that
dentifies possible targets for a given compound. Their method achieved
n overall AUC score of 0.97 and outperformed NB-based methods in ex-
ernal testing [ 109 ]. 

.2. Ligand-based virtual screening (LBVS) 

LBVS is based on selecting, from databases, molecules that share sim-
lar structural features with an active ligand. Pharmacophore-based VS
s one of the LBVS techniques. It involves building 2D fingerprints of one
r more active ligands using molecular descriptors such as hydrogen-
ond donors, hydrogen-bond acceptors, and aromatic rings. These 2D
ngerprints are then used to identify molecules, from large chemical li-
raries, which have matching pharmacophoric features. ML also helps
o study the correlation between molecular descriptors (or even atomic
escriptors [ 110 , 111 ] and the biological activity of a ligand. This is a
road category of research known as Quantitative Structure-Activity Re-
ationship (QSAR), where the activity of a ligand depends on its phar-
acophoric features. Melge et al. developed hybrid inhibitors using

he pharmacophore fingerprint of two well-known anti-cancer drugs
onatinib and Vorinostat [ 112 ]. They developed a supervised ML ap-
roach for 2D-QSAR and 3D-pharmacophore studies to predict the in-
ibitory activity of novel hybrid molecules. The model had AUC values
f 0.98 and 0.94 for the two different cancer targets, BCR-ABL and Hi-
tone deacetylase (HDAC), respectively. Based on in-vitro evaluations,
he identified novel hybrid molecules showed the potential to develop
nto lead compounds. Dhamodharan et al. developed three AI models
ased on genetic function approximation (GFA), SVM, and ANN, to pre-
ict the activity of acetylcholinesterase (AChE) and Beta-Secretase 1
BACE1) dual inhibitors for AD treatment [ 113 ]. The predictive power
f the models was evaluated on a test set of 11 inhibitors of AChE and
ACE1. The ANN model had the best predictive power with R2 (coeffi-
1280
ient of determination, a statistical measure within regression analysis)
alues of 0.85 and 0.78 for AChE and BACE1, respectively. Dhamodha-
an et al., [ 113 ] used a target-specific scoring model to identify potential
nhibitors for 12 targets from the SAM MTase family. 446 actives and
294 decoys were docked using Glide and the DUD-E website. The MLP
utperformed other docking tools in a binary classification experiment.

Atomwise, Inc. developed AtomNet, one of the earliest CNNs uti-
ized for VS [ 113 ]. Unlike most ML-based VS, AtomNet employs an SBVS
nd its architecture includes input and logistic-cost layers, four convo-
utional layers, and two fully connected layers. The filters in AtomNet’s
onvolutional layers correspond to chemical functions, allowing the
etwork to identify features that aid in binding. AtomNet consistently
chieves AUC scores > 0.74 on various benchmark datasets, outperform-
ng numerous previous docking models. These features and capabilities,
reviously exclusive to NB and RF classifiers, now enable ANNs to iden-
ify features that aid in binding, making them more accurate and less of
 black box in VS. 

Alzheimer’s disease is characterized by amyloid-beta (A) plaques
nd neurofibrillary tangles (NFT) of hyperphosphorylated tau protein.
cetylcholine (ACh) levels are lower in AD brains [ 114-116 ]. Tau may
e phosphorylated by GSK-3, CDK5, and other Alzheimer’s disease-
elated enzymes and targets [ 117-119 ]. Side effects from polypharmacy
re possible. Drugs that target one protein frequently have side effects
n other proteins as well. Through the inhibition of multiple targets
n complex diseases like Alzheimer’s, polypharmacology can increase a
rug’s effectiveness. With this technique, MTDL (Multi-Target Directed
igands) screening was increased [ 43 ]. Using NB and RP classifiers in
n LBVS on MTDLs, Fang et al. discovered compounds that bound to 25
argets, including BACE1, the M1 subtype of mAChR, APP, CDK5, and
SK-3 [ 120 ]. The model was validated using current AD medications,
nd it was used to forecast upcoming MTDLs. As scientists become more
ware of its effectiveness, ML in VS for drug discovery will expand. The
ffectiveness and cost of drug discovery will be enhanced by computer
cience and medicinal chemistry. 

ML-based screens are computationally efficient and successful in
odern CADD, which requires vast computational resources to screen

xpanding chemical libraries due to automated synthesis and robotics.
penEye GigaDocking and VirtualFlow are supercomputing platforms

or docking large libraries that have screened billions of molecules us-
ng thousands of CPUs/GPUs in relatively short periods [ 121 ]. However,
hey are resource-intensive compared to Deep Docking (DD) [ 122 ]. DD
equires fewer computational resources, making it an attractive alterna-
ive for large-scale VS. 

Gentile et al. developed an open-source protocol for AI-enabled
S of billion-molecule libraries. Deep Docking ( https://github.com/

amesgleave/DD_protocol ), a screening platform that accelerates SBVS
y 100-fold, was used. One of the fastest AI-enabled docking platforms
nd the only one tested on 1B + libraries is DD. The DD protocol does not
equire a docking program, so it can be used with emerging large-scale
ocking methods to improve throughput. technical limitation of Deep
ocking is GPU acceleration, which is needed for optimal performance
nlike CPU-based docking platforms. The protocol only provides dock-
ng details for top-scoring molecules, ignoring large fractions of chem-
cal libraries for fast VS. Docking campaigns assessing hit rate variabil-
ty with docking scores [ 123 ] or rescoring low-ranked molecules [ 124 ]
hould consider a bruteforce approach. A docking program’s ability to
rioritize active molecules from an ultra-large library also determines
he quality of DD results [ 123 ]. Bender et al.’s guidelines for large-scale
ocking benchmarking are helpful [ 122 ]. 

A wave of DL methods and applications has improved affin-
ty —and other properties like ADMETox —prediction in VS over the
ast decade(s). Models learn characteristics rather than using human-
esigned descriptors. Novel encodings like voxels (where physicochem-
cal atomic properties are pinned to locations in 3D space) and graphs
which describe bonded and non-bonded connectivity between atoms)
ppear to capture the variety of information needed for ligand-binding.

https://github.com/jamesgleave/DD_protocol
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eepAtom [ 125 ], a 3D grid-based method that assigns physicochemi-
al properties to each grid cell, may be suitable for modeling protein-
igand binding complexity. The study [ 126 ] and DGraphDTA model
 127 ] show that encoding chemical and biological objects as graphs
orks well. Despite this, several challenges remain, and new ones
ave emerged, including chemical encoding precision, generalization
f chemical space, lack of (large and high-quality) data, model compa-
ability, and interpretability. 

Finding new therapeutic uses for already-approved drugs is a cru-
ial aspect of drug repurposing. Due to their previously tested phar-
acokinetics and toxicity, repurposed medications have a higher suc-

ess rate [ 128 , 129 ]. Drug repurposing skips lead optimization and pre-
linical studies to enter phase-II trials. Due to complex disease patho-
hysiology, many drugs have off-target binding and are excluded from
re-clinical trials [ 130 ]. Reker and colleagues developed a method to
redict molecular targets of known drugs and computer-generated de
ovo small molecules, including key-target and off-target proteins. Self-
rganizing map-based prediction of drug equivalence relationships (SPi-
ER) is this method. The software was trained on 12,661 manually cu-

ated active molecules [ 131 ]. The ROC ranged from 0.86 to 0.93 in a
0-fold cross-validation of SPiDER’s predictive ability. 

. Prediction of drug toxicity with AI 

Proportion of drug candidates being discarded during clinical trials
ue to unexpected adverse effects. Predicting drug toxicity during pre-
linical stages is a crucial step to reduce the failure rate and improve
he efficiency of drug discovery. Traditional methods of predicting drug
oxicity are limited by their reliance on small datasets and simplistic
odels. However, AI-based approaches have emerged as promising al-

ernatives, leveraging large and diverse data sources, including chemical
tructures, biological pathways, and clinical data. By utilizing ML algo-
ithms, AI-based approaches can improve the accuracy and efficiency
f predicting the potentially toxic effects of new compounds, helping to
itigate risks associated with clinical trials, reduce drug development

osts, and ultimately lead to better patient outcomes. 
Recently, the use of AI-based computational models to forecast drug

oxicity has grown in popularity [ 132 ]. Large drug and toxicity data sets
ave been analyzed in a number of studies using ML and DL algorithms,
uch as neural networks, to identify potential toxic effects during drug
evelopment. By identifying toxicities early on, these models can speed
p the development of new drugs. Additionally, AI-based toxicity pre-
iction models can prioritize compounds for testing and find new drug
argets and toxicity mechanisms. AI toxicity prediction has been the sub-
ect of several reviews [ 132-137 ]. A single review is challenging due to
he wide field of AI-based toxicity prediction’s numerous toxicity prop-
rties. Recent AI-based toxicity prediction models and in-depth studies
f toxicity properties are required to develop, optimize, and improve a
odel. For four important toxicity properties, recent ML and DL-based
I-based drug toxicity prediction methods are presented. 

.1. Cardiac side effect prediction 

ML-based methods, including RF, SVM, NB, SVR, kNN, DT, GB (gra-
ient boosting), PLS (partial least squares), and XGB, are commonly used
n predicting hERG toxicity (a gene related to a potassium channel in the
eart, and is used to evaluate cardiac side). 

Venkatraman developed an ADMET prediction model using ECFP6-
ased RF models [ 138 ]. A total of 7889 compounds were assembled
rom 4 well-defined experimental assays with experimental hERG block-
ng bioactivities for training, where compounds with experimental val-
es less than or equal to 10 𝜇M were regarded as positive samples (4355
n total) and the others as negative samples (3534 in total). RF builds
ultiple DT on the data and merges them together to get hERG toxicity.
his model achieved an 80% accuracy and 88% ROC-AUC. 
1281
Hsiao et al. [ 139 ] and Arab et al. [ 140 ] also used the RF model with
igh accuracy. Ogura et al. developed an SVM model using ECFP_4 struc-
ural fingerprints and 72 NSGA-II-selected descriptors, outperforming
ther predictors with 98.4% accuracy and 0.733 kappa statistic [ 141 ].
onda et al. [ 142 ] generated hERG classification models with 2D de-
criptors using RF, SMO (sequential minimal optimization), and MLP
multilayer perceptron) algorithms, with their consensus model outper-
orming other predictors with 92% accuracy. DNN, ANN, RNN, CNN,
NN, GCNN, and GAT are used in developing hERG predictive mod-
ls. Shan et al., [ 143 ] generated a directed message-passing neural net-
ork (DMPNN) model with moe206 descriptors that outperformed other
odels with an accuracy of 80% [ 143 ]. Zhang et al., [ 144 ] developed
ergSPred, which outperformed other models, achieving an accuracy of
8.3%. Ryu et al. [ 145 ] developed DeepHit, which outperformed other
ools in terms of accuracy, MCC, and SE (sensitivity). Wei et al. cre-
ted Interpretable-ADMET, achieving the highest accuracy (91.9%) and
OC-AUC (78.2%) on 8672 compounds. ADMETLab 2.0 achieved the
ighest accuracy and ROC-AUC of 88.9% and 94.3%, respectively, on a
arge hERG data set containing 13,845 compounds, utilizing a multitask
raph attention framework (MGAF) to predict ADMET properties. 

.2. LD50 prediction 

In Toxicologists use the LD50 (median lethal dose) to determine a
ubstance’s toxicity. The dose needed to kill 50% of test animals in a
articular period of time is referred to as the LD50 value of a chemical.
he LD [ 146 ] is used as the first step in the drug screening process. Rats’
cute oral toxicity was evaluated using LD50 . Interspecies variability and
thical issues render conventional LD50 testing obsolete [ 147 ]. Acute
nimal toxicity tests using tissue culture and in silico LD50 prediction are
radually being replaced [ 148 ]. The binary classification model divides
ubstances into two categories: toxic (LD50 = 2000 mg/kg) and nontoxic
LD50 = 50 mg/kg). 

Compounds are divided into multiple classes by the Globally Har-
onized System of Classification and Labeling of Chemicals and the US
nvironmental Protection Agency [ 149 ]. Recent releases of the ADMET
rediction programs FP-ADMET [ 138 ] and Interpretable-ADMET [ 150 ],
n these both applications, LD50 prediction models are applied. 

Ballabio et al. developed LD50 prediction models using the binary fin-
erprints of NB, N–Nearest Neighbors, Binned-Neighbors, and Extended
onnectivity [ 151 ]. They found that their models were 84% sensitive
nd 81% specific for 8992 chemicals. An integrated QSAR model for
448 compounds was created by Gadaleta et al., [ 152 ], by combining
alanced RF, regression, aiQSAR, istkNN, SARpy, RF with hyperparam-
ter tuning, and a general linear model [ 153 ]. The ideal model’s RMSE
root-mean-squared error) was 0.477%, and its accuracy balance was
bove 70% for multiclass endpoints and 80% for binary endpoints. 

Jain et al. [ 154 ] created a multitasking DL consensus model using
F, DNN, CNN, and GCNN on a dataset of 80,081 compounds that out-
erformed other models with RMSE of 0.65 and R2 of 0.5. Using the
ame dataset of 7413 compounds, BTAMDL predicted LD50 with a higher
egree of accuracy than MolGIN (RMSE = 0.557, R2 = 0.662). Using
he 7413-compound TopTox data set from the ECOTOX aquatic toxicity
atabase, Karim et al., [ 155 ] proposed QuantitativeTox, a DL framework
tilizing FFNN, CNN, GCNN, and baseline feature representations. This
odel outperformed others (R2 = 0.687), and it was adopted. 

.3. Drug induced liver injury (DILI) prediction 

Drug or chemical toxicity causes DILI [ 156 ]. It causes 32% of drug
ecalls, which worries researchers and doctors [ 157 ]. Predicting human
ILI with in vitro or animal studies is difficult. RF, kNN, SVM, deep
eural network (DNN), CNN, and GNN can predict compound properties
rom chemical structure. Recent reviews have examined AI methods for
ILI in silico prediction [ 158-160 ]. 
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Recent ML techniques, such as RF, LR, NB, SVM, kNN, AB, GDBT
gradient boosting decision trees), and ET (equivariant transformer)
 138 , 161-165 ], have been applied to the development of accurate DILI
rediction models. Mora et al. created an ensemble model based on
uBiLS-MAS Features and Shallow Learning using k-NN, MLP, RF, NB,
VM, LR (logistic regression), classification tree, Fisher’s linear dis-
riminant analysis (FLDA) [ 164 ], and Bayes network algorithms, which
chieved an 84% accuracy rate over 10-fold cross-validation using a
raining set of 1075 compounds from a previous study [ 166 ]. Using a
ataset of 2608 chemicals and SVM and hybrid quantum particle swarm
ptimization algorithms, Wang and Chen constructed five consensus
odels with an 80% accuracy rate [ 165 ]. 

ADMETLab 2.0 [ 167 ], FP-ADMET [ 138 ] and InterpretableADMET
 150 ], are ADMET prediction software with over 79% accurate DILI pre-
iction models. DL improves the accuracy of DILI prediction. Li et al.’s
 168 ] DeepDILI model outperformed five ML algorithms and two ad-
anced ensemble methods. Using Transcriptional Response Data and
NN, Hwang et al. [ 169 ] developed GLIT, a DILI prediction model

hat outperformed baseline models with 77.3% accuracy. With a mul-
iview GNN approach, Ma et al. [ 170 ] increased accuracy from 78.8%
o 81.4% and ROC-AUC from 86.6% to 88.8%. Using CNN algorithms
nd molecular fingerprint-embedded features, Nguyen-Vo et al. [ 171 ]
eveloped a DILI prediction model with 89% accuracy and 96% ROC-
UC. CNN’s ResNet18DNN achieved a 95.8% success rate on 1446 com-
ounds [ 172 ]. These methods may reduce drug recalls and improve the
ccuracy of DILI prediction. 

.4. Carcinogenesis prediction 

Potentially carcinogenic substances must be identified in order to
revent environmental cancers [ 173 ]. Many FDA-approved medications
ave been withdrawn due to their carcinogenic characteristics. Short-
erm biological studies and theoretical models have been tested to find
uch compounds. ML and DL techniques can be used to replace, scale
ack, and enhance animal studies. 

Recently, a number of AI-based models and tools for compound car-
inogenicity prediction were created [ 174-178 ]. Using hybrid neural
etworks (NN), Limbu and Dakshanamurthy developed carcinogenic-
ty prediction models with an average accuracy of 74.3 and an average
OC-AUC of 80.1 [ 174 ]. Due to sparse data sets, DL models have low
redictive accuracy. Wang et al. developed CapsCarcino, a new DL ar-
hitecture, to address this problem [ 175 ]. On a set of external validation
ata, CapsCarcino had an average accuracy of 74.5 percent and an accu-
acy prediction rate of 83%. On sparse training data that was arbitrarily
educed to 20%, 40%, 60%, and 80% of the full training data, CapsCar-
ino performed better than other models. Li et al. developed the Deep-
arc model, which has an average improvement rate of 37.0% and an
ccuracy of 75.4%, using 863 compounds and three descriptors [ 176 ].
ther reviews [ 173 , 179 ] cover additional models. 

. AI and gene editing technologies for developing gene therapies

With the growing accumulation of genomic and clinical data, data
cientists face both challenges and opportunities when attempting to ex-
ract biologically or clinically relevant information from massive geno-
ype and phenotype datasets. In genomics, AI-based technologies and
ata science techniques have been utilized effectively over the past two
ecades. 

A significant amount of phenotypic information can be found in the
linical notes, discharge summaries, radiology, and pathology reports
hat make up about 80% of the unstructured data in EHRs [ 180 ]. Clini-
al NLP methods like cTAKES can parse semantic relationships and ex-
ract structured concepts from free text to extract this information. The
ccuracy of phenotyping has significantly improved with the use of NLP
echniques in combination with structured and unstructured data. Ac-
ording to Liao et al.’s analysis of structured data, NLP can be added to it
1282
o increase sensitivity while preserving a high positive predictive value
or a variety of illnesses, such as multiple sclerosis and inflammatory
owel disease [ 181 ]. 

A study on phenotyping rheumatoid arthritis using structured data
ICD codes and medication data) and clinical concepts derived from NLP
hows how ML has been used to create phenotyping models. The SVM
odels outperformed rule-based techniques in accuracy [ 182 ], proving

hat a high-performing classifier can be built without the use of feature
ngineering. ML techniques are more scalable, work with less standard-
zed datasets than rule-based approaches, and can capture more complex
henotypes. 

However, manually labeled gold standard training and test datasets
re crucial for developing and validating supervised ML models. How-
ver, creating them requires considerable time and expertise. To address
his, unsupervised learning techniques have been proposed to gener-
te patient clusters for specific medical conditions without human su-
ervision. Ho et al. used the “Limestone ” non-negative tensor factor-
zation technique to automatically generate multiple phenotype candi-
ates without predefined definitions [ 183 ]. A medical professional de-
ermined that only 40 of the top 50 candidates are necessary for higher
redictive accuracy of patients at risk of heart failure. Two upgraded
ariations of Limestone, Marble, and Granite, showed improved perfor-
ance [ 184 , 185 ]. Numerous phenotyping methods have been reported

n line with the use of DL approaches, including Gehrmann et al., [ 186 ]
nd Yang et al., [ 187 ] use of discharge summaries or clinicians’ notes,
nd Miotto et al., [ 188 ] de-noising auto-encoders for auto-encoding. 

In genomics research, DL has emerged as a prominent class of algo-
ithms owing to its capability to effectively handle large datasets with
igh dimensionality. A plethora of DL-based models have been devel-
ped and utilized for designing gRNA (guide RNA), incorporating fea-
ures from both sequence and secondary structure data. Additionally,
ransfer learning, a ground-breaking innovation in computer vision, has
een used in genomics research as well to take advantage of trained
odels and only need small sample sizes [ 189 ]. Moreover, BERT mod-

ls have been specially created for NLP tasks in the clinical domain
 190 ]. ClinicalBERT and Discharge Summary BERT were developed by
lsentzer et al., [ 191 ] and pre-trained on millions of clinical notes from

he MIMIC-III database [ 192 , 193 ]. These MIMIC notes were split into
ections followed by sentences extraction as input into the model, which
aptured contextual relationships between words bidirectionally. These
odels were pre-trained and fine-tuned for downstream tasks, outper-

orming BERT and BioBERT on three clinical NLP tasks. In order to pre-
ict hospital readmission, Huang et al. also created ClinicalBERT, but
hey also emphasized the drawbacks of using data from a single health-
are institution. Retraining on bigger databases of clinical notes is ad-
ised as a result for better performance. These advancements demon-
trate how ML and its related fields can enhance genomics and clinical
esearch. 

. AI-based modeling for personalized drug dosing 

Traditionally, clinical practice has been based on the concept of
one therapy fits all’. However, drug molecules may undergo differ-
nt metabolic activities in different patients. For example, a drug that
orks well for a group of people may not be as effective or may have
dverse side effects for others. These differences in drug metabolism are
ostly attributed to the differences in the genetic profile of individu-

ls. Thus, a more futuristic approach is the personalized treatment also
nown as precision medicine, where patients are treated based on their
enetic profile. The target is to maximize treatment outcomes while
inimizing adverse effects per individual. Thus, different therapies and
oses are customized per individual (or per group of patients that share
imilar genome profiles). AI has fostered considerable improvements in
he development of personalized medicine [ 194 ]. For example, the AI-
erived platform, CURATE.AI, predicts the optimal dosing along with
he treatment outcomes based on the patients’ individual data. It gen-
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work. 
rates a profile for each patient using their own medical records, and
t dynamically recalibrates the predicted profile over time based on the
rogression or recession of the disease. CURATE.AI can optimize doses
f not only single drugs, but also combinations of drugs [ 195 , 196 ]. This
s helpful given that, nowadays, therapies are becoming more sophisti-
ated with emphasis on combination (or multimodal) treatments. These
nvolve more than one drug or treatment offered either simultaneously
r sequentially. Combination therapy is proven to have more efficacy
ompared to single drug regimen especially in the treatment of com-
lex diseases like cancer [ 197 , 198 ]. To predict the efficacy of a chosen
reatment, Kureshi et al. developed an AI decision tree to establish a
ink between the characteristics of the patient and the tumor response
n NSCLC [ 199 ]. They used four classifiers (histology, mutation in epi-
ermal growth factor receptor, targeted drugs, and smoking habits) for
redicting the response of NSCLC patients to the EGFR tyrosine kinase
nhibitors. The method showed 76.6% accuracy and it can support the
linician in choosing the correct treatment for NSCLC patients. One of
he drawbacks of the study is the small training set used ( n = 355).
his resulted in the omission of rare patterns such as duplication, dele-
ions, insertions, and point mutations. Using a larger training set could
urther improve the predictive accuracy of this decision support model.
he ‘IBM Watson for oncology’ software made a large impact on person-
lized treatment plans for cancer patients [ 200 ]. The software is trained
n thousands of clinical and health records of cancer patients from the
edical journals, textbooks, and literature curated by Memorial Sloan
ettering. This software makes accurate diagnoses and treatment rec-
mmendations by identifying related cases from databases of worldwide
linical trials ( http://www.clinicaltrials.gov ) [ 201 ]. 

. The role of AI in rare disease research 

Rare diseases (RDs) are a significant health issue that affects almost
 in 10 individuals in US [ 202 ]. Despite their prevalence, the diagno-
is of RDs is often challenging due to the complexity of symptoms and
he rarity of the conditions. The delay in diagnosis can be as long as 7
ears, leading to significant delays in treatment and management [ 203 ].
ence, there is a need for new approaches to enhance the diagnosis
nd treatment of RDs. AI has the potential to transform the diagnosis
nd management of rare diseases [ 204-207 ] based on NB, RF, XGBoost,
NN, AE (autoencoder), RNN, GAN (generative adversarial network),
tc. Fernández et al. developed a deep DL-based approach to detect tu-
ers in selected MRI (magnetic resonance imaging) images for the di-
gnosis of tuberous sclerosis complex (TSC) [ 204 ]. This model adopts a
nique InceptionV3 CNN architecture to recognize whether an MRI im-
ge has tubers in it or not, showing promising performance (accuracy:
5%) in the detection of a rare neurological disorder. Founta introduced
 semi-automated preprocessing gene selection methodology to identify
ausal amyotrophic lateral sclerosis (ALS) genes [ 205 ], with which they
eveloped a classifier based on XGBoost and RF to diagnose ALS and its
pecific subtypes. This methodology achieved 88.89% accuracy for the
lassification of sporadic ALS motor neuron samples. Additionally, AI-
ased PET is a promising tool for early detection and diagnosis of RDs
 208 ]. 

However, the implementation of AI in healthcare requires careful
onsideration of ethical, legal, and social implications [ 209 ]. AI med-
cal devices must be developed with the active involvement of patient
dvocacy groups to ensure that the technology is designed to meet the
pecific needs of rare disease patients. The datasets used to train these
lgorithms must be diverse and augmented to ensure that they repre-
ent the end-user population accurately. Furthermore, the safety and
ffectiveness of AI-based medical devices (AIMDs) must be thoroughly
valuated to avoid potential harm to patients [ 210 ]. AIMDs must be RD-
ware at every stage of their conceptualization and life cycle to avoid
otential harm and unsustainable deployment of AIMDs into clinical
ractice. This requires a multidisciplinary approach involving clinicians,
omputer scientists, and patient advocacy groups. 
1283
In general, AI-based technologies offer promising solutions to im-
rove the diagnosis and management of rare diseases. However, the
thical, legal, and social implications of AI in healthcare must be care-
ully considered to ensure the safety and effectiveness of AIMDs. With
areful consideration and collaboration, AI has the potential to revo-
utionize the diagnosis and treatment of rare diseases, leading to im-
roved patient outcomes and a better quality of life for those affected
y RDs. 

. Conclusion 

The use of AI technology in drug design has grown rapidly due to
ts predictive ability and accuracy. This review highlights the numerous
pplications of AI in all phases of drug development, from disease diag-
osis to post-marketing analysis. AI helps in the early prediction of dis-
ases, the development of personalized medicine, optimization of drug
oses, and the prediction of treatment outcomes. Additionally, AI assists
n target and lead identification through the prediction of protein struc-
ures and biological activities of small molecules. AI technology can also
redict drug-like properties and off-target effects of new compounds,
educing the need for experimental validation. Furthermore, AI-driven
pproaches improve patient stratification, recruitment, monitoring, and
ollow-ups in clinical trials, and can even assist in FDA approvals and
harmacovigilance. The integration of AI in drug design has resulted
n faster drug discovery, cost savings, reduced resource and manpower
sage, and decreased attrition rates in clinical trials. Additionally, AI
elps to minimize the use of in vivo bioassays, reducing animal sacri-
ce. AI has far-reaching applications beyond medicine, including health-
are management, surgeries, mRNA vaccination, preventive treatments,
nd nutrigenomics. However, it is important to note that AI models are
eant to complement human intelligence, not replace it. AI models may
ave comparable or better predictive ability than human researchers,
ut they still lack human intuition. Predictions made by AI machines
ust be verified by humans, as AI models can provide false positive and

alse negative results, compromising the sensitivity and specificity of
he model. Additionally, resource sustainability needs holistic solutions
ike cost-aware cross-layer co-design, integrating hardware, algorithms,
nd models for efficient exploration of resource-sustainable configura-
ions. Consensus-based distributed learning is suggested to fully utilize
xisting and future computing infrastructures, incorporating Internet-
f-Things devices and edge servers for data sharing while ensuring pri-
acy. Stable infrastructures with AI-enhanced resource allocation are
ecommended, involving dedicated healthcare AI infrastructures com-
liant with evolving government regulations. Lastly, interpretable self-
upervised learning is proposed to address the sustainability issue in
omain expertise, enhancing trust by extracting clinically useful fea-
ures and providing human-interpretable evidence in healthcare appli-
ations. There are numerous challenges associated with AI, including
he explainability of models, the quality and suitability of data used to
rain models, avoiding bias and overfitting, resource sustainability and
ore. It is crucial to remain aware of the limitations and risks asso-

iated with AI technology. Opportunities for improvement in AI tech-
ology include minimizing dependence on supercomputing power, ad-
ressing ethical concerns surrounding data collection, and implement-
ng AI in a controlled manner in the healthcare sector to limit nega-
ive consequences. It is possible that the future of AI-assisted drug dis-
overy lies in developing a virtual human with complete complexity,
llowing for accurate predictions of all possible interactions between
olecules and exploring all therapeutic potentials and adverse side

ffects. 
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